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Motivation: quasiconformal mappings in metric spaces

The theory of analysis in metric measure spaces originates in two papers of Juha
Heinonen and Pekka Koskela:

‘Definitions of quasiconformality’, Invent. Math., 1995
‘QC maps in metric spaces of controlled geometry’, Acta Math., 1998

The latter paper introduced the concept of p-Poincaré inequality on a metric
measure space, which has become the standard axiom for first-order analysis.

f homeo in Rn, n ≥ 2

metric QC
Gehring⇒ analytic QC ⇒ geometric QC

modulus estimates⇒ (local) QS

f : X → Y homeo between proper Q-regular mms satisfying Q-PI, Q > 1

metric QC
HK ′98
=⇒ QS

f : X → Y homeo between proper Q-regular mms

. geometric QC
T ′98⇐ QS
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Sobolev mappings into metric spaces: a brief history

Ambrosio (1990): metric space-valued BV mappings

Korevaar–Schoen (1993): W 1,2 mappings into metric spaces with Alexandrov
curvature bounds

Reshetnyak (1997)

T (1998)

Heinonen–Koskela–Shanmugalingam–T (2001, 2015): theory of the
Newtonian–Sobolev space N1,p(X : Y ) with applications to QS maps

A. and J. Björn, Nonlinear potential theory on metric spaces, European Math.
Soc., 2011



Sobolev mappings into Banach spaces

Let Ω ⊂ Rn and V a Banach space.

W 1,p(Ω : V ) is the space of f : Ω→ V s.t.

(i) f ∈ Lp(Ω : V )

(ii) f has a weak gradient ∇f ∈ Lp(Ω : V n)

(integrals against C∞0 test functions understood in the Bochner sense).

W 1,p(Ω : V ) is a Banach space when equipped with the norm

||f ||1,p :=

(∫
Ω

||f ||p
)1/p

+

(∫
Ω

||∇f ||p
)1/p

.



Sobolev mappings into Banach spaces

An alternate approach is to consider post-composition by linear functionals (or
more general Lipschitz functions). Reshetnyak (1997) used a similar approach to
study metric space-valued Sobolev maps.

The Reshetnyak–Sobolev space R1,p(Ω : V ) is the set of f ∈ Lp(Ω : V ) s.t.

(i) for each v∗ ∈ V ∗, 〈v∗, f 〉 ∈W 1,p(Ω), and

(ii) there exists 0 ≤ g ∈ Lp(Ω) s.t. |∇〈v∗, f 〉| ≤ g a.e., for each v∗ ∈ V ∗ with
||v∗|| ≤ 1.

R1,p(Ω : V ) is a Banach space when equipped with the norm

||f ||R1,p := ||f ||p + inf
g
||g ||p

where the infimum is over all g as in (ii).

Proposition

If V is dual to a separable Banach space, then W 1,p(Ω : V ) = R1,p(Ω : V ) and
|| · ||1,p ≈ || · ||R1,p .



Sobolev mappings into metric spaces

Y a metric space, κ : Y → V an isometric embedding into a Banach space V .

W 1,p(Ω : Y ) is the set of all f ∈W 1,p(Ω : V ) s.t. f (Ω) ⊂ κ(Y ). We similarly
define R1,p(Ω : Y ).

If V is a separable dual, then these two spaces are equal (e.g., for every separable
metric space).

Remarks: (1) Sobolev maps between Riem mflds are often defined similarly,
using a Nash embedding of the target. Our approach is slightly different, since
the notion of ‘isometric embedding’ in the Nash theorem is intrinsic.

(2) The space W 1,p(Ω : Y ) is independent of the choice of κ. However, the
induced metric on W 1,p(Ω : Y ) does depend on κ (cf. work of Haj lasz).

(3) The dimension distortion theorems from Lecture I continue to hold for
supercritical Sobolev maps with metric space target.



Sobolev Peano cubes

The classical Hahn–Mazurkiewicz theorem states that a metric space Y is the
continuous image of [0, 1] iff Y is compact, connected and locally connected.

To generalize this to the Sobolev category we need to impose stronger
assumptions on Y .

Since Sobolev maps are ACL, if Y = f ([0, 1]n) for some Sobolev map f , then Y
must contain many rectifiable curves.

For a rectifiably connected metric space (Y , dY ), let d` be the associated length
metric. Y is length compact if (Y , d`) is compact.

Theorem (Haj lasz–T, 2008)

Let Y be length compact and n ≥ 2. Then there exists a continuous surjection
f ∈W 1,n([0, 1]n : Y ). Moreover, f can be chosen to be locally Lipschitz
continuous in the complement of a closed set of Hausdorff dimension zero.



Sobolev Peano cubes: proof sketch

Key fact: The Sobolev n-capacity of a point x0 ∈ Rn is equal to zero if n ≥ 2.

(For any ε > 0 there is a W 1,n function u supported in B(x0, ε) which constant in
a smaller nbhd and s.t. ||∇u||n < ε.)

Length compactness ⇒ ∃ finite 2−m-nets Ym for each m ∈ N.

Exhaust Y by a locally finite tree comprised of almost geodesic
arcs γmw joining each ym

w ∈ Ym to its parent in Ym−1.

{Qm
w } a combinatorially equiv system of cubes in Q0.

Define f : [0, 1]n → Y as follows: f = ym
w on ∂Qm

w

f = γmw ◦ umw interpolates from ym
w to its parent

along γmw in an annulus λQm
w \ Qm

w .
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Upper gradients

(X , d , µ) a metric measure space (µ Borel, 0 < µ(B) <∞ for all balls B.)

Definition (Heinonen–Koskela)

A Borel function g : X → [0,∞] is an upper gradient of f : X → Y if

dY (f (x), f (y)) ≤
∫
γ

g ds

whenever γ is a rectifiable curve in X joining x to y .

e.g., |∇f | is an upper gradient of f : Ω→ R for any f ∈ C 1(Ω).



Newtonian–Sobolev spaces

Definition (Shanmugalingam)

The Newtonian–Sobolev space N1,p(X ) consists of all f ∈ Lp(X ) which admit
an upper gradient g ∈ Lp(X ).

Facts: (1) N1,p(X ) is a Banach space when equipped with the norm
||f ||1,p = ||f ||p + infg ||g ||p.

(2) N1,p(Ω) = W 1,p(Ω) for Euclidean domains Ω (modulo a caveat about the
choice of representative)

Banach space- and metric space-valued Newtonian–Sobolev functions are defined
as before.

N1,p(X : V ) N1,p(X : Y )

Recall: (X , d , µ) a metric measure space, (Y , dY ) a metric space



Poincaré inequalities on metric measure spaces

Definition (Heinonen–Koskela)

A metric measure space (X , d , µ) supports a p-Poincaré inequality if there
exist constants C > 0 and τ ≥ 1 s.t.∫

B

|f − fB | dµ ≤ C (diamB)

(∫
τB

gp dµ

)1/p

for all balls B and all continuous functions f : X → R with upper gradient
g : X → [0,∞].

Notation: fB =
∫
B
f = µ(B)−1

∫
B
f dµ.



Poincaré inequalities on metric measure spaces: remarks

∫
B

|f − fB | dµ ≤ C (diamB)

(∫
τB

gp dµ

)1/p

(1) PI implies good connectivity properties for X .

(2) p-PI implies q-PI for q ≥ p.

(3) If (X , d , µ) is complete and doubling and supports the p-PI, then there exists
ε > 0 s.t. (X , d , µ) supports the q-PI for q > p − ε (Keith–Zhong, 2008).

(4) If X and Y are Q-regular mms with the Q-PI, then all standard definitions for
quasiconformality of a homeomorphism f : X → Y are equivalent.

f analytically QC: f ∈ N1,Q(X : Y ),
(

lim supr→0
Lf (x,r)

r

)Q
≤ Kµf (x) a.e.

(Heinonen–Koskela–Shanmugalingam–T, 2001)
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Poincaré inequalities on metric measure spaces: applications

∫
B

|f − fB | dµ ≤ C (diamB)

(∫
τB

gp dµ

)1/p

(1) The uniformization problem for metric 2-spheres: if X is homeomorphic to
S2, Q-regular for some Q ≥ 2, and satisfies the Q-PI, then X is QS equiv to S2

(Bonk–Kleiner, 2002)

(2) Lipschitz functions and mappings on doubling spaces supporting a PI are
differentiable a.e. (Cheeger, 1999; Cheeger–Kleiner, 2000s). Applications to
bi-Lipschitz nonembeddability theorems.



Poincaré inequalities on metric measure spaces: applications

∫
B

|f − fB | dµ ≤ C (diamB)

(∫
τB

gp dµ

)1/p

(1) The uniformization problem for metric 2-spheres: if X is homeomorphic to
S2, Q-regular for some Q ≥ 2, and satisfies the Q-PI, then X is QS equiv to S2

(Bonk–Kleiner, 2002)

(2) Lipschitz functions and mappings on doubling spaces supporting a PI are
differentiable a.e. (Cheeger, 1999; Cheeger–Kleiner, 2000s). Applications to
bi-Lipschitz nonembeddability theorems.



Poincaré inequalities on metric measure spaces: examples

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

2. Sub-Riemannian spaces, e.g., the Heisenberg group
3. Spaces with Alexandrov curvature bounds
4. Boundaries of certain Gromov hyperbolic groups (Bourdon–Pajot),
topologically equivalent to the Menger sponge
5. Laakso spaces (C × [0, 1]/ ∼ with a quotient metric)

6. Non-self-similar planar Sierpiński carpets (Mackay–T–Wildrick)

SC (a), a = (a1, a2, . . .), aj ∈ { 1
3 ,

1
5 ,

1
7 , . . .}

(SC (a), dE ,L2) supports 1-PI iff a ∈ `1

(SC (a), dE ,L2) supports the p-PI for all p > 1 iff a ∈ `2
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SC (a), a = (a1, a2, . . .), aj ∈ { 1
3 ,

1
5 ,

1
7 , . . .}

(SC (a), dE ,L2) supports 1-PI iff a ∈ `1

(SC (a), dE ,L2) supports the p-PI for all p > 1 iff a ∈ `2
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Sobolev–Poincaré inequalities and dimension distortion

(X , d , µ) Q-regular with a p-PI ⇒

p < Q: N1,p(X : V ) ↪→ LQp/(Q−p)(X : V ),

p = Q: Moser–Trudinger inequality

p > Q: Morrey–Sobolev inequality (N1,p ↪→ C 0,1−Q/p).

||f (x)− f (y)|| ≤ C ′ d(x , y)1−Q/p
(∫

τ ′B

gp

)1/p

if f ∈ N1,p(X : V ), g is an upper gradient of f and x , y lie in a ball B ⊂ X .

Theorem (Balogh–T–Wildrick, 2013)

Let X be proper and Ahlfors Q-regular supporting a Q-PI. Let p > Q. If
f : X → Y is continuous and has an upper gradient in Lp(X ), and E ⊂ X has
dimE = s ∈ (0,Q), then dim f (E ) ≤ ps

p−Q+s .
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Generic dimension distortion in metric spaces

In order to formulate an analog of our generic estimates for affine subspaces, we
need to understand the appropriate class of foliations in abstract metric spaces.

Definition (cf. David–Semmes)

A surjection π : X →W between proper metric spaces is (locally) s-regular,
s ≥ 0, if for each compact K ⊂ X , π|K is Lipschitz and for every ball B ⊂W
with radius r ≤ r0, the (truncated) preimage π−1(B) ∩ K can be covered by
. r−s balls in X of radius . r .

Examples: (1) PW : Rn →W ,
(2) Riem submersions π : N → N ′ (locally D–S (dimN − dimN ′)-regular),
(3) projection mappings in the Heisenberg group (later)

Similar to notions of co-Lipschitz / Lipschitz quotient mappings, e.g.,
Bates–Johnson–Lindenstrauss–Preiss–Schechtman, . . .



Generic dimension distortion in metric spaces

In order to formulate an analog of our generic estimates for affine subspaces, we
need to understand the appropriate class of foliations in abstract metric spaces.

Definition (cf. David–Semmes)

A surjection π : X →W between proper metric spaces is (locally) s-regular,
s ≥ 0, if for each compact K ⊂ X , π|K is Lipschitz and for every ball B ⊂W
with radius r ≤ r0, the (truncated) preimage π−1(B) ∩ K can be covered by
. r−s balls in X of radius . r .

Examples: (1) PW : Rn →W ,
(2) Riem submersions π : N → N ′ (locally D–S (dimN − dimN ′)-regular),
(3) projection mappings in the Heisenberg group (later)

Similar to notions of co-Lipschitz / Lipschitz quotient mappings, e.g.,
Bates–Johnson–Lindenstrauss–Preiss–Schechtman, . . .



Theorem (Balogh–T–Wildrick, 2013)

Let X be a proper Q-regular space supporting a Q-PI. Let π : X →W be a
David–Semmes s-regular Lipschitz surjection. Let f : X → Y be continuous with
upper gradient in Lp(X ) for some p > Q. Then

dim{a ∈W : dim f (π−1(a)) ≥ α} ≤ (Q − s)− p(1− s

α
)

for each s < α ≤ ps
p−Q+s .

Remarks: (1) We recover the Euclidean result in the case X = Rn, W = V⊥,
V ∈ G (n,m), π = PV⊥ , s = m.

(2) The fibers of a D–S s-regular mapping have Hausdorff dimension ≤ s.
However, there are natural settings (e.g., certain foliations of the Heisenberg
group), where this inequality is strict. In such cases, the theorem is not best
possible.



The Heisenberg group H
H = C× R with group law

(z , t) ∗ (z ′, t ′) = (z + z ′, t + t ′ + 2 Im(zz ′))

A basis of left-invariant vector fields is

X = ∂x + 2y∂t , Y = ∂y − 2x∂t , T = ∂t .

The horizontal distribution HH is given by HpH = span{X (p),Y (p)}.

H is horizontally connected by Hörmander’s thm.

Carnot-Carathéodory distance dcc(p,q) defined by infimizing the g0-length of
horiz curves joining p to q (g0 is the singular Riem metric making X and Y ON).

dcc is left invariant, dilations δr (z , t) = (rz , r2t) act as similarities of dcc .

Measure on H: Haar measure µ (agrees with L3 and with H4
cc up to constants)

(H, dcc , µ) is Ahlfors 4-regular and supports a 1-PI.
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A basis of left-invariant vector fields is

X = ∂x + 2y∂t , Y = ∂y − 2x∂t , T = ∂t .

The horizontal distribution HH is given by HpH = span{X (p),Y (p)}.

H is horizontally connected by Hörmander’s thm.

Carnot-Carathéodory distance dcc(p,q) defined by infimizing the g0-length of
horiz curves joining p to q (g0 is the singular Riem metric making X and Y ON).

dcc is left invariant, dilations δr (z , t) = (rz , r2t) act as similarities of dcc .

Measure on H: Haar measure µ (agrees with L3 and with H4
cc up to constants)

(H, dcc , µ) is Ahlfors 4-regular and supports a 1-PI.



Structure of C–C balls (Ball-Box Theorem): For any p ∈ H and r > 0, Bcc(p, r)
is comparable to the sheared Euclidean box

p ∗ [−r , r ]× [−r , r ]× [−r2, r2]

Horizontal distribution HH



We consider foliations of H defined by cosets of horizontal lines and their
complementary vertical planes.

Fix a horizontal line V = span{(1, 0)} and the complementary vertical plane
W = span{(i, 0), (0, 1)}. These are both abelian subgroups of H; W is normal.

(V, dcc) is an isometrically embedded copy of R (so dimV = 1).

dcc |W is comparable to the heat metric |y − y ′|+
√
|t − t ′| (so dimcc W = 3).



W is a normal subgroup. We obtain semidirect product decompositions

H = WnV and H = VoW,

each giving rise to a foliation of H by cosets of V, parameterized by W.

Since we are working with left invariant vector fields and metrics on H, the
intrinsic metric structure of these two foliations are quite different.



Left coset foliation of H (defined by H = WoV): all fibers are
1-dimensional, parameterizing space (W, dcc) is 3-dimensional

Right coset foliation of H (defined by H = VoW): most fibers are
2-dimensional

Since we work with a left invariant metric on H, the fibers of the right coset
foliation are parallel. There is a quotient metric dX on the right coset space X s.t.
dX(V ∗ a,V ∗ b) = distdH(V ∗ a,V ∗ b). Then (X, dX) is 2-dimensional and the
obvious projection map πR : H→ X is Lipschitz.

Lemma

πR is David–Semmes 2-regular.

Corollary

dim{V ∗ a ∈ X : Hα(f (V ∗ a)) > 0} ≤ 2− p(1− 2
α ) for 2 < α ≤ 2p

p−2

Intuition: The right coset foliation of H behaves like the foliation of R4 by affine
translates of V ∈ G (4, 2).



The left coset foliation of the Heisenberg group is in many ways a more natural
construction. For instance, the fibers of this foliation are all horizontal
(rectifiable) curves w.r.t. the sub-Riemannian metric of H.

The left coset foliation was used by Mostow and Korányi–Reimann in their
development of the theory of Heisenberg QC mappings. A key complication in
Mostow’s original proof of the ACL property stems from the fact that the natural
projection map

πL : (H, dH)→ (W, dH)

is not Lipschitz.

This fact also means that the metric space theory of Sobolev and QC dimension
distortion, as discussed in this lecture, cannot be applied to the left coset foliation
of H.

Nevertheless, we are able to derive some (nonsharp) dimension distortion
estimates for the left coset foliation by different methods. This will be the subject
of Lecture III.


