Distortion of dimension by metric space-valued Sobolev mappings Lecture II

Jeremy Tyson University of Illinois at Urbana-Champaign

Metric Spaces: Analysis, Embeddings into Banach Spaces, Applications Texas A&M University College Station, TX

8 July 2016

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

Lecture I. Sobolev and quasiconformal mappings in Euclidean space

Lecture II. Sobolev mappings between metric spaces

Lecture III. Dimension distortion theorems for Sobolev and quasiconformal mappings defined from the sub-Riemannian Heisenberg group

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela:

'Definitions of quasiconformality', *Invent. Math.*, 1995 'QC maps in metric spaces of controlled geometry', *Acta Math.*, 1998

The latter paper introduced the concept of p-**Poincaré inequality** on a metric measure space, which has become the standard axiom for first-order analysis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela:

'Definitions of quasiconformality', *Invent. Math.*, 1995 'QC maps in metric spaces of controlled geometry', *Acta Math.*, 1998

The latter paper introduced the concept of *p*-**Poincaré inequality** on a metric measure space, which has become the standard axiom for first-order analysis. *f* homeo in \mathbb{R}^n , $n \ge 2$

 $\textit{metric QC} \stackrel{\textit{Gehring}}{\Rightarrow} \textit{analytic QC} \Rightarrow \textit{geometric QC} \stackrel{\textit{modulus estimates}}{\Rightarrow} \textit{(local) QS}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela:

'Definitions of quasiconformality', *Invent. Math.*, 1995 'QC maps in metric spaces of controlled geometry', *Acta Math.*, 1998

The latter paper introduced the concept of *p*-**Poincaré inequality** on a metric measure space, which has become the standard axiom for first-order analysis. *f* homeo in \mathbb{R}^n , $n \ge 2$

 $\textit{metric QC} \stackrel{\textit{Gehring}}{\Rightarrow} \textit{analytic QC} \Rightarrow \textit{geometric QC} \stackrel{\textit{modulus estimates}}{\Rightarrow} \textit{(local) QS}$

f: X
ightarrow Y homeo between proper Q-regular mms satisfying Q-PI, Q > 1

metric QC

$$\stackrel{HK'98}{\Longrightarrow} \qquad QS$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The theory of analysis in metric measure spaces originates in two papers of Juha Heinonen and Pekka Koskela:

'Definitions of quasiconformality', Invent. Math., 1995 'QC maps in metric spaces of controlled geometry', Acta Math., 1998

The latter paper introduced the concept of *p*-**Poincaré inequality** on a metric measure space, which has become the standard axiom for first-order analysis. f homeo in \mathbb{R}^n , $n \geq 2$

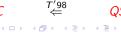
metric QC
$$\stackrel{Gehring}{\Rightarrow}$$
 analytic QC \Rightarrow geometric QC $\stackrel{modulus estimates}{\Rightarrow}$ (local) QS

 $f: X \to Y$ homeo between proper Q-regular mms satisfying Q-PI, Q > 1

netric QC
$$\xrightarrow{HK'98}$$
 QS

 $f: X \to Y$ homeo between proper Q-regular mms

geometric QC



QS

Ambrosio (1990): metric space-valued BV mappings

Korevaar–Schoen (1993): $W^{1,2}$ mappings into metric spaces with Alexandrov curvature bounds

Reshetnyak (1997)

T (1998)

Heinonen–Koskela–Shanmugalingam–T (2001, 2015): theory of the Newtonian–Sobolev space $N^{1,p}(X : Y)$ with applications to QS maps

A. and J. Björn, *Nonlinear potential theory on metric spaces*, European Math. Soc., 2011

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Sobolev mappings into Banach spaces

Let $\Omega \subset \mathbb{R}^n$ and V a Banach space.

 $W^{1,p}(\Omega: V)$ is the space of $f: \Omega \to V$ s.t.

(i) $f \in L^p(\Omega : V)$

(ii) f has a weak gradient $\nabla f \in L^p(\Omega : V^n)$ (integrals against C_0^{∞} test functions understood in the Bochner sense).

 $W^{1,p}(\Omega: V)$ is a Banach space when equipped with the norm

$$||f||_{1,p} := \left(\int_{\Omega} ||f||^p\right)^{1/p} + \left(\int_{\Omega} ||\nabla f||^p\right)^{1/p}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sobolev mappings into Banach spaces

An alternate approach is to consider post-composition by linear functionals (or more general Lipschitz functions). Reshetnyak (1997) used a similar approach to study metric space-valued Sobolev maps.

The **Reshetnyak–Sobolev space** $R^{1,p}(\Omega : V)$ is the set of $f \in L^p(\Omega : V)$ s.t.

(i) for each
$$v^* \in V^*$$
, $\langle v^*, f \rangle \in W^{1,p}(\Omega)$, and

(ii) there exists $0 \le g \in L^p(\Omega)$ s.t. $|\nabla \langle v^*, f \rangle| \le g$ a.e., for each $v^* \in V^*$ with $||v^*|| \le 1$.

 $R^{1,p}(\Omega: V)$ is a Banach space when equipped with the norm

$$||f||_{R^{1,p}} := ||f||_p + \inf_g ||g||_p$$

where the infimum is over all g as in (ii).

Proposition

If V is dual to a separable Banach space, then $W^{1,p}(\Omega : V) = R^{1,p}(\Omega : V)$ and $|| \cdot ||_{1,p} \approx || \cdot ||_{R^{1,p}}$.

Sobolev mappings into metric spaces

Y a metric space, $\kappa: Y \to V$ an isometric embedding into a Banach space V.

 $W^{1,p}(\Omega:Y)$ is the set of all $f \in W^{1,p}(\Omega:V)$ s.t. $f(\Omega) \subset \kappa(Y)$. We similarly define $R^{1,p}(\Omega:Y)$.

If V is a separable dual, then these two spaces are equal (e.g., for every separable metric space).

Remarks: (1) Sobolev maps between Riem mflds are often defined similarly, using a Nash embedding of the target. Our approach is slightly different, since the notion of 'isometric embedding' in the Nash theorem is intrinsic.

(2) The space $W^{1,p}(\Omega : Y)$ is independent of the choice of κ . However, the induced metric on $W^{1,p}(\Omega : Y)$ **does** depend on κ (cf. work of Hajłasz).

(3) The dimension distortion theorems from Lecture I continue to hold for supercritical Sobolev maps with metric space target.

The classical Hahn–Mazurkiewicz theorem states that a metric space Y is the continuous image of [0, 1] iff Y is compact, connected and locally connected.

To generalize this to the Sobolev category we need to impose stronger assumptions on Y.

Since Sobolev maps are ACL, if $Y = f([0, 1]^n)$ for some Sobolev map f, then Y must contain many rectifiable curves.

For a rectifiably connected metric space (Y, d_Y) , let d_ℓ be the associated **length** metric. Y is length compact if (Y, d_ℓ) is compact.

Theorem (Hajłasz-T, 2008)

Let Y be length compact and $n \ge 2$. Then there exists a continuous surjection $f \in W^{1,n}([0,1]^n : Y)$. Moreover, f can be chosen to be locally Lipschitz continuous in the complement of a closed set of Hausdorff dimension zero.

Sobolev Peano cubes: proof sketch

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sobolev Peano cubes: proof sketch

Key fact: The Sobolev *n*-capacity of a point $x_0 \in \mathbb{R}^n$ is equal to zero if $n \ge 2$.

(For any $\epsilon > 0$ there is a $W^{1,n}$ function u supported in $B(x_0, \epsilon)$ which constant in a smaller nbhd and s.t. $||\nabla u||_n < \epsilon$.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Sobolev Peano cubes: proof sketch

Key fact: The Sobolev *n*-capacity of a point $x_0 \in \mathbb{R}^n$ is equal to zero if $n \ge 2$.

(For any $\epsilon > 0$ there is a $W^{1,n}$ function u supported in $B(x_0, \epsilon)$ which constant in a smaller nbhd and s.t. $||\nabla u||_n < \epsilon$.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Length compactness $\Rightarrow \exists$ finite 2^{-m} -nets Y_m for each $m \in \mathbb{N}$.

Key fact: The Sobolev *n*-capacity of a point $x_0 \in \mathbb{R}^n$ is equal to zero if $n \ge 2$.

(For any $\epsilon > 0$ there is a $W^{1,n}$ function u supported in $B(x_0, \epsilon)$ which constant in a smaller nbhd and s.t. $||\nabla u||_n < \epsilon$.)

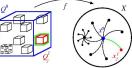
Length compactness $\Rightarrow \exists$ finite 2^{-m} -nets Y_m for each $m \in \mathbb{N}$.

Exhaust Y by a locally finite tree comprised of almost geodesic arcs γ_w^m joining each $y_w^m \in Y_m$ to its parent in Y_{m-1} .

 $\{Q^m_w\}$ a combinatorially equiv system of cubes in Q^0 .

Define $f : [0,1]^n \to Y$ as follows: $f = y_w^m$ on ∂Q_w^m

 $f = \gamma_w^m \circ u_w^m$ interpolates from y_w^m to its parent along γ_w^m in an annulus $\lambda Q_w^m \setminus Q_w^m$.



 (X, d, μ) a metric measure space (μ Borel, $0 < \mu(B) < \infty$ for all balls B.)

Definition (Heinonen-Koskela)

A Borel function $g: X \to [0, \infty]$ is an **upper gradient** of $f: X \to Y$ if

$$d_Y(f(x),f(y)) \leq \int_{\gamma} g \, ds$$

whenever γ is a rectifiable curve in X joining x to y.

e.g., $|\nabla f|$ is an upper gradient of $f : \Omega \to \mathbb{R}$ for any $f \in C^1(\Omega)$.

Definition (Shanmugalingam)

The **Newtonian–Sobolev space** $N^{1,p}(X)$ consists of all $f \in L^p(X)$ which admit an upper gradient $g \in L^p(X)$.

Facts: (1) $N^{1,p}(X)$ is a Banach space when equipped with the norm $||f||_{1,p} = ||f||_p + \inf_g ||g||_p$.

(2) $N^{1,p}(\Omega) = W^{1,p}(\Omega)$ for Euclidean domains Ω (modulo a caveat about the choice of representative)

Banach space- and metric space-valued Newtonian–Sobolev functions are defined as before.

$$N^{1,p}(X:V) \qquad N^{1,p}(X:Y)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Recall: (X, d, μ) a metric measure space, (Y, d_Y) a metric space

Definition (Heinonen-Koskela)

A metric measure space (X, d, μ) supports a *p*-Poincaré inequality if there exist constants C > 0 and $\tau \ge 1$ s.t.

$${{\int}_{B}{\left|f-f_{B}
ight|}\,d\mu}\leq C({\operatorname{diam}}\,B)\left({{{\int}_{ au B}{g^{p}}\,d\mu}}
ight)^{1/p}}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for all balls *B* and all continuous functions $f : X \to \mathbb{R}$ with upper gradient $g : X \to [0, \infty]$.

Notation: $f_B = \oint_B f = \mu(B)^{-1} \int_B f d\mu$.

$${{\int}_B \left| {f - f_B }
ight|d\mu \le C({\operatorname{diam}}\,B)\left({{{\int}_{{ au B} } {g^p \,d\mu } } }
ight)^{1/p}}$$

(1) PI implies good connectivity properties for X.

$${{\int}_{B}{\left|f-f_{B}
ight|}\,d\mu}\leq C({\operatorname{diam}}\,B)\left({{{\int}_{ au B}{g^{p}}\,d\mu}}
ight)^{1/p}}$$

(1) PI implies good connectivity properties for X.

(2) *p*-PI implies *q*-PI for $q \ge p$.

(3) If (X, d, μ) is complete and doubling and supports the *p*-PI, then there exists $\epsilon > 0$ s.t. (X, d, μ) supports the *q*-PI for $q > p - \epsilon$ (Keith–Zhong, 2008).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$${{\int}_{B}\left|f-f_{B}
ight|d\mu\leq C({\operatorname{\mathsf{diam}}}\,B)\left({{{\int}_{ au B}{g^{p}}\,d\mu}}
ight)^{1/p}}$$

(1) PI implies good connectivity properties for X.

(2) *p*-PI implies *q*-PI for $q \ge p$.

(3) If (X, d, μ) is complete and doubling and supports the *p*-PI, then there exists $\epsilon > 0$ s.t. (X, d, μ) supports the *q*-PI for $q > p - \epsilon$ (Keith–Zhong, 2008).

(4) If X and Y are Q-regular mms with the Q-PI, then all standard definitions for quasiconformality of a homeomorphism $f : X \to Y$ are equivalent.

$$f$$
 analytically QC: $f\in \mathit{N}^{1,\mathcal{Q}}(X:Y)$, $\left(\limsup_{r
ightarrow 0}rac{L_{f}(x,r)}{r}
ight)^{\mathcal{Q}}\leq K\mu_{f}(x)$ a.e.

(Heinonen-Koskela-Shanmugalingam-T, 2001)

$${\int}_{B} |f - f_B| \, d\mu \leq C(\operatorname{diam} B) \left({\int}_{ au B} g^p \, d\mu
ight)^{1/p}$$

(1) The **uniformization problem** for metric 2-spheres: if X is homeomorphic to \mathbb{S}^2 , Q-regular for some $Q \ge 2$, and satisfies the Q-PI, then X is QS equiv to \mathbb{S}^2 (Bonk–Kleiner, 2002)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$${{\int}_{B}{\left|f-f_{B}
ight|}\,d\mu}\leq C({\operatorname{diam}}\,B)\left({{{\int}_{ au B}{g^{p}}\,d\mu}}
ight)^{1/p}}$$

(1) The **uniformization problem** for metric 2-spheres: if X is homeomorphic to \mathbb{S}^2 , Q-regular for some $Q \ge 2$, and satisfies the Q-PI, then X is QS equiv to \mathbb{S}^2 (Bonk–Kleiner, 2002)

(2) Lipschitz functions and mappings on doubling spaces supporting a PI are differentiable a.e. (Cheeger, 1999; Cheeger–Kleiner, 2000s). Applications to bi-Lipschitz nonembeddability theorems.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. Sub-Riemannian spaces, e.g., the Heisenberg group

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 2. Sub-Riemannian spaces, e.g., the Heisenberg group
- 3. Spaces with Alexandrov curvature bounds

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 2. Sub-Riemannian spaces, e.g., the Heisenberg group
- 3. Spaces with Alexandrov curvature bounds
- 4. Boundaries of certain Gromov hyperbolic groups (Bourdon-Pajot),

topologically equivalent to the Menger sponge

1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 2. Sub-Riemannian spaces, e.g., the Heisenberg group
- 3. Spaces with Alexandrov curvature bounds
- **4.** Boundaries of certain Gromov hyperbolic groups (Bourdon–Pajot), topologically equivalent to the Menger sponge
- 5. Laakso spaces ($C imes [0,1]/\sim$ with a quotient metric)

- 1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds
- 2. Sub-Riemannian spaces, e.g., the Heisenberg group
- 3. Spaces with Alexandrov curvature bounds
- **4.** Boundaries of certain Gromov hyperbolic groups (Bourdon-Pajot), topologically equivalent to the Menger sponge
- **5.** Laakso spaces ($C \times [0,1] / \sim$ with a quotient metric)

<ロト (四) (注) (注) (注) (注) (注)

6. Non-self-similar planar Sierpiński carpets (Mackay–T–Wildrick)

- 1. Eucl space, compact Riem mflds, noncompact Riem mflds with curvature bounds
- 2. Sub-Riemannian spaces, e.g., the Heisenberg group
- 3. Spaces with Alexandrov curvature bounds
- **4.** Boundaries of certain Gromov hyperbolic groups (Bourdon-Pajot), topologically equivalent to the Menger sponge
- **5.** Laakso spaces ($C \times [0,1] / \sim$ with a quotient metric)

6. Non-self-similar planar Sierpiński carpets (Mackay–T–Wildrick)

$$SC(\mathbf{a}), \ \mathbf{a} = (a_1, a_2, \ldots), \ a_j \in \{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\}$$

$$(SC(\mathbf{a}), d_E, \mathcal{L}^2)$$
 supports 1-PI iff $\mathbf{a} \in \ell^1$
 $(SC(\mathbf{a}), d_E, \mathcal{L}^2)$ supports the *p*-PI for all $p > 1$ iff $\mathbf{a} \in \ell^2$

Sobolev–Poincaré inequalities and dimension distortion

 (X, d, μ) *Q*-regular with a *p*-PI \Rightarrow

- p < Q: $N^{1,p}(X : V) \hookrightarrow L^{Qp/(Q-p)}(X : V)$,
- p = Q: Moser-Trudinger inequality

• p > Q: Morrey–Sobolev inequality $(N^{1,p} \hookrightarrow C^{0,1-Q/p})$.

$$||f(x) - f(y)|| \le C' d(x, y)^{1-Q/p} \left(\int_{\tau'B} g^p\right)^{1/p}$$

if $f \in N^{1,p}(X : V)$, g is an upper gradient of f and x, y lie in a ball $B \subset X$.

Sobolev–Poincaré inequalities and dimension distortion

 (X, d, μ) *Q*-regular with a *p*-PI \Rightarrow

- p < Q: $N^{1,p}(X : V) \hookrightarrow L^{Qp/(Q-p)}(X : V)$,
- p = Q: Moser-Trudinger inequality

• p > Q: Morrey-Sobolev inequality $(N^{1,p} \hookrightarrow C^{0,1-Q/p})$.

$$||f(x) - f(y)|| \le C' d(x, y)^{1-Q/p} \left(\int_{\tau'B} g^p\right)^{1/p}$$

if $f \in N^{1,p}(X : V)$, g is an upper gradient of f and x, y lie in a ball $B \subset X$.

Theorem (Balogh–T–Wildrick, 2013)

Let X be proper and Ahlfors Q-regular supporting a Q-PI. Let p > Q. If $f : X \to Y$ is continuous and has an upper gradient in $L^p(X)$, and $E \subset X$ has dim $E = s \in (0, Q)$, then dim $f(E) \leq \frac{ps}{p-Q+s}$.

In order to formulate an analog of our generic estimates for affine subspaces, we need to understand the appropriate class of foliations in abstract metric spaces.

Definition (cf. David-Semmes)

A surjection $\pi: X \to W$ between proper metric spaces is **(locally)** *s*-regular, $s \ge 0$, if for each compact $K \subset X$, $\pi|_K$ is Lipschitz and for every ball $B \subset W$ with radius $r \le r_0$, the (truncated) preimage $\pi^{-1}(B) \cap K$ can be covered by $\lesssim r^{-s}$ balls in X of radius $\lesssim r$.

(日) (四) (문) (문) (문)

In order to formulate an analog of our generic estimates for affine subspaces, we need to understand the appropriate class of foliations in abstract metric spaces.

Definition (cf. David-Semmes)

A surjection $\pi: X \to W$ between proper metric spaces is **(locally)** *s*-regular, $s \ge 0$, if for each compact $K \subset X$, $\pi|_K$ is Lipschitz and for every ball $B \subset W$ with radius $r \le r_0$, the (truncated) preimage $\pi^{-1}(B) \cap K$ can be covered by $\lesssim r^{-s}$ balls in X of radius $\lesssim r$.

Examples: (1) $P_W : \mathbb{R}^n \to W$, (2) Riem submersions $\pi : N \to N'$ (locally D–S (dim N – dim N')-regular), (3) projection mappings in the Heisenberg group (later)

Similar to notions of **co-Lipschitz** / **Lipschitz quotient mappings**, e.g., Bates–Johnson–Lindenstrauss–Preiss–Schechtman, . . .

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Balogh–T–Wildrick, 2013)

Let X be a proper Q-regular space supporting a Q-PI. Let $\pi : X \to W$ be a David–Semmes s-regular Lipschitz surjection. Let $f : X \to Y$ be continuous with upper gradient in $L^p(X)$ for some p > Q. Then

$$\dim\{a \in W : \dim f(\pi^{-1}(a)) \ge \alpha\} \le (Q-s) - p(1-\frac{s}{\alpha})$$

for each $s < \alpha \leq \frac{ps}{p-Q+s}$.

Remarks: (1) We recover the Euclidean result in the case $X = \mathbb{R}^n$, $W = V^{\perp}$, $V \in G(n, m)$, $\pi = P_{V^{\perp}}$, s = m.

(2) The fibers of a D–S *s*-regular mapping have Hausdorff dimension $\leq s$. However, there are natural settings (e.g., certain foliations of the Heisenberg group), where this inequality is strict. In such cases, the theorem is not best possible.

The Heisenberg group \mathbb{H}

 $\mathbb{H}=\mathbb{C}\times\mathbb{R}$ with group law

$$(z,t)*(z',t')=(z+z',t+t'+2\operatorname{Im}(z\overline{z'}))$$

A basis of left-invariant vector fields is

$$X = \partial_x + 2y\partial_t, \quad Y = \partial_y - 2x\partial_t, \quad T = \partial_t.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The **horizontal distribution** $H\mathbb{H}$ is given by $H_p\mathbb{H} = \operatorname{span}\{X(p), Y(p)\}$.

The Heisenberg group $\mathbb H$

 $\mathbb{H}=\mathbb{C}\times\mathbb{R}$ with group law

$$(z,t)*(z',t')=(z+z',t+t'+2\operatorname{Im}(z\overline{z'}))$$

A basis of left-invariant vector fields is

$$X = \partial_x + 2y\partial_t, \quad Y = \partial_y - 2x\partial_t, \quad T = \partial_t.$$

The horizontal distribution $H\mathbb{H}$ is given by $H_p\mathbb{H} = \operatorname{span}\{X(p), Y(p)\}$.

 $\mathbb H$ is horizontally connected by Hörmander's thm.

Carnot-Carathéodory distance $d_{cc}(\mathbf{p}, \mathbf{q})$ defined by infimizing the g_0 -length of horiz curves joining \mathbf{p} to \mathbf{q} (g_0 is the singular Riem metric making X and Y ON).

 d_{cc} is left invariant, dilations $\delta_r(z,t) = (rz, r^2t)$ act as similarities of d_{cc} .

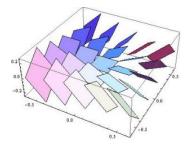
Measure on \mathbb{H} : Haar measure μ (agrees with \mathcal{L}^3 and with \mathcal{H}^4_{cc} up to constants)

 $(\mathbb{H}, d_{cc}, \mu)$ is Ahlfors 4-regular and supports a 1-PI.

Structure of C–C balls (**Ball-Box Theorem**): For any $\mathbf{p} \in \mathbb{H}$ and r > 0, $B_{cc}(\mathbf{p}, r)$ is comparable to the sheared Euclidean box

$$\mathbf{p} * [-r, r] \times [-r, r] \times [-r^2, r^2]$$

Horizontal distribution $H\mathbb{H}$

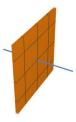


<ロ> (四) (四) (三) (三) (三)

- 2

We consider foliations of \mathbb{H} defined by cosets of horizontal lines and their complementary vertical planes.

Fix a horizontal line $\mathbb{V} = \text{span}\{(1,0)\}$ and the complementary vertical plane $\mathbb{W} = \text{span}\{(i,0),(0,1)\}$. These are both abelian subgroups of \mathbb{H} ; \mathbb{W} is normal.



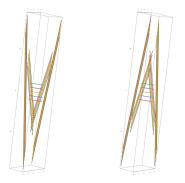
 (\mathbb{V}, d_{cc}) is an isometrically embedded copy of \mathbb{R} (so dim $\mathbb{V} = 1$).

 $d_{cc}|_{\mathbb{W}}$ is comparable to the heat metric $|y - y'| + \sqrt{|t - t'|}$ (so dim_{cc} $\mathbb{W} = 3$).

 $\mathbb W$ is a normal subgroup. We obtain semidirect product decompositions

 $\mathbb{H} = \mathbb{W} \ltimes \mathbb{V} \quad \text{and} \quad \mathbb{H} = \mathbb{V} \rtimes \mathbb{W},$

each giving rise to a foliation of \mathbb{H} by cosets of \mathbb{V} , parameterized by \mathbb{W} .



Since we are working with **left invariant** vector fields and metrics on \mathbb{H} , the intrinsic metric structure of these two foliations are quite different.

(日) (四) (문) (문) (문)

Left coset foliation of \mathbb{H} (defined by $\mathbb{H} = \mathbb{W} \rtimes \mathbb{V}$): all fibers are 1-dimensional, parameterizing space (\mathbb{W}, d_{cc}) is 3-dimensional

Right coset foliation of $\mathbb H$ (defined by $\mathbb H=\mathbb V\rtimes\mathbb W$): most fibers are 2-dimensional

Since we work with a **left invariant** metric on \mathbb{H} , the fibers of the right coset foliation are parallel. There is a quotient metric $d_{\mathfrak{X}}$ on the right coset space \mathfrak{X} s.t. $d_{\mathfrak{X}}(\mathbb{V} * a, \mathbb{V} * b) = \text{dist}_{d_{\mathbb{H}}}(\mathbb{V} * a, \mathbb{V} * b)$. Then $(\mathfrak{X}, d_{\mathfrak{X}})$ is 2-dimensional and the obvious projection map $\pi^{R} : \mathbb{H} \to \mathfrak{X}$ is Lipschitz.

Lemma

 π^{R} is David–Semmes 2-regular.

Corollary

$$\dim\{\mathbb{V}*a\in\mathfrak{X}:\mathcal{H}^{\alpha}(f(\mathbb{V}*a))>0\}\leq 2-p(1-\tfrac{2}{\alpha}) \text{ for } 2<\alpha\leq \tfrac{2p}{p-2}$$

Intuition: The right coset foliation of \mathbb{H} behaves like the foliation of \mathbb{R}^4 by affine translates of $V \in G(4,2)$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The left coset foliation of the Heisenberg group is in many ways a more natural construction. For instance, the fibers of this foliation are all horizontal (rectifiable) curves w.r.t. the sub-Riemannian metric of \mathbb{H} .

The left coset foliation was used by Mostow and Korányi–Reimann in their development of the theory of Heisenberg QC mappings. A key complication in Mostow's original proof of the ACL property stems from the fact that the natural projection map

$$\pi^{L}:(\mathbb{H},\textit{d}_{\mathbb{H}})
ightarrow(\mathbb{W},\textit{d}_{\mathbb{H}})$$

is **not** Lipschitz.

This fact also means that the metric space theory of Sobolev and QC dimension distortion, as discussed in this lecture, cannot be applied to the left coset foliation of \mathbb{H} .

Nevertheless, we are able to derive some (nonsharp) dimension distortion estimates for the left coset foliation by different methods. This will be the subject of Lecture III.