A duality between Banach spaces and operators between subspaces of L_{p} spaces

Mikael de la Salle
CNRS, École Normale Supérieure de Lyon

TAMU, july 8, 2016

Table of content

(1) The question
(2) Motivations
(3) Bipolar theorems

Fix $1<p<\infty$ (most interesting case : $p=2$).

The objects :

- X Banach space (not $\{0\}$).
- T bounded linear operator between sub- L_{p} spaces (=subspaces $\left.E \subset L_{p}\left(\Omega_{1}, \mu_{1}\right), F \subset L_{p}\left(\Omega_{2}, \mu_{2}\right)\right)$.

The duality $\langle T, X\rangle \in \mathbb{R}$:

Fix $1<p<\infty$ (most interesting case : $p=2$).

The objects :

- X Banach space (not $\{0\}$).
- T bounded linear operator between sub- L_{p} spaces (=subspaces $\left.E \subset L_{p}\left(\Omega_{1}, \mu_{1}\right), F \subset L_{p}\left(\Omega_{2}, \mu_{2}\right)\right)$.
The duality $\langle T, X\rangle \in \mathbb{R}$:
Define $\left\|T_{X}\right\|$ as the (possibly infinite) norm of $T \otimes \mathrm{id}_{X}$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_{p}\left(\Omega_{i}, \mu_{i} ; X\right)$.
In formula, $\left\|T_{X}\right\|$ is the smallest constant C such that

$$
\int_{\Omega_{2}}\left\|\sum_{i=1}^{N} T\left(f_{i}\right)(\omega) x_{i}\right\|_{X}^{p} d \mu_{2}(\omega) \leq C^{p} \int_{\Omega_{1}}\left\|\sum_{i=1}^{N} f_{i}(\omega) x_{i}\right\|_{X}^{p} d \mu_{1}(\omega)
$$

for all N, all $f_{1}, \ldots, f_{N} \in E$ and $x_{1}, \ldots, x_{N} \in X$.

Fix $1<p<\infty$ (most interesting case : $p=2$).

The objects :

- X Banach space (not $\{0\}$).
- T bounded linear operator between sub- L_{p} spaces (=subspaces $\left.E \subset L_{p}\left(\Omega_{1}, \mu_{1}\right), F \subset L_{p}\left(\Omega_{2}, \mu_{2}\right)\right)$.
The duality $\langle T, X\rangle \in \mathbb{R}$:
Define $\left\|T_{X}\right\|$ as the (possibly infinite) norm of $T \otimes \operatorname{id}_{X}$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_{p}\left(\Omega_{i}, \mu_{i} ; X\right)$.
In formula, $\left\|T_{X}\right\|$ is the smallest constant C such that

$$
\int_{\Omega_{2}}\left\|\sum_{i=1}^{N} T\left(f_{i}\right)(\omega) x_{i}\right\|_{X}^{p} d \mu_{2}(\omega) \leq C^{p} \int_{\Omega_{1}}\left\|\sum_{i=1}^{N} f_{i}(\omega) x_{i}\right\|_{X}^{p} d \mu_{1}(\omega)
$$

for all N, all $f_{1}, \ldots, f_{N} \in E$ and $x_{1}, \ldots, x_{N} \in X$.
The (vague) question :
Relate properties of T and of X to the quantity $\left\|T_{X}\right\|$.

Fix $1<p<\infty$ (most interesting case : $p=2$).

The objects :

- X Banach space (not $\{0\}$).
- T bounded linear operator between sub- L_{p} spaces (=subspaces $\left.E \subset L_{p}\left(\Omega_{1}, \mu_{1}\right), F \subset L_{p}\left(\Omega_{2}, \mu_{2}\right)\right)$.
The duality $\langle T, X\rangle \in \mathbb{R}$:
Define $\left\|T_{X}\right\|$ as the (possibly infinite) norm of $T \otimes \operatorname{id}_{X}$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_{p}\left(\Omega_{i}, \mu_{i} ; X\right)$.
In formula, $\left\|T_{X}\right\|$ is the smallest constant C such that

$$
\int_{\Omega_{2}}\left\|\sum_{i=1}^{N} T\left(f_{i}\right)(\omega) x_{i}\right\|_{X}^{p} d \mu_{2}(\omega) \leq C^{p} \int_{\Omega_{1}}\left\|\sum_{i=1}^{N} f_{i}(\omega) x_{i}\right\|_{X}^{p} d \mu_{1}(\omega)
$$

for all N, all $f_{1}, \ldots, f_{N} \in E$ and $x_{1}, \ldots, x_{N} \in X$.
The (vague) question :
Relate properties of T and of X to the quantity $\left\|T_{X}\right\|$.
Example (Fubini) : if $X \subset L_{p}$, then $\left\|T_{X}\right\|=\|T\|$. And conversely !

The polarity:
If A is a set of Banach spaces, define the polar of A

$$
A^{\circ}=\left\{T,\left\|T_{X}\right\| \leq 1 \text { for all } X \in A\right\}
$$

If B is a set of operators between sub- L_{p} spaces, the polar of B

$$
B^{\circ}=\left\{X,\left\|T_{X}\right\| \leq 1 \text { for all } T \in B\right\} .
$$

The polarity :
If A is a set of Banach spaces, define the polar of A

$$
A^{\circ}=\left\{T,\left\|T_{X}\right\| \leq 1 \text { for all } X \in A\right\}
$$

If B is a set of operators between sub- L_{p} spaces, the polar of B

$$
B^{\circ}=\left\{X,\left\|T_{X}\right\| \leq 1 \text { for all } T \in B\right\}
$$

Question 1 (Pisier)
Describe $A^{\circ \circ}$.
By definition : $Y \in A^{\circ \circ} \Longleftrightarrow\left\|T_{Y}\right\| \leq \sup _{X \in A}\left\|T_{X}\right\|$ for all T.
Question 2 (Pisier)
Describe $B^{\circ \circ}$.
By definition : $S \in B^{\circ \circ} \Longleftrightarrow\left\|S_{X}\right\| \leq 1$ for all X s.t. $\sup _{T \in B}\left\|T_{X}\right\| \leq 1$.

Table of content

(1) The question
(2) Motivations
(3) Bipolar theorems

Theoretical result : any class of Banach space closed under ℓ_{p}-direct sums and finite representability is of the form B° for some B.

Theoretical result ：any class of Banach space closed under ℓ_{p}－direct sums and finite representability is of the form B° for some B ．

Concretely ：many natural classes of Banach spaces are defined as B° for some explicit set B of operators between L_{p} spaces． Example ：type．

Theoretical result : any class of Banach space closed under ℓ_{p}-direct sums and finite representability is of the form B° for some B.

Concretely : many natural classes of Banach spaces are defined as B° for some explicit set B of operators between L_{p} spaces.

Example : type.
Let ε_{i} a sequence of iid Bernoulli random variables on a probability space (Ω, μ).
X has type >1 (=is B-convex) if there exists $n \in N, \delta>0$ such that

$$
\left\|\sum \varepsilon_{i} x_{i}\right\|_{L_{2}(\Omega ; X)} \leq \sqrt{n-\delta}\left(\sum\left\|x_{i}\right\|^{2}\right)^{\frac{1}{2}}
$$

(i.e X belongs to T°, where $T: \ell_{2}^{n} \rightarrow L_{2}$ maps $\left(x_{i}\right) \in \ell_{p}^{n}$ to $\frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_{i} x_{i}$).

Theoretical result : any class of Banach space closed under ℓ_{p}-direct sums and finite representability is of the form B° for some B.

Concretely : many natural classes of Banach spaces are defined as B° for some explicit set B of operators between L_{p} spaces.

Example : type.

Let ε_{i} a sequence of iid Bernoulli random variables on a probability space (Ω, μ).
X has type >1 (=is B-convex) if there exists $n \in N, \delta>0$ such that

$$
\left\|\sum \varepsilon_{i} x_{i}\right\|_{L_{2}(\Omega ; X)} \leq \sqrt{n-\delta}\left(\sum\left\|x_{i}\right\|^{2}\right)^{\frac{1}{2}} .
$$

(i.e X belongs to T°, where $T: \ell_{2}^{n} \rightarrow L_{2}$ maps $\left(x_{i}\right) \in \ell_{p}^{n}$ to $\frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_{i} x_{i}$).

By Pisier's theorem, this is equivalent to X being K-convex : $\left\|P_{X}\right\|<\infty$, where $P: L_{2}(\Omega, \mu) \rightarrow L_{2}(\Omega, \mu)$ is the orthogonal projection on $\operatorname{span}\left\{\varepsilon_{i}, i \geq 1\right\}$. In other words, $\exists C=C(n, \varepsilon)$ such that $\frac{1}{C} P \in\{T\}^{\circ \circ}$.

Similarly for cotype :
X has cotype $q<\infty$ if there exists C such that

$$
\left\|\sum \varepsilon_{i} x_{i}\right\|_{L_{q}(\Omega ; x)} \geq C\left(\sum\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}} .
$$

(i.e X belongs to T°, where $T: \operatorname{span}\left(\varepsilon_{i}\right) \subset L_{q} \rightarrow \ell_{q}$ which maps $\sum \varepsilon_{i} x_{i}$ to $\left(x_{i}\right)$).

For an integer k, define $d_{k}(X) \in[1, \sqrt{k}]$ by

$$
d_{k}(X)=\sup \left\{d\left(E, \ell_{2}^{k}\right), E \subset X \text { of dimension } k\right\}
$$

For an integer k, define $d_{k}(X) \in[1, \sqrt{k}]$ by

$$
d_{k}(X)=\sup \left\{d\left(E, \ell_{2}^{k}\right), E \subset X \text { of dimension } k\right\} .
$$

It is known (Milman-Wolfson 78) that the following are equivalent :

- X has type >1.
- $\exists k, d_{k}(X)<\sqrt{k}$.
- $\lim _{k} \frac{d_{k}(X)}{\sqrt{k}}=0$.

Question/Conjecture

In that case, there is $\beta<\frac{1}{2}$ and C such that $d_{k}(X) \leq C k^{\beta}$.

For an integer k, define $d_{k}(X) \in[1, \sqrt{k}]$ by

$$
d_{k}(X)=\sup \left\{d\left(E, \ell_{2}^{k}\right), E \subset X \text { of dimension } k\right\}
$$

It is known (Milman-Wolfson 78) that the following are equivalent :

- X has type >1.
- $\exists k, d_{k}(X)<\sqrt{k}$.
- $\lim _{k} \frac{d_{k}(X)}{\sqrt{k}}=0$.

Question/Conjecture

In that case, there is $\beta<\frac{1}{2}$ and C such that $d_{k}(X) \leq C k^{\beta}$.

$$
e_{k}(X)=\sup \left\{\left\|u_{X}\right\|, u: \ell_{2}^{k} \rightarrow \ell_{2}^{k} \text { unitary }\right\} .
$$

Then (Tomczak-Jaegerman, Pisier) $e_{k}(X) \leq d_{k}(X) \leq 2 e_{k}(X)$. So the above question is really of the form "understand $B^{\circ \circ}$ " for some B :

$$
B=\left\{T:\left(x_{i}\right) \in \ell_{2}^{n} \rightarrow \frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_{i} x_{i} \in L_{2}\right\}
$$

Motivation 2 : embeddability of expanders

Let $G=(V, E)$ be a finite d-regular graph, $M_{G}: \ell_{2}(V) \rightarrow \ell_{2}(V)$ the (random walk) Markov operator :

$$
M_{G} f(x)=\frac{1}{d} \sum_{(x, y) \in E} f(y)
$$

$1=\lambda_{1}(G) \geq \lambda_{2}(G) \geq \ldots \lambda_{|V|}(G)$ the eigenvalues of M_{G}.
Definition (Super-expanders)
A sequence $G_{n}=\left(V_{n}, E_{n}\right)$ of d-regular graphs is a super-expander if it is an X-pander for every superreflexive Banach space $X: \exists \gamma>0$ such that for all n and all $f: V_{n} \rightarrow X$,

$$
\begin{equation*}
\frac{\gamma}{\left|V_{n}\right|^{2}} \sum_{x, y \in V_{n}}\|f(x)-f(y)\|^{2} \leq \frac{1}{\left|E_{n}\right|} \sum_{(x, y) \in E_{n}}\|f(x)-f(y)\|^{2} \tag{1}
\end{equation*}
$$

(1) is called X-valued Poincaré inequality.
X－valued Poincaré inequality ：

$$
\begin{equation*}
\frac{\gamma}{\left|V_{n}\right|^{2}} \sum_{x, y \in V_{n}}\|f(x)-f(y)\|^{2} \leq \frac{1}{\left|E_{n}\right|} \sum_{(x, y) \in E_{n}}\|f(x)-f(y)\|^{2} . \tag{1}
\end{equation*}
$$

Standard exercise ：（1）for $X=\mathbb{C}$ is equivalent to $\sup _{n} \lambda_{2}\left(G_{n}\right)<1\left(G_{n}\right.$ is a sequence of expanders）．
X-valued Poincaré inequality :

$$
\begin{equation*}
\frac{\gamma}{\left|V_{n}\right|^{2}} \sum_{x, y \in V_{n}}\|f(x)-f(y)\|^{2} \leq \frac{1}{\left|E_{n}\right|} \sum_{(x, y) \in E_{n}}\|f(x)-f(y)\|^{2} . \tag{1}
\end{equation*}
$$

Standard exercise : (1) for $X=\mathbb{C}$ is equivalent to $\sup _{n} \lambda_{2}\left(G_{n}\right)<1\left(G_{n}\right.$ is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup _{n}\left\|\left(\tilde{M}_{G_{n}}^{0}\right)_{x}\right\|<1$ where $\tilde{M}_{G}=\frac{1}{d+1}\left(d M_{G}+l d\right)$ is the "lazy" random walk operator and \tilde{M}_{G}^{0} its restriction to
$\ell_{2}^{0}=\left\{f \in \ell_{2}(V), \sum_{x \in V} f(x)=0\right\}$.
X-valued Poincaré inequality :

$$
\begin{equation*}
\frac{\gamma}{\left|V_{n}\right|^{2}} \sum_{x, y \in V_{n}}\|f(x)-f(y)\|^{2} \leq \frac{1}{\left|E_{n}\right|} \sum_{(x, y) \in E_{n}}\|f(x)-f(y)\|^{2} . \tag{1}
\end{equation*}
$$

Standard exercise : (1) for $X=\mathbb{C}$ is equivalent to $\sup _{n} \lambda_{2}\left(G_{n}\right)<1\left(G_{n}\right.$ is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup _{n}\left\|\left(\tilde{M}_{G_{n}}^{0}\right) x\right\|<1$ where $\tilde{M}_{G}=\frac{1}{d+1}\left(d M_{G}+l d\right)$ is the "lazy" random walk operator and \tilde{M}_{G}^{0} its restriction to
$\ell_{2}^{0}=\left\{f \in \ell_{2}(V), \sum_{x \in V} f(x)=0\right\}$.

Questions :

Do super-expanders exist?
Are expanders super-expanders?
X-valued Poincaré inequality :

$$
\begin{equation*}
\frac{\gamma}{\left|V_{n}\right|^{2}} \sum_{x, y \in V_{n}}\|f(x)-f(y)\|^{2} \leq \frac{1}{\left|E_{n}\right|} \sum_{(x, y) \in E_{n}}\|f(x)-f(y)\|^{2} . \tag{1}
\end{equation*}
$$

Standard exercise : (1) for $X=\mathbb{C}$ is equivalent to $\sup _{n} \lambda_{2}\left(G_{n}\right)<1\left(G_{n}\right.$ is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup _{n}\left\|\left(\tilde{M}_{G_{n}}^{0}\right) x\right\|<1$ where $\tilde{M}_{G}=\frac{1}{d+1}\left(d M_{G}+l d\right)$ is the "lazy" random walk operator and \tilde{M}_{G}^{0} its restriction to $\ell_{2}^{0}=\left\{f \in \ell_{2}(V), \sum_{x \in V} f(x)=0\right\}$.

Questions :

Do super-expanders exist? \longrightarrow YES, see next slide.
Are expanders super-expanders? \longrightarrow wide open.

Theorem（Lafforgue）

Let Γ be a lattice in $\operatorname{SL}_{3}\left(\mathbb{Q}_{p}\right)$ with finite generating set S ，and Γ_{n} a sequence of finite quotients of Γ ．Then $G_{n}=\operatorname{Cayley}\left(\Gamma_{n}, S\right)$ is a sequence of super－expanders（even X－panders for every K－convex space X ）．

Still open for lattices in $\mathrm{SL}_{3}(\mathbb{R})\left(\right.$ eg $\left.\mathrm{SL}_{3}(\mathbb{Z})\right)$ ．

Theorem (Lafforgue)

Let Γ be a lattice in $\operatorname{SL}_{3}\left(\mathbb{Q}_{p}\right)$ with finite generating set S, and Γ_{n} a sequence of finite quotients of Γ. Then $G_{n}=\operatorname{Cayley}\left(\Gamma_{n}, S\right)$ is a sequence of super-expanders (even X-panders for every K-convex space X).

Still open for lattices in $\mathrm{SL}_{3}(\mathbb{R})\left(\right.$ eg $\left.\mathrm{SL}_{3}(\mathbb{Z})\right)$.
Known (de Laat-dIS) : if X is such that $d_{k}(X)=O\left(x^{\beta}\right)$ for some $\beta<\frac{1}{2}$, then all lattices coming from $\operatorname{SL}_{n}(\mathbb{R})$ are X-panders for all
$n \geq N(\beta)=O\left(\frac{1}{\frac{1}{2}-\beta}\right)$.

Theorem (Lafforgue)

Let Γ be a lattice in $\operatorname{SL}_{3}\left(\mathbb{Q}_{p}\right)$ with finite generating set S, and Γ_{n} a sequence of finite quotients of Γ. Then $G_{n}=\operatorname{Cayley}\left(\Gamma_{n}, S\right)$ is a sequence of super-expanders (even X-panders for every K-convex space X).

Still open for lattices in $\mathrm{SL}_{3}(\mathbb{R})\left(\right.$ eg $\left.\mathrm{SL}_{3}(\mathbb{Z})\right)$.
Known (de Laat-dIS) : if X is such that $d_{k}(X)=O\left(x^{\beta}\right)$ for some $\beta<\frac{1}{2}$, then all lattices coming from $\operatorname{SL}_{n}(\mathbb{R})$ are X-panders for all
$n \geq N(\beta)=O\left(\frac{1}{\frac{1}{2}-\beta}\right)$.
Conjecture (Mendel-Naor)
If X is a space with non-trivial cotype, then there is a sequence G_{n} of X-panders.

Motivation 3 ：Group actions on Banach spaces

Recall ：（Kazdhan，Delorme）Every action by affine isometries of（a lattice in） $\operatorname{SL}_{n}(\mathbb{R})$ or $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)(n \geq 3)$ on a Hilbert space has a fixed point．
This cannot be true if Hilbert space is replaced by arbitrary Banach space ：the action of G on $\left\{f \in L_{1}(G), \int f=1\right\} \sim L_{1}^{0}(G)$ has no fixed point if G is not compact．

Motivation 3 : Group actions on Banach spaces

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $\operatorname{SL}_{n}(\mathbb{R})$ or $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)(n \geq 3)$ on a Hilbert space has a fixed point.
This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of G on $\left\{f \in L_{1}(G), \int f=1\right\} \sim L_{1}^{0}(G)$ has no fixed point if G is not compact.
Conjecture (Bader-Furman-Gelander-Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Motivation 3 : Group actions on Banach spaces

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $\operatorname{SL}_{n}(\mathbb{R})$ or $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)(n \geq 3)$ on a Hilbert space has a fixed point.
This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of G on $\left\{f \in L_{1}(G), \int f=1\right\} \sim L_{1}^{0}(G)$ has no fixed point if G is not compact.
Conjecture (Bader-Furman-Gelander-Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)$. Even, every action by affine isometries of $\mathrm{SL}_{n}\left(\mathbb{Q}_{p}\right)$ or a lattice on a K-convex space has a fixed point.

Motivation 3 : Group actions on Banach spaces

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $\operatorname{SL}_{n}(\mathbb{R})$ or $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)(n \geq 3)$ on a Hilbert space has a fixed point.
This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of G on $\left\{f \in L_{1}(G), \int f=1\right\} \sim L_{1}^{0}(G)$ has no fixed point if G is not compact.
Conjecture (Bader-Furman-Gelander-Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for $\operatorname{SL}_{n}\left(\mathbb{Q}_{p}\right)$. Even, every action by affine isometries of $\mathrm{SL}_{n}\left(\mathbb{Q}_{p}\right)$ or a lattice on a K-convex space has a fixed point.

Crucial ingredient :
(Bourgain) : if X is K-convex, there is $p>1$ such that, for every abelian
locally compact group A, its Fourier transform $\mathcal{F}: L_{p}(A) \rightarrow L_{p^{\prime}}(\widehat{A})$ satisfies $\left\|\mathcal{F}_{X}\right\|<\infty$.

The real case.

Difficulty : harmonic analysis on $\mathrm{SO}(n)$ is not related to abelian groups ! (unlike harmonic analysis on $\operatorname{SL}_{n}\left(\mathbb{Z}_{p}\right)$, which contains "large" nilpotent $\left.\operatorname{groups}\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right).\right)$

The real case.

Difficulty : harmonic analysis on $\mathrm{SO}(n)$ is not related to abelian groups ! (unlike harmonic analysis on $\mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$, which contains "large" nilpotent groups $\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right)$.)
For $-1 \leq \delta \leq 1$, let $T_{\delta}: L_{2}\left(S^{n-1}\right) \rightarrow L_{2}\left(S^{n-1}\right)$ the averaging operator

$$
T_{\delta} f(x)=\text { average of } f \text { on }\left\{y \in S^{n-1},\langle x, y\rangle=\delta .\right.
$$

- (de Laat-Mimura-dIS) If X is a Banach space and there are $C, \theta>0$ st

$$
\begin{equation*}
\left\|\left(T_{\delta}-T_{0}\right)_{x}\right\| \leq C|\delta|^{\theta} \forall \delta, \tag{2}
\end{equation*}
$$

then the conjecture holds for X and $\operatorname{SL}_{r}(\mathbb{R})$ for $r \geq 3 n-6$.

The real case.

Difficulty : harmonic analysis on $\mathrm{SO}(n)$ is not related to abelian groups ! (unlike harmonic analysis on $\mathrm{SL}_{n}\left(\mathbb{Z}_{p}\right)$, which contains "large" nilpotent groups $\left(\begin{array}{lll}1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right)$.)
For $-1 \leq \delta \leq 1$, let $T_{\delta}: L_{2}\left(S^{n-1}\right) \rightarrow L_{2}\left(S^{n-1}\right)$ the averaging operator

$$
T_{\delta} f(x)=\text { average of } f \text { on }\left\{y \in S^{n-1},\langle x, y\rangle=\delta .\right.
$$

- (de Laat-Mimura-dIS) If X is a Banach space and there are $C, \theta>0$ st

$$
\begin{equation*}
\left\|\left(T_{\delta}-T_{0}\right)_{x}\right\| \leq C|\delta|^{\theta} \forall \delta, \tag{2}
\end{equation*}
$$

then the conjecture holds for X and $\operatorname{SL}_{r}(\mathbb{R})$ for $r \geq 3 n-6$.

- (de Laat-dIS) (2) holds if $d_{k}(X)=O\left(k^{\frac{1}{2}-\frac{1}{n}}\right)$.

Table of content

(1) The question
(2) Motivations
(3) Bipolar theorems

Bipolar theorem : if E is a locally convex topological vector space. The bipolar of $C \subset E$ coincides with the closed convex hull of $C \cup\{0\}$.

Bipolar theorem : if E is a locally convex topological vector space. The bipolar of $C \subset E$ coincides with the closed convex hull of $C \cup\{0\}$.
For $E=\{$ Banach spaces $\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)
The bipolar of a class A of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_{p}-direct sums of elements in A.
\supset is obvious ; the content of the theorem is \subset.

Bipolar theorem : if E is a locally convex topological vector space. The bipolar of $C \subset E$ coincides with the closed convex hull of $C \cup\{0\}$.
For $E=\{$ Banach spaces $\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)
The bipolar of a class A of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_{p}-direct sums of elements in A.
\supset is obvious ; the content of the theorem is \subset.
This implies the theoretical result : if A is closed under ℓ_{p}-direct sums and finite representability, then $A=\left(A^{\circ}\right)^{\circ}$.

Bipolar theorem : if E is a locally convex topological vector space. The bipolar of $C \subset E$ coincides with the closed convex hull of $C \cup\{0\}$.
For $E=\{$ Banach spaces $\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)
The bipolar of a class A of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_{p}-direct sums of elements in A.
\supset is obvious ; the content of the theorem is \subset.
This implies the theoretical result : if A is closed under ℓ_{p}-direct sums and finite representability, then $A=\left(A^{\circ}\right)^{\circ}$.

For " $E^{*}=\left\{\right.$ operators between sub- L_{p} spaces $\}$ "?

Bipolar theorem : if E is a locally convex topological vector space. The bipolar of $C \subset E$ coincides with the closed convex hull of $C \cup\{0\}$.
For $E=\{$ Banach spaces $\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)
The bipolar of a class A of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_{p}-direct sums of elements in A.
\supset is obvious ; the content of the theorem is \subset.
This implies the theoretical result : if A is closed under ℓ_{p}-direct sums and finite representability, then $A=\left(A^{\circ}\right)^{\circ}$.

For " $E^{*}=\left\{\right.$ operators between sub- L_{p} spaces $\}$ "?
Theorem (dIS)
The bipolar of a class B of operators between sub- L_{p} spaces contains no other operators than the "obvious operators".

Let B be a class of operators between sub- L_{p} spaces. Obvious elements of $B^{\circ \circ}$: smallest class B^{\prime} containing B and

Let B be a class of operators between sub- L_{p} spaces. Obvious elements of $B^{\circ \circ}$: smallest class B^{\prime} containing B and

- containing "changes of measure" operators: maps of the form $U: f \in L_{p}(\Omega, \mu) \mapsto h f \in L_{p}\left(\Omega,|h|^{-p} d \mu\right)$ for some $h: \Omega \rightarrow \mathbb{C} \backslash\{0\}$.

Let B be a class of operators between sub－L_{p} spaces．Obvious elements of $B^{\circ \circ}$ ：smallest class B^{\prime} containing B and
－containing＂changes of measure＂operators：maps of the form $U: f \in L_{p}(\Omega, \mu) \mapsto h f \in L_{p}\left(\Omega,|h|^{-p} d \mu\right)$ for some $h: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ ．
－$S, T \in B^{\prime} \Longrightarrow S \oplus T \in B^{\prime}$ ，and $\frac{1}{2}(S+T) \in B^{\prime}$ ，$S \circ T \in B^{\prime}$ when these make sense．

Let B be a class of operators between sub－L_{p} spaces．Obvious elements of $B^{\circ \circ}$ ：smallest class B^{\prime} containing B and
－containing＂changes of measure＂operators：maps of the form $U: f \in L_{p}(\Omega, \mu) \mapsto h f \in L_{p}\left(\Omega,|h|^{-p} d \mu\right)$ for some $h: \Omega \rightarrow \mathbb{C} \backslash\{0\}$ ．
－$S, T \in B^{\prime} \Longrightarrow S \oplus T \in B^{\prime}$ ，and $\frac{1}{2}(S+T) \in B^{\prime}$ ，$S \circ T \in B^{\prime}$ when these make sense．
－Limits of operators in B^{\prime} belong to B^{\prime} ．

Let B be a class of operators between sub- L_{p} spaces. Obvious elements of $B^{\circ \circ}$: smallest class B^{\prime} containing B and

- containing "changes of measure" operators: maps of the form $U: f \in L_{p}(\Omega, \mu) \mapsto h f \in L_{p}\left(\Omega,|h|^{-p} d \mu\right)$ for some $h: \Omega \rightarrow \mathbb{C} \backslash\{0\}$.
- $S, T \in B^{\prime} \Longrightarrow S \oplus T \in B^{\prime}$, and $\frac{1}{2}(S+T) \in B^{\prime}$, $S \circ T \in B^{\prime}$ when these make sense.
- Limits of operators in B^{\prime} belong to B^{\prime}.
- Let $T \in B^{\prime}$ such $D(T) \subset L_{p}\left(\Omega_{1}, m_{1}\right) \oplus L_{p}(\Omega, m)$ (respectively $\left.R(T) \subset L_{p}\left(\Omega_{1}, m_{1}\right) \oplus L_{p}(\Omega, m)\right)$ of the form $T(f \oplus g)=S f \oplus g$ for every $f \oplus g \in D(T)$. Then S belongs to B^{\prime}.

Let B be a class of operators between sub- L_{p} spaces. Obvious elements of $B^{\circ \circ}$: smallest class B^{\prime} containing B and

- containing "changes of measure" operators: maps of the form $U: f \in L_{p}(\Omega, \mu) \mapsto h f \in L_{p}\left(\Omega,|h|^{-p} d \mu\right)$ for some $h: \Omega \rightarrow \mathbb{C} \backslash\{0\}$.
- $S, T \in B^{\prime} \Longrightarrow S \oplus T \in B^{\prime}$, and $\frac{1}{2}(S+T) \in B^{\prime}$, $S \circ T \in B^{\prime}$ when these make sense.
- Limits of operators in B^{\prime} belong to B^{\prime}. That is: if T is an operator between subspaces of $L_{p}(\Omega, m)$ and $L_{p}\left(\Omega^{\prime}, m^{\prime}\right)$ and if, for every finite family f_{1}, \ldots, f_{n} in the domain of T and every $\varepsilon>0$, there is $S \in B^{\prime}$ with domain contained in $L_{p}(\Omega, m)$ and range contained in $L_{p}\left(\Omega^{\prime}, m^{\prime}\right)$ and elements $g_{1}, \ldots, g_{n} \in D(S)$ such that $\left\|f_{i}-g_{i}\right\| \leq \varepsilon$ and $\left\|T f_{i}-S f_{i}\right\| \leq \varepsilon$, then $T \in B^{\prime}$.
- Let $T \in B^{\prime}$ such $D(T) \subset L_{p}\left(\Omega_{1}, m_{1}\right) \oplus L_{p}(\Omega, m)$ (respectively $\left.R(T) \subset L_{p}\left(\Omega_{1}, m_{1}\right) \oplus L_{p}(\Omega, m)\right)$ of the form $T(f \oplus g)=S f \oplus g$ for every $f \oplus g \in D(T)$. Then S belongs to B^{\prime}.

The proof

Setting B set of operators between sub- L_{p} spaces. Define B^{\prime} as in the previous slide.

We have to prove that if $T \notin B^{\prime}$, there is a Banach space X such that $\left\|S_{X}\right\| \leq 1$ for all $S \in B$ but $\left\|T_{X}\right\|>1$.

The proof

Setting B set of operators between sub- L_{p} spaces. Define B^{\prime} as in the previous slide.

We have to prove that if $T \notin B^{\prime}$, there is a Banach space X such that $\left\|S_{X}\right\| \leq 1$ for all $S \in B$ but $\left\|T_{X}\right\|>1$.

Constructing explicit Banach spaces is a difficult task!

The proof

Setting B set of operators between sub－L_{p} spaces．Define B^{\prime} as in the previous slide．

We have to prove that if $T \notin B^{\prime}$ ，there is a Banach space X such that $\left\|S_{X}\right\| \leq 1$ for all $S \in B$ but $\left\|T_{X}\right\|>1$ ．

Constructing explicit Banach spaces is a difficult task！
Solution ：let the Hahn－Banach theorem construct X for us ！

The proof

For $n \in N$, denote H_{n}^{p} the Banach space of continuous degree p homogeneous functions on \mathbb{C}^{n} :

$$
H_{n}^{p}=\left\{\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R} \text { continuous , } \varphi(\lambda z)=|\lambda|^{p} \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^{n}\right\}
$$

The proof

For $n \in N$, denote H_{n}^{p} the Banach space of continuous degree p homogeneous functions on \mathbb{C}^{n} :

$$
H_{n}^{p}=\left\{\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R} \text { continuous, } \varphi(\lambda z)=|\lambda|^{p} \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^{n}\right\} .
$$

Encode a set A of Banach spaces as the cone $N(A, n) \subset H_{n}^{p}$

$$
N(A, n)=\left\{z \mapsto\left\|\sum_{i=1}^{n} z_{i} x_{i}\right\|^{p}, X \in A \text { and } x_{1}, \ldots, x_{n} \in X .\right\}
$$

The proof

For $n \in N$, denote H_{n}^{p} the Banach space of continuous degree p homogeneous functions on \mathbb{C}^{n} :

$$
H_{n}^{p}=\left\{\varphi: \mathbb{C}^{n} \rightarrow \mathbb{R} \text { continuous }, \varphi(\lambda z)=|\lambda|^{p} \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^{n}\right\} .
$$

Encode a set A of Banach spaces as the cone $N(A, n) \subset H_{n}^{p}$

$$
N(A, n)=\left\{z \mapsto\left\|\sum_{i=1}^{n} z_{i} X_{i}\right\|^{p}, X \in A \text { and } x_{1}, \ldots, x_{n} \in X .\right\}
$$

Encode a set B of operators between sub- L_{p} spaces as the cone $P(B, n) \subset\left(H_{n}^{p}\right)^{*}$ of linear forms of the form

$$
\begin{aligned}
& \varphi \mapsto \int \varphi\left(f_{1}(\omega), \ldots, f_{n}(\omega)\right) d \mu(\omega)-\int \varphi\left(T f_{1}\left(\omega^{\prime}\right), \ldots, T f_{n}\left(\omega^{\prime}\right)\right) d \mu^{\prime}\left(\omega^{\prime}\right) \\
& \text { for } T \in B \text { and } f_{1}, \ldots f_{n} \in D(T) \subset L_{p}(\Omega, \mu) .
\end{aligned}
$$

Reason : if $\varphi(z)=\left\|\sum_{i} z_{i} x_{i}\right\|_{X}^{p}$,

$$
\int \varphi\left(f_{1}(\omega), \ldots, f_{n}(\omega)\right) d \mu(\omega)-\int \varphi\left(T f_{1}\left(\omega^{\prime}\right), \ldots, T f_{n}\left(\omega^{\prime}\right)\right) d \mu^{\prime}\left(\omega^{\prime}\right)
$$

is equal to

Reason : if $\varphi(z)=\left\|\sum_{i} z_{i} x_{i}\right\|_{X}^{p}$,

$$
\int \varphi\left(f_{1}(\omega), \ldots, f_{n}(\omega)\right) d \mu(\omega)-\int \varphi\left(T f_{1}\left(\omega^{\prime}\right), \ldots, T f_{n}\left(\omega^{\prime}\right)\right) d \mu^{\prime}\left(\omega^{\prime}\right)
$$

is equal to

So it is ≥ 0 for all $f_{1}, \ldots, f_{n} \in D(T)$ iff $T \in X^{\circ}$.

Reason: if $\varphi(z)=\left\|\sum_{i} z_{i} x_{i}\right\|_{X}^{p}$,

$$
\int \varphi\left(f_{1}(\omega), \ldots, f_{n}(\omega)\right) d \mu(\omega)-\int \varphi\left(T f_{1}\left(\omega^{\prime}\right), \ldots, T f_{n}\left(\omega^{\prime}\right)\right) d \mu^{\prime}\left(\omega^{\prime}\right)
$$

is equal to

$$
\left\|\sum f_{i} x_{i}\right\|_{L_{p}(\Omega ; X)}^{p}-\left\|\sum T f_{i} x_{i}\right\|_{L_{p}\left(\Omega^{\prime} ; X\right)}^{p} .
$$

So it is ≥ 0 for all $f_{1}, \ldots, f_{n} \in D(T)$ iff $T \in X^{\circ}$.
Apply the bipolar theorem for cones in H_{n}^{p} and its dual.

