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Fix 1 < p <∞ (most interesting case : p = 2).

The objects :
• X Banach space (not {0}).
• T bounded linear operator between sub-Lp spaces (=subspaces
E ⊂ Lp(Ω1, µ1), F ⊂ Lp(Ω2, µ2)).

The duality 〈T ,X 〉 ∈ R :

Define ‖TX‖ as the (possibly infinite) norm of T ⊗ idX between the
subspaces E ⊗ X and F ⊗ X of Lp(Ωi , µi ; X ).
In formula, ‖TX‖ is the smallest constant C such that∫

Ω2

‖
N∑

i=1

T (fi)(ω)xi‖pX dµ2(ω) ≤ Cp
∫

Ω1

‖
N∑

i=1

fi(ω)xi‖pX dµ1(ω)

for all N, all f1, . . . , fN ∈ E and x1, . . . , xN ∈ X .

The (vague) question :
Relate properties of T and of X to the quantity ‖TX‖.
Example (Fubini) : if X ⊂ Lp, then ‖TX‖ = ‖T‖. And conversely !
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The polarity :
If A is a set of Banach spaces, define the polar of A

A◦ = {T , ‖TX‖ ≤ 1 for all X ∈ A}.

If B is a set of operators between sub-Lp spaces, the polar of B

B◦ = {X , ‖TX‖ ≤ 1 for all T ∈ B}.

Question 1 (Pisier)
Describe A◦◦.

By definition : Y ∈ A◦◦ ⇐⇒ ‖TY‖ ≤ supX∈A ‖TX‖ for all T .

Question 2 (Pisier)
Describe B◦◦.

By definition : S ∈ B◦◦ ⇐⇒ ‖SX‖ ≤ 1 for all X s.t. supT∈B ‖TX‖ ≤ 1.
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Theoretical result : any class of Banach space closed under `p-direct
sums and finite representability is of the form B◦ for some B.

Concretely : many natural classes of Banach spaces are defined as B◦

for some explicit set B of operators between Lp spaces.

Example : type.
Let εi a sequence of iid Bernoulli random variables on a probability
space (Ω, µ).
X has type > 1 (=is B-convex) if there exists n ∈ N, δ > 0 such that

‖
∑

εixi‖L2(Ω;X) ≤
√

n − δ(
∑
‖xi‖2)

1
2 .

(i.e X belongs to T ◦, where T : `n2 → L2 maps (xi) ∈ `np to 1√
n−ε

∑
εixi ).

By Pisier’s theorem, this is equivalent to X being K -convex :
‖PX‖ <∞, where P : L2(Ω, µ)→ L2(Ω, µ) is the orthogonal projection
on span{εi , i ≥ 1}. In other words, ∃C = C(n, ε) such that 1

C P ∈ {T}◦◦.
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Similarly for cotype :

X has cotype q <∞ if there exists C such that

‖
∑

εixi‖Lq(Ω;X) ≥ C(
∑
‖xi‖q)

1
q .

(i.e X belongs to T ◦, where T : span(εi) ⊂ Lq → `q which maps
∑
εixi

to (xi)).



For an integer k , define dk (X ) ∈ [1,
√

k ] by

dk (X ) = sup{d(E , `k2),E ⊂ X of dimension k}.

It is known (Milman-Wolfson 78) that the following are equivalent :
X has type > 1.
∃k , dk (X ) <

√
k .

limk
dk (X)√

k
= 0.

Question/Conjecture

In that case, there is β < 1
2 and C such that dk (X ) ≤ Ckβ.

ek (X ) = sup{‖uX‖,u : `k2 → `k2 unitary}.

Then (Tomczak-Jaegerman, Pisier) ek (X ) ≤ dk (X ) ≤ 2ek (X ). So the
above question is really of the form “understand B◦◦” for some B :

B = {T : (xi) ∈ `n2 →
1√

n − ε
∑

εixi ∈ L2}.



For an integer k , define dk (X ) ∈ [1,
√

k ] by

dk (X ) = sup{d(E , `k2),E ⊂ X of dimension k}.

It is known (Milman-Wolfson 78) that the following are equivalent :
X has type > 1.
∃k , dk (X ) <

√
k .

limk
dk (X)√

k
= 0.

Question/Conjecture

In that case, there is β < 1
2 and C such that dk (X ) ≤ Ckβ.

ek (X ) = sup{‖uX‖,u : `k2 → `k2 unitary}.

Then (Tomczak-Jaegerman, Pisier) ek (X ) ≤ dk (X ) ≤ 2ek (X ). So the
above question is really of the form “understand B◦◦” for some B :

B = {T : (xi) ∈ `n2 →
1√

n − ε
∑

εixi ∈ L2}.



For an integer k , define dk (X ) ∈ [1,
√

k ] by

dk (X ) = sup{d(E , `k2),E ⊂ X of dimension k}.

It is known (Milman-Wolfson 78) that the following are equivalent :
X has type > 1.
∃k , dk (X ) <

√
k .

limk
dk (X)√

k
= 0.

Question/Conjecture

In that case, there is β < 1
2 and C such that dk (X ) ≤ Ckβ.

ek (X ) = sup{‖uX‖,u : `k2 → `k2 unitary}.

Then (Tomczak-Jaegerman, Pisier) ek (X ) ≤ dk (X ) ≤ 2ek (X ). So the
above question is really of the form “understand B◦◦” for some B :

B = {T : (xi) ∈ `n2 →
1√

n − ε
∑

εixi ∈ L2}.



Motivation 2 : embeddability of expanders

Let G = (V ,E) be a finite d-regular graph, MG : `2(V )→ `2(V ) the
(random walk) Markov operator :

MGf (x) =
1
d

∑
(x ,y)∈E

f (y).

1 = λ1(G) ≥ λ2(G) ≥ . . . λ|V |(G) the eigenvalues of MG.

Definition (Super-expanders)

A sequence Gn = (Vn,En) of d-regular graphs is a super-expander if it
is an X -pander for every superreflexive Banach space X : ∃γ > 0 such
that for all n and all f : Vn → X ,

γ

|Vn|2
∑

x ,y∈Vn

‖f (x)− f (y)‖2 ≤ 1
|En|

∑
(x ,y)∈En

‖f (x)− f (y)‖2. (1)

(1) is called X -valued Poincaré inequality.
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γ
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∑

x ,y∈Vn

‖f (x)− f (y)‖2 ≤ 1
|En|

∑
(x ,y)∈En

‖f (x)− f (y)‖2. (1)

Standard exercise : (1) for X = C is equivalent to supn λ2(Gn) < 1 (Gn
is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to
supn ‖(M̃0

Gn
)X‖ < 1 where M̃G = 1

d+1(dMG + Id) is the “lazy” random
walk operator and M̃0

G its restriction to
`02 = {f ∈ `2(V ),

∑
x∈V f (x) = 0}.

Questions :

Do super-expanders exist ?

−→ YES, see next slide.

Are expanders super-expanders ?

−→ wide open.
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Theorem (Lafforgue)

Let Γ be a lattice in SL3(Qp) with finite generating set S, and Γn a
sequence of finite quotients of Γ. Then Gn = Cayley(Γn,S) is a
sequence of super-expanders (even X -panders for every K -convex
space X ).

Still open for lattices in SL3(R) (eg SL3(Z)).

Known (de Laat–dlS) : if X is such that dk (X ) = O(xβ) for some β < 1
2 ,

then all lattices coming from SLn(R) are X -panders for all
n ≥ N(β) = O( 1

1
2−β

).

Conjecture (Mendel–Naor)
If X is a space with non-trivial cotype, then there is a sequence Gn of
X -panders.
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Motivation 3 : Group actions on Banach spaces
Recall : (Kazdhan, Delorme) Every action by affine isometries of (a
lattice in) SLn(R) or SLn(Qp) (n ≥ 3) on a Hilbert space has a fixed
point.
This cannot be true if Hilbert space is replaced by arbitrary Banach
space : the action of G on {f ∈ L1(G),

∫
f = 1} ∼ L0

1(G) has no fixed
point if G is not compact.

Conjecture (Bader–Furman–Gelander–Monod) : The same is true for
every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for SLn(Qp). Even, every action by affine
isometries of SLn(Qp) or a lattice on a K -convex space has a fixed
point.

Crucial ingredient :
(Bourgain) : if X is K -convex, there is p > 1 such that, for every abelian
locally compact group A, its Fourier transform F : Lp(A)→ Lp′(Â)
satisfies ‖FX‖ <∞.
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The real case.

Difficulty : harmonic analysis on SO(n) is not related to abelian groups !
(unlike harmonic analysis on SLn(Zp), which contains “large” nilpotent

groups

1 ∗ ∗
0 1 ∗
0 0 1

. )

For −1 ≤ δ ≤ 1, let Tδ : L2(Sn−1)→ L2(Sn−1) the averaging operator

Tδf (x) = average of f on {y ∈ Sn−1, 〈x , y〉 = δ.

• (de Laat–Mimura–dlS) If X is a Banach space and there are C, θ > 0
st

‖(Tδ − T0)X‖ ≤ C|δ|θ ∀δ, (2)

then the conjecture holds for X and SLr (R) for r ≥ 3n − 6.

• (de Laat–dlS) (2) holds if dk (X ) = O(k
1
2−

1
n ).
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Bipolar theorem : if E is a locally convex topological vector space.
The bipolar of C ⊂ E coincides with the closed convex hull of C ∪ {0}.

For E = {Banach spaces}, a form of the bipolar theorem has been
known for 33 years :

Theorem (Hernandez 1983)
The bipolar of a class A of Banach spaces is the class of Banach
spaces finitely representable in finite `p-direct sums of elements in A.

⊃ is obvious ; the content of the theorem is ⊂.

This implies the theoretical result : if A is closed under `p-direct sums
and finite representability, then A = (A◦)◦.

For “E∗ = {operators between sub-Lp spaces}” ?

Theorem (dlS)
The bipolar of a class B of operators between sub-Lp spaces contains
no other operators than the “obvious operators”.
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Let B be a class of operators between sub-Lp spaces. Obvious
elements of B◦◦ : smallest class B′ containing B and

containing “changes of measure” operators : maps of the form
U : f ∈ Lp(Ω, µ) 7→ hf ∈ Lp(Ω, |h|−pdµ) for some h : Ω→ C \ {0}.
S,T ∈ B′ =⇒ S ⊕ T ∈ B′, and 1

2(S + T ) ∈ B′, S ◦ T ∈ B′ when
these make sense.
Limits of operators in B′ belong to B′.

That is : if T is an operator
between subspaces of Lp(Ω,m) and Lp(Ω′,m′) and if, for every
finite family f1, . . . , fn in the domain of T and every ε > 0, there is
S ∈ B′ with domain contained in Lp(Ω,m) and range contained in
Lp(Ω′,m′) and elements g1, . . . ,gn ∈ D(S) such that ‖fi − gi‖ ≤ ε
and ‖Tfi − Sfi‖ ≤ ε, then T ∈ B′.

Let T ∈ B′ such D(T ) ⊂ Lp(Ω1,m1)⊕ Lp(Ω,m) (respectively
R(T ) ⊂ Lp(Ω1,m1)⊕ Lp(Ω,m)) of the form T (f ⊕ g) = Sf ⊕ g for
every f ⊕ g ∈ D(T ). Then S belongs to B′.
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The proof

Setting B set of operators between sub-Lp spaces. Define B′ as in the
previous slide.

We have to prove that if T /∈ B′, there is a Banach space X such that
‖SX‖ ≤ 1 for all S ∈ B but ‖TX‖ > 1.

Constructing explicit Banach spaces is a difficult task !

Solution : let the Hahn-Banach theorem construct X for us !
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The proof

For n ∈ N, denote Hp
n the Banach space of continuous degree p

homogeneous functions on Cn :

Hp
n = {ϕ : Cn → R continuous , ϕ(λz) = |λ|pϕ(z)∀λ ∈ C, z ∈ Cn}.

Encode a set A of Banach spaces as the cone N(A,n) ⊂ Hp
n

N(A,n) = {z 7→ ‖
n∑

i=1

zixi‖p,X ∈ A and x1, . . . , xn ∈ X .}

Encode a set B of operators between sub-Lp spaces as the cone
P(B,n) ⊂ (Hp

n )∗ of linear forms of the form

ϕ 7→
∫
ϕ(f1(ω), . . . , fn(ω))dµ(ω)−

∫
ϕ(Tf1(ω′), . . . ,Tfn(ω′))dµ′(ω′)

for T ∈ B and f1, . . . fn ∈ D(T ) ⊂ Lp(Ω, µ).



The proof

For n ∈ N, denote Hp
n the Banach space of continuous degree p

homogeneous functions on Cn :

Hp
n = {ϕ : Cn → R continuous , ϕ(λz) = |λ|pϕ(z)∀λ ∈ C, z ∈ Cn}.

Encode a set A of Banach spaces as the cone N(A,n) ⊂ Hp
n

N(A,n) = {z 7→ ‖
n∑

i=1

zixi‖p,X ∈ A and x1, . . . , xn ∈ X .}

Encode a set B of operators between sub-Lp spaces as the cone
P(B,n) ⊂ (Hp

n )∗ of linear forms of the form

ϕ 7→
∫
ϕ(f1(ω), . . . , fn(ω))dµ(ω)−

∫
ϕ(Tf1(ω′), . . . ,Tfn(ω′))dµ′(ω′)

for T ∈ B and f1, . . . fn ∈ D(T ) ⊂ Lp(Ω, µ).



The proof

For n ∈ N, denote Hp
n the Banach space of continuous degree p

homogeneous functions on Cn :

Hp
n = {ϕ : Cn → R continuous , ϕ(λz) = |λ|pϕ(z)∀λ ∈ C, z ∈ Cn}.

Encode a set A of Banach spaces as the cone N(A,n) ⊂ Hp
n

N(A,n) = {z 7→ ‖
n∑

i=1

zixi‖p,X ∈ A and x1, . . . , xn ∈ X .}

Encode a set B of operators between sub-Lp spaces as the cone
P(B,n) ⊂ (Hp

n )∗ of linear forms of the form

ϕ 7→
∫
ϕ(f1(ω), . . . , fn(ω))dµ(ω)−

∫
ϕ(Tf1(ω′), . . . ,Tfn(ω′))dµ′(ω′)

for T ∈ B and f1, . . . fn ∈ D(T ) ⊂ Lp(Ω, µ).



Reason : if ϕ(z) = ‖
∑

i zixi‖pX ,∫
ϕ(f1(ω), . . . , fn(ω))dµ(ω)−

∫
ϕ(Tf1(ω′), . . . ,Tfn(ω′))dµ′(ω′)

is equal to
‖
∑

fixi‖pLp(Ω;X) − ‖
∑

Tfixi‖pLp(Ω′;X).

So it is ≥ 0 for all f1, . . . , fn ∈ D(T ) iff T ∈ X ◦.

Apply the bipolar theorem for cones in Hp
n and its dual.
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