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Fix 1 < p < oo (most interesting case : p = 2).

The objects :

¢ X Banach space (not {0}).

¢ T bounded linear operator between sub-L, spaces (=subspaces
E c Lp(Qh/M)a FcC Lp(Qg,ug)).

The duality (T, X) e R:

Define || Tx|| as the (possibly infinite) norm of T ® idx between the
subspaces E @ X and F ® X of Lp(£2;, uj; X).

In formula, || Tx|| is the smallest constant C such that

i HZT a5 e() < €7 [ HZf i1 s ()
2 1

forall N,all fy,....,fy € Eand xy,...,xy € X.

The (vague) question :
Relate properties of T and of X to the quantity || Tx||.
Example (Fubini) : if X C Lp, then || Tx|| = || T||. And conversely !
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The polarity :
If Ais a set of Banach spaces, define the polar of A

A° ={T,||Tx|| < 1forall X € A}.
If B is a set of operators between sub-L, spaces, the polar of B
B°={X,||Tx|| < 1forall T € B}.

Question 1 (Pisier)
Describe A°°.

By definition : Y € A <= || Ty|| < supyca || Tx|| forall T.

Question 2 (Pisier)
Describe B°°.

By definition : S € B°° <= ||Sx|| < 1forall X s.t. supreg || Tx|| < 1.
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Theoretical result : any class of Banach space closed under /,-direct
sums and finite representability is of the form B° for some B.

Concretely : many natural classes of Banach spaces are defined as B°
for some explicit set B of operators between L, spaces.

Example : type.

Let ¢; a sequence of iid Bernoulli random variables on a probability
space (€, u).

X has type > 1 (=is B-convex) if there exists n € N, § > 0 such that

1
1Y~ eixill ooy < V=00 Ixil%)=.

(i.e X belongs to T°, where T: (5 — L, maps (x;) € (5 0 \/ﬁ S €ixj).

By Pisier’s theorem, this is equivalent to X being K-convex :
|IPx|| < oo, where P: Lo(Q2, u) — Lo(2, 1) is the orthogonal projection
on span{ej,i > 1}. In other words, 3C = C(n, <) such that 5P € {T}°°.



Similarly for cotype :
X has cotype g < ~ if there exists C such that

1
1 " eixilg@x = €O Ixill9)a.

(i.e X belongs to 7°, where T: span(e;) C Lg — £q which maps ) ¢;x;
to (X,')).
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For an integer k, define dk(X) € [1, Vk] by
dk(X) = sup{d(E, 5), E C X of dimension k}.

It is known (Milman-Wolfson 78) that the following are equivalent :
@ X hastype > 1.
o k, dk(X) < \/R

° |imk% = 0.

Question/Conjecture
In that case, there is 8 < % and C such that dx(X) < Ck”.

ex(X) = sup{||ux|, u: 5 — ¢& unitary}.

Then (Tomczak-Jaegerman, Pisier) ex(X) < dk(X) < 2ex(X). So the
above question is really of the form “understand B°°” for some B :

1



Motivation 2 : embeddability of expanders

Let G = (V, E) be a finite d-regular graph, Mg: ¢2(V) — (2(V) the
(random walk) Markov operator :

Mgf(x Z fly

(x y)eE
1=X(G) = X2(G) > ... \y|(G) the eigenvalues of Mg.

Definition (Super-expanders)

A sequence G, = (Vj, Ep) of d-regular graphs is a super-expander if it
is an X-pander for every superreflexive Banach space X : 3y > 0 such
that for all nand all f: V, — X,

_ 2
|V|2 > ) — W)l < , "

x,yeVn

Y ey —fwIE. )

(x.y)€En

v

(1) is called X-valued Poincaré inequality.
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X-valued Poincaré inequality :

2 > lIf(x ||2_|,:1n‘ > o =Wz (1)

X,y€Vn (x,y)€En

Standard exercise : (1) for X = C is equivalent to sup, A\2(Gn) < 1 (Gp
is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to
sup, [[(MZ, )x|l < 1 where Mg = 415 (dMg + Id) is the “lazy” random

walk operator and A?Ig its restriction to

g ={f € ta(V), Yyey f(x) = 0}.

Questions :

Do super-expanders exist ? — YES, see next slide.

Are expanders super-expanders ? —> wide open.



Theorem (Lafforgue)

Let I' be a lattice in SL3(Qp) with finite generating set S, and ', a
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space X).
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Theorem (Lafforgue)

Let I' be a lattice in SL3(Qp) with finite generating set S, and ', a
sequence of finite quotients of I'. Then G, = Cayley(',, S) is a
sequence of super-expanders (even X-panders for every K-convex
space X).

Still open for lattices in SL3(R) (eg SL3(Z)).

Known (de Laat—dIS) : if X is such that d(X) = O(x”) for some j < 1,
then all lattices coming from SL,(R) are X-panders for all
nzN(B) = O(155).

Conjecture (Mendel-Naor)

If X is a space with non-trivial cotype, then there is a sequence G, of
X-panders.
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point if G is not compact.
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Motivation 3 : Group actions on Banach spaces

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a
lattice in) SL,(IR) or SLy(Qp) (n > 3) on a Hilbert space has a fixed
point.

This cannot be true if Hilbert space is replaced by arbitrary Banach
space : the action of Gon {f € L1(G), [ f = 1} ~ LI(G) has no fixed
point if G is not compact.

Conjecture (Bader—Furman—Gelander—Monod) : The same is true for
every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for SL,(Qp). Even, every action by affine
isometries of SL,(Qp) or a lattice on a K-convex space has a fixed
point.

Crucial ingredient :

(Bourgain) : if X' is K-convex, there is p > 1 such that, for every abelian
locally compact group A, its Fourier transform F: Ly(A) — Ly (A)
satisfies || Fx|| < oc.
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The real case.

Difficulty : harmonic analysis on SO(n) is not related to abelian groups !
(unlike harmonic analysis on SL(Zp), which contains “large” nilpotent

1 % x
groups [0 1 =« ].)
0 0 1
For —1 <6 <1, let Ts: Lp(S™ 1) — Lp(S™ ") the averaging operator
Tsf(x) = average of fon {y € S" 1, (x,y) = 4.

e (de Laat—-Mimura—dIS) If X is a Banach space and there are C,0 > 0

st
I(Ts — To)x|l < C6|° V0, (2)

then the conjecture holds for X and SL,(R) for r > 3n — 6.

o (de Laat—dIS) (2) holds if di(X) = O(kz 7).
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Bipolar theorem : if E is a locally convex topological vector space.
The bipolar of C C E coincides with the closed convex hull of C U {0}.

For E = {Banach spaces}, a form of the bipolar theorem has been
known for 33 years :
Theorem (Hernandez 1983)

The bipolar of a class A of Banach spaces is the class of Banach
spaces finitely representable in finite /,-direct sums of elements in A.

D is obvious ; the content of the theorem is C.

This implies the theoretical result : if A is closed under /p-direct sums
and finite representability, then A = (A°)°.

For “E* = {operators between sub-L, spaces}” ?

Theorem (dIS)

The bipolar of a class B of operators between sub-L, spaces contains
no other operators than the “obvious operators”.
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Let B be a class of operators between sub-L, spaces. Obvious
elements of B°° : smallest class B’ containing B and

@ containing “changes of measure” operators : maps of the form
U: felp(2p)— hf € Lp(Q2,|h|~Pdpu) for some h: Q@ — C\ {0}.

@S, TeB=SaTechB,and }(S+T)eB,SoT e B when
these make sense.

@ Limits of operators in B belong to B'. That is : if T is an operator
between subspaces of L,(2, m) and L,(', m’) and if, for every
finite family f, ..., f, in the domain of T and every € > 0, there is
S € B’ with domain contained in L,(€2, m) and range contained in
Lo(SY', m') and elements gy, ...,9n € D(S) such that || — gi|| < ¢
and ||Tf, — Sfj|| < e, then T € B'.

@ Let T € B’ such D(T) C Lp(Q24, mq) & Lp(2, m) (respectively
R(T) C Lp(21, my) ® Lp(2, m)) of the form T(f © g) = Sf @ g for
every f@® g € D(T). Then Sbelongs to B'.
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The proof

Setting B set of operators between sub-L, spaces. Define B’ as in the
previous slide.

We have to prove that if T ¢ B, there is a Banach space X such that
IISx|| <1forall S Bbut | Tx| > 1.

Constructing explicit Banach spaces is a difficult task !

Solution : let the Hahn-Banach theorem construct X for us !
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The proof

For n € N, denote HF the Banach space of continuous degree p
homogeneous functions on C” :

HP = {¢: C" — R continuous , p(A2) = |A[Pp(2)VA € C,z € C"}.

Encode a set A of Banach spaces as the cone N(A, n) ¢ H?

n
N(A,n)={z— HZZ,'X,'HP,XEAandX1,...,XnEX.}

i=1

Encode a set B of operators between sub-L, spaces as the cone
P(B,n) c (HR)* of linear forms of the form

o [ o) b)) ~ [ o(THW). ... Thw ) ()

forTe Band fy,...f, € D(T) C Lp(2, p).
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/w(f1(W),~-7fn(W))du(W) —/so(Tf1 (@), Th(w'))du' ()

is equal to
1 22 8l @) = I 22 TEXE v



Reason : if o(2) = || 32 zixil/%

/w(f1(W),~-7fn(W))du(W) —/so(Tf1 (@), Th(w'))du' ()

is equal to
1 22 8l @) = I 22 TEXE v

Soitis>O0forall fy,...,f, € D(T)iff T € X°.



Reason : if o(2) = || 32 zixil/%

/w(f1(W),~-7fn(W))du(W) —/so(Tf1 (@), Th(w'))du' ()

is equal to
1 22 8l @) = I 22 TEXE v

Soitis>O0forall fy,...,f, € D(T)iff T € X°.

Apply the bipolar theorem for cones in HX and its dual.
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