A duality between Banach spaces and operators between subspaces of L_p spaces

Mikael de la Salle CNRS, École Normale Supérieure de Lyon

TAMU, july 8, 2016

• • • • • • • • • • • • •

The objects :

- X Banach space (not {0}).
- *T* bounded linear operator between sub- L_p spaces (=subspaces $E \subset L_p(\Omega_1, \mu_1), F \subset L_p(\Omega_2, \mu_2)$).

The duality $\langle \mathcal{T}, \mathcal{X} \rangle \in \mathbb{R}$:

The objects :

• X Banach space (not {0}).

• *T* bounded linear operator between sub- L_p spaces (=subspaces $E \subset L_p(\Omega_1, \mu_1), F \subset L_p(\Omega_2, \mu_2)$).

The duality $\langle T, X \rangle \in \mathbb{R}$:

Define $||T_X||$ as the (possibly infinite) norm of $T \otimes id_X$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_p(\Omega_i, \mu_i; X)$. In formula, $||T_X||$ is the smallest constant *C* such that

$$\int_{\Omega_2} \|\sum_{i=1}^N T(f_i)(\omega) x_i\|_X^p d\mu_2(\omega) \leq C^p \int_{\Omega_1} \|\sum_{i=1}^N f_i(\omega) x_i\|_X^p d\mu_1(\omega)$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

for all N, all $f_1, \ldots, f_N \in E$ and $x_1, \ldots, x_N \in X$.

The objects :

• X Banach space (not {0}).

• *T* bounded linear operator between sub- L_p spaces (=subspaces $E \subset L_p(\Omega_1, \mu_1), F \subset L_p(\Omega_2, \mu_2)$).

The duality $\langle T, X \rangle \in \mathbb{R}$:

Define $||T_X||$ as the (possibly infinite) norm of $T \otimes id_X$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_p(\Omega_i, \mu_i; X)$. In formula, $||T_X||$ is the smallest constant *C* such that

$$\int_{\Omega_2} \|\sum_{i=1}^N T(f_i)(\omega) x_i\|_X^p d\mu_2(\omega) \leq C^p \int_{\Omega_1} \|\sum_{i=1}^N f_i(\omega) x_i\|_X^p d\mu_1(\omega)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

for all N, all $f_1, \ldots, f_N \in E$ and $x_1, \ldots, x_N \in X$.

The (vague) question :

Relate properties of *T* and of *X* to the quantity $||T_X||$.

The objects :

• X Banach space (not {0}).

• *T* bounded linear operator between sub- L_p spaces (=subspaces $E \subset L_p(\Omega_1, \mu_1), F \subset L_p(\Omega_2, \mu_2)$).

The duality $\langle T, X \rangle \in \mathbb{R}$:

Define $||T_X||$ as the (possibly infinite) norm of $T \otimes id_X$ between the subspaces $E \otimes X$ and $F \otimes X$ of $L_p(\Omega_i, \mu_i; X)$. In formula, $||T_X||$ is the smallest constant *C* such that

$$\int_{\Omega_2} \|\sum_{i=1}^N T(f_i)(\omega) x_i\|_X^p d\mu_2(\omega) \leq C^p \int_{\Omega_1} \|\sum_{i=1}^N f_i(\omega) x_i\|_X^p d\mu_1(\omega)$$

for all N, all $f_1, \ldots, f_N \in E$ and $x_1, \ldots, x_N \in X$.

The (vague) question :

Relate properties of *T* and of *X* to the quantity $||T_X||$. **Example** (Fubini) : if $X \subset L_p$, then $||T_X|| = ||T||$. And conversely !

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

The polarity : If *A* is a set of Banach spaces, define the *polar* of *A*

$$A^{\circ} = \{T, \|T_X\| \leq 1 \text{ for all } X \in A\}.$$

If B is a set of operators between sub- L_p spaces, the *polar* of B

$$B^{\circ} = \{X, \|T_X\| \leq 1 \text{ for all } T \in B\}.$$

The polarity : If *A* is a set of Banach spaces, define the *polar* of *A*

$$A^{\circ} = \{T, \|T_X\| \leq 1 \text{ for all } X \in A\}.$$

If B is a set of operators between sub- L_p spaces, the *polar* of B

$$B^{\circ} = \{X, \|T_X\| \leq 1 \text{ for all } T \in B\}.$$

Question 1 (Pisier)

Describe $A^{\circ\circ}$.

By definition : $Y \in A^{\circ\circ} \iff ||T_Y|| \le \sup_{X \in A} ||T_X||$ for all T.

Question 2 (Pisier)

Describe $B^{\circ\circ}$.

By definition : $S \in B^{\circ\circ} \iff ||S_X|| \le 1$ for all X s.t. $\sup_{T \in B} ||T_X|| \le 1$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Table of content

< ロ > < 同 > < 回 > < 回 >

Concretely : many natural classes of Banach spaces are defined as B° for some explicit set *B* of operators between L_{p} spaces.

Example : type.

Concretely : many natural classes of Banach spaces are defined as B° for some explicit set *B* of operators between L_{p} spaces.

Example : type.

Let ε_i a sequence of iid Bernoulli random variables on a probability space (Ω, μ) .

X has type > 1 (=is *B*-convex) if there exists $n \in N, \delta > 0$ such that

$$\|\sum \varepsilon_i x_i\|_{L_2(\Omega;X)} \leq \sqrt{n-\delta} (\sum \|x_i\|^2)^{\frac{1}{2}}.$$

(i.e X belongs to T° , where $T: \ell_2^n \to L_2$ maps $(x_i) \in \ell_p^n$ to $\frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_i x_i$).

Concretely : many natural classes of Banach spaces are defined as B° for some explicit set *B* of operators between L_{p} spaces.

Example : type.

Let ε_i a sequence of iid Bernoulli random variables on a probability space (Ω, μ) .

X has type > 1 (=is *B*-convex) if there exists $n \in N, \delta > 0$ such that

$$\|\sum \varepsilon_i x_i\|_{L_2(\Omega;X)} \leq \sqrt{n-\delta} (\sum \|x_i\|^2)^{\frac{1}{2}}.$$

(i.e X belongs to T° , where $T: \ell_2^n \to L_2$ maps $(x_i) \in \ell_p^n$ to $\frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_i x_i$).

By Pisier's theorem, this is equivalent to *X* being *K*-convex : $||P_X|| < \infty$, where $P: L_2(\Omega, \mu) \to L_2(\Omega, \mu)$ is the orthogonal projection on span $\{\varepsilon_i, i \ge 1\}$. In other words, $\exists C = C(n, \varepsilon)$ such that $\frac{1}{C}P \in \{T\}^{\circ\circ}$.

Similarly for cotype :

X has cotype $q < \infty$ if there exists C such that

$$\|\sum \varepsilon_i x_i\|_{L_q(\Omega;X)} \geq C(\sum \|x_i\|^q)^{\frac{1}{q}}.$$

(i.e X belongs to T° , where $T : \operatorname{span}(\varepsilon_i) \subset L_q \to \ell_q$ which maps $\sum \varepsilon_i x_i$ to (x_i)).

For an integer *k*, define $d_k(X) \in [1, \sqrt{k}]$ by

$$d_k(X) = \sup\{d(E, \ell_2^k), E \subset X \text{ of dimension } k\}.$$

For an integer k, define $d_k(X) \in [1, \sqrt{k}]$ by

$$d_k(X) = \sup\{d(E, \ell_2^k), E \subset X \text{ of dimension } k\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

It is known (Milman-Wolfson 78) that the following are equivalent :

- *X* has type > 1.
- $\exists k, d_k(X) < \sqrt{k}.$
- $\lim_k \frac{d_k(X)}{\sqrt{k}} = 0.$

Question/Conjecture

In that case, there is $\beta < \frac{1}{2}$ and *C* such that $d_k(X) \leq Ck^{\beta}$.

For an integer k, define $d_k(X) \in [1, \sqrt{k}]$ by

$$d_k(X) = \sup\{d(E, \ell_2^k), E \subset X \text{ of dimension } k\}.$$

It is known (Milman-Wolfson 78) that the following are equivalent :

- *X* has type > 1.
- $\exists k, d_k(X) < \sqrt{k}.$
- $\lim_k \frac{d_k(X)}{\sqrt{k}} = 0.$

Question/Conjecture

In that case, there is $\beta < \frac{1}{2}$ and *C* such that $d_k(X) \leq Ck^{\beta}$.

$$e_k(X) = \sup\{\|u_X\|, u \colon \ell_2^k \to \ell_2^k \text{ unitary}\}.$$

Then (Tomczak-Jaegerman, Pisier) $e_k(X) \le d_k(X) \le 2e_k(X)$. So the above question is really of the form "understand $B^{\circ\circ}$ " for some B:

$$B = \{T: (x_i) \in \ell_2^n \to \frac{1}{\sqrt{n-\varepsilon}} \sum \varepsilon_i x_i \in L_2\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Motivation 2 : embeddability of expanders

Let G = (V, E) be a finite *d*-regular graph, $M_G : \ell_2(V) \to \ell_2(V)$ the (random walk) Markov operator :

$$M_G f(x) = \frac{1}{d} \sum_{(x,y) \in E} f(y).$$

 $1 = \lambda_1(G) \ge \lambda_2(G) \ge \dots \lambda_{|V|}(G)$ the eigenvalues of M_G .

Definition (Super-expanders)

A sequence $G_n = (V_n, E_n)$ of *d*-regular graphs is a super-expander if it is an *X*-pander for every superreflexive Banach space $X : \exists \gamma > 0$ such that for all *n* and all $f : V_n \to X$,

$$\frac{\gamma}{|V_n|^2} \sum_{x,y \in V_n} \|f(x) - f(y)\|^2 \le \frac{1}{|E_n|} \sum_{(x,y) \in E_n} \|f(x) - f(y)\|^2.$$
(1)

(1) is called X-valued Poincaré inequality.

$$\frac{\gamma}{|V_n|^2} \sum_{x,y \in V_n} \|f(x) - f(y)\|^2 \le \frac{1}{|E_n|} \sum_{(x,y) \in E_n} \|f(x) - f(y)\|^2.$$
(1)

Standard exercise : (1) for $X = \mathbb{C}$ is equivalent to $\sup_n \lambda_2(G_n) < 1$ (G_n is a sequence of expanders).

$$\frac{\gamma}{|V_n|^2} \sum_{x,y \in V_n} \|f(x) - f(y)\|^2 \le \frac{1}{|E_n|} \sum_{(x,y) \in E_n} \|f(x) - f(y)\|^2.$$
(1)

Standard exercise : (1) for $X = \mathbb{C}$ is equivalent to $\sup_n \lambda_2(G_n) < 1$ (G_n is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup_n \|(\tilde{M}_{G_n}^0)_X\| < 1$ where $\tilde{M}_G = \frac{1}{d+1}(dM_G + Id)$ is the "lazy" random walk operator and \tilde{M}_G^0 its restriction to $\ell_2^0 = \{f \in \ell_2(V), \sum_{x \in V} f(x) = 0\}.$

《曰》 《聞》 《臣》 《臣》 三臣 …

$$\frac{\gamma}{|V_n|^2} \sum_{x,y \in V_n} \|f(x) - f(y)\|^2 \le \frac{1}{|E_n|} \sum_{(x,y) \in E_n} \|f(x) - f(y)\|^2.$$
(1)

Standard exercise : (1) for $X = \mathbb{C}$ is equivalent to $\sup_n \lambda_2(G_n) < 1$ (G_n is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup_n \|(\tilde{M}_{G_n}^0)_X\| < 1$ where $\tilde{M}_G = \frac{1}{d+1}(dM_G + Id)$ is the "lazy" random walk operator and \tilde{M}_G^0 its restriction to $\ell_2^0 = \{f \in \ell_2(V), \sum_{x \in V} f(x) = 0\}.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Questions :

Do super-expanders exist?

Are expanders super-expanders?

$$\frac{\gamma}{|V_n|^2} \sum_{x,y \in V_n} \|f(x) - f(y)\|^2 \le \frac{1}{|E_n|} \sum_{(x,y) \in E_n} \|f(x) - f(y)\|^2.$$
(1)

Standard exercise : (1) for $X = \mathbb{C}$ is equivalent to $\sup_n \lambda_2(G_n) < 1$ (G_n is a sequence of expanders).

More generally (1) for X uniformly convex is equivalent to $\sup_n \|(\tilde{M}_{G_n}^0)_X\| < 1$ where $\tilde{M}_G = \frac{1}{d+1}(dM_G + Id)$ is the "lazy" random walk operator and \tilde{M}_G^0 its restriction to $\ell_2^0 = \{f \in \ell_2(V), \sum_{x \in V} f(x) = 0\}.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Questions :

Do super-expanders exist? \longrightarrow YES, see next slide.

Are expanders super-expanders ? \longrightarrow wide open.

Theorem (Lafforgue)

Let Γ be a lattice in $SL_3(\mathbb{Q}_p)$ with finite generating set S, and Γ_n a sequence of finite quotients of Γ . Then $G_n = Cayley(\Gamma_n, S)$ is a sequence of super-expanders (even *X*-panders for every *K*-convex space *X*).

Still open for lattices in $SL_3(\mathbb{R})$ (eg $SL_3(\mathbb{Z})$).

Theorem (Lafforgue)

Let Γ be a lattice in $SL_3(\mathbb{Q}_p)$ with finite generating set S, and Γ_n a sequence of finite quotients of Γ . Then $G_n = Cayley(\Gamma_n, S)$ is a sequence of super-expanders (even *X*-panders for every *K*-convex space *X*).

Still open for lattices in $SL_3(\mathbb{R})$ (eg $SL_3(\mathbb{Z})$).

Known (de Laat–dlS) : if X is such that $d_k(X) = O(x^{\beta})$ for some $\beta < \frac{1}{2}$, then all lattices coming from $SL_n(\mathbb{R})$ are X-panders for all $n \ge N(\beta) = O(\frac{1}{\frac{1}{2}-\beta})$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Theorem (Lafforgue)

Let Γ be a lattice in $SL_3(\mathbb{Q}_p)$ with finite generating set S, and Γ_n a sequence of finite quotients of Γ . Then $G_n = Cayley(\Gamma_n, S)$ is a sequence of super-expanders (even *X*-panders for every *K*-convex space *X*).

Still open for lattices in $SL_3(\mathbb{R})$ (eg $SL_3(\mathbb{Z})$).

Known (de Laat–dlS) : if X is such that $d_k(X) = O(x^{\beta})$ for some $\beta < \frac{1}{2}$, then all lattices coming from $SL_n(\mathbb{R})$ are X-panders for all $n \ge N(\beta) = O(\frac{1}{\frac{1}{2}-\beta})$.

Conjecture (Mendel-Naor)

If X is a space with non-trivial cotype, then there is a sequence G_n of X-panders.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $SL_n(\mathbb{R})$ or $SL_n(\mathbb{Q}_p)$ ($n \ge 3$) on a Hilbert space has a fixed point.

This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of *G* on $\{f \in L_1(G), \int f = 1\} \sim L_1^0(G)$ has no fixed point if *G* is not compact.

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $SL_n(\mathbb{R})$ or $SL_n(\mathbb{Q}_p)$ ($n \ge 3$) on a Hilbert space has a fixed point.

This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of *G* on $\{f \in L_1(G), \int f = 1\} \sim L_1^0(G)$ has no fixed point if *G* is not compact.

Conjecture (Bader–Furman–Gelander–Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $SL_n(\mathbb{R})$ or $SL_n(\mathbb{Q}_p)$ ($n \ge 3$) on a Hilbert space has a fixed point.

This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of *G* on $\{f \in L_1(G), \int f = 1\} \sim L_1^0(G)$ has no fixed point if *G* is not compact.

Conjecture (Bader–Furman–Gelander–Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for $SL_n(\mathbb{Q}_p)$. Even, every action by affine isometries of $SL_n(\mathbb{Q}_p)$ or a lattice on a *K*-convex space has a fixed point.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Recall : (Kazdhan, Delorme) Every action by affine isometries of (a lattice in) $SL_n(\mathbb{R})$ or $SL_n(\mathbb{Q}_p)$ ($n \ge 3$) on a Hilbert space has a fixed point.

This cannot be true if Hilbert space is replaced by arbitrary Banach space : the action of *G* on $\{f \in L_1(G), \int f = 1\} \sim L_1^0(G)$ has no fixed point if *G* is not compact.

Conjecture (Bader–Furman–Gelander–Monod) : The same is true for every action by affine isometries on a superreflexive Banach space.

Theorem (Lafforgue)

The conjecture holds for $SL_n(\mathbb{Q}_p)$. Even, every action by affine isometries of $SL_n(\mathbb{Q}_p)$ or a lattice on a *K*-convex space has a fixed point.

Crucial ingredient :

(Bourgain) : if X is K-convex, there is p > 1 such that, for every abelian locally compact group A, its Fourier transform $\mathcal{F} \colon L_p(A) \to L_{p'}(\widehat{A})$ satisfies $\|\mathcal{F}_X\| < \infty$.

The real case.

Difficulty : harmonic analysis on SO(n) is not related to abelian groups ! (unlike harmonic analysis on $SL_n(\mathbb{Z}_p)$, which contains "large" nilpotent

groups
$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$
.)

The real case.

Difficulty : harmonic analysis on SO(n) is not related to abelian groups ! (unlike harmonic analysis on $SL_n(\mathbb{Z}_p)$, which contains "large" nilpotent

groups $\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$.) For $-1 \le \delta \le 1$, let $T_{\delta} \colon L_2(S^{n-1}) \to L_2(S^{n-1})$ the averaging operator

$$T_{\delta}f(x) = \text{average of } f \text{ on } \{y \in S^{n-1}, \langle x, y \rangle = \delta.$$

• (de Laat–Mimura–dlS) If X is a Banach space and there are $C, \theta > 0$ st

$$\|(T_{\delta} - T_0)_X\| \le C |\delta|^{\theta} \,\,\forall \delta,\tag{2}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

then the conjecture holds for *X* and $SL_r(\mathbb{R})$ for $r \ge 3n - 6$.

The real case.

Difficulty : harmonic analysis on SO(n) is not related to abelian groups ! (unlike harmonic analysis on $SL_n(\mathbb{Z}_p)$, which contains "large" nilpotent

groups $\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$.) For $-1 \le \delta \le 1$, let $T_{\delta} \colon L_2(S^{n-1}) \to L_2(S^{n-1})$ the averaging operator

$$T_{\delta}f(x) = \text{average of } f \text{ on } \{y \in S^{n-1}, \langle x, y \rangle = \delta.$$

• (de Laat–Mimura–dlS) If X is a Banach space and there are $C, \theta > 0$ st

$$\|(T_{\delta}-T_{0})_{X}\| \leq C|\delta|^{\theta} \,\,\forall \delta,$$
(2)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

then the conjecture holds for *X* and $SL_r(\mathbb{R})$ for $r \ge 3n - 6$.

• (de Laat–dlS) (2) holds if $d_k(X) = O(k^{\frac{1}{2} - \frac{1}{n}})$.

Table of content

∃ ► < ∃ ►</p>

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

For $E = \{Banach spaces\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)

The bipolar of a class *A* of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_p -direct sums of elements in *A*.

 \supset is obvious ; the content of the theorem is \subset .

For $E = \{Banach spaces\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)

The bipolar of a class *A* of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_p -direct sums of elements in *A*.

 \supset is obvious ; the content of the theorem is \subset .

This implies the theoretical result : if *A* is closed under ℓ_p -direct sums and finite representability, then $A = (A^\circ)^\circ$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

For $E = \{Banach spaces\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)

The bipolar of a class *A* of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_p -direct sums of elements in *A*.

 \supset is obvious; the content of the theorem is \subset .

This implies the theoretical result : if *A* is closed under ℓ_p -direct sums and finite representability, then $A = (A^\circ)^\circ$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

For " $E^* = \{\text{operators between sub-}L_{\rho} \text{ spaces} \}$ "?

For $E = \{Banach spaces\}$, a form of the bipolar theorem has been known for 33 years :

Theorem (Hernandez 1983)

The bipolar of a class *A* of Banach spaces is the class of Banach spaces finitely representable in finite ℓ_p -direct sums of elements in *A*.

 \supset is obvious; the content of the theorem is \subset .

This implies the theoretical result : if *A* is closed under ℓ_p -direct sums and finite representability, then $A = (A^\circ)^\circ$.

For " $E^* = \{\text{operators between sub-}L_p \text{ spaces}\}$ "?

Theorem (dIS)

The bipolar of a class *B* of operators between sub- L_p spaces contains no other operators than the "obvious operators".

- containing "changes of measure" operators : maps of the form
 - $U: f \in L_p(\Omega, \mu) \mapsto hf \in L_p(\Omega, |h|^{-p}d\mu)$ for some $h: \Omega \to \mathbb{C} \setminus \{0\}$.

- containing "changes of measure" operators : maps of the form
 U: f ∈ L_p(Ω, μ) → hf ∈ L_p(Ω, |h|^{-p}dμ) for some h: Ω → C \ {0}.
- $S, T \in B' \Longrightarrow S \oplus T \in B'$, and $\frac{1}{2}(S + T) \in B'$, $S \circ T \in B'$ when these make sense.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- containing "changes of measure" operators : maps of the form
 U: f ∈ L_p(Ω, μ) → hf ∈ L_p(Ω, |h|^{-p}dμ) for some h: Ω → C \ {0}.
- $S, T \in B' \Longrightarrow S \oplus T \in B'$, and $\frac{1}{2}(S+T) \in B'$, $S \circ T \in B'$ when these make sense.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Limits of operators in B' belong to B'.

- containing "changes of measure" operators : maps of the form
 U: f ∈ L_p(Ω, μ) → hf ∈ L_p(Ω, |h|^{-p}dμ) for some h: Ω → C \ {0}.
- $S, T \in B' \Longrightarrow S \oplus T \in B'$, and $\frac{1}{2}(S+T) \in B'$, $S \circ T \in B'$ when these make sense.
- Limits of operators in B' belong to B'.

• Let $T \in B'$ such $D(T) \subset L_p(\Omega_1, m_1) \oplus L_p(\Omega, m)$ (respectively $R(T) \subset L_p(\Omega_1, m_1) \oplus L_p(\Omega, m)$) of the form $T(f \oplus g) = Sf \oplus g$ for every $f \oplus g \in D(T)$. Then S belongs to B'.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- containing "changes of measure" operators : maps of the form
 U: f ∈ L_p(Ω, μ) → hf ∈ L_p(Ω, |h|^{-p}dμ) for some h: Ω → C \ {0}.
- $S, T \in B' \Longrightarrow S \oplus T \in B'$, and $\frac{1}{2}(S + T) \in B'$, $S \circ T \in B'$ when these make sense.
- Limits of operators in B' belong to B'. That is : if T is an operator between subspaces of L_p(Ω, m) and L_p(Ω', m') and if, for every finite family f₁,..., f_n in the domain of T and every ε > 0, there is S ∈ B' with domain contained in L_p(Ω, m) and range contained in L_p(Ω', m') and elements g₁,..., g_n ∈ D(S) such that ||f_i g_i|| ≤ ε and ||Tf_i Sf_i|| ≤ ε, then T ∈ B'.
- Let $T \in B'$ such $D(T) \subset L_p(\Omega_1, m_1) \oplus L_p(\Omega, m)$ (respectively $R(T) \subset L_p(\Omega_1, m_1) \oplus L_p(\Omega, m)$) of the form $T(f \oplus g) = Sf \oplus g$ for every $f \oplus g \in D(T)$. Then S belongs to B'.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Setting *B* set of operators between sub- L_p spaces. Define *B'* as in the previous slide.

We have to prove that if $T \notin B'$, there is a Banach space X such that $||S_X|| \le 1$ for all $S \in B$ but $||T_X|| > 1$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- **Setting** *B* set of operators between sub- L_p spaces. Define *B'* as in the previous slide.
- We have to prove that if $T \notin B'$, there is a Banach space X such that $||S_X|| \le 1$ for all $S \in B$ but $||T_X|| > 1$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Constructing explicit Banach spaces is a difficult task !

- **Setting** *B* set of operators between sub- L_p spaces. Define *B'* as in the previous slide.
- We have to prove that if $T \notin B'$, there is a Banach space X such that $||S_X|| \le 1$ for all $S \in B$ but $||T_X|| > 1$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Constructing explicit Banach spaces is a difficult task !

Solution : let the Hahn-Banach theorem construct X for us !

The proof

For $n \in N$, denote H_n^p the Banach space of continuous degree p homogeneous functions on \mathbb{C}^n :

$$H_n^p = \{\varphi \colon \mathbb{C}^n \to \mathbb{R} \text{ continuous }, \varphi(\lambda z) = |\lambda|^p \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^n \}.$$

The proof

For $n \in N$, denote H_n^p the Banach space of continuous degree p homogeneous functions on \mathbb{C}^n :

$$H_n^p = \{ \varphi \colon \mathbb{C}^n \to \mathbb{R} \text{ continuous }, \varphi(\lambda z) = |\lambda|^p \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^n \}.$$

Encode a set A of Banach spaces as the cone $N(A, n) \subset H_n^p$

$$N(A, n) = \{z \mapsto \|\sum_{i=1}^n z_i x_i\|^p, X \in A \text{ and } x_1, \ldots, x_n \in X.\}$$

The proof

For $n \in N$, denote H_n^p the Banach space of continuous degree p homogeneous functions on \mathbb{C}^n :

$$H_n^p = \{ \varphi \colon \mathbb{C}^n \to \mathbb{R} \text{ continuous }, \varphi(\lambda z) = |\lambda|^p \varphi(z) \forall \lambda \in \mathbb{C}, z \in \mathbb{C}^n \}.$$

Encode a set A of Banach spaces as the cone $N(A, n) \subset H_n^p$

$$N(A, n) = \{z \mapsto \|\sum_{i=1}^n z_i x_i\|^p, X \in A \text{ and } x_1, \ldots, x_n \in X.\}$$

Encode a set *B* of operators between sub- L_p spaces as the cone $P(B, n) \subset (H_n^p)^*$ of linear forms of the form

$$\varphi \mapsto \int \varphi(f_1(\omega),\ldots,f_n(\omega))d\mu(\omega) - \int \varphi(Tf_1(\omega'),\ldots,Tf_n(\omega'))d\mu'(\omega')$$

for $T \in B$ and $f_1, \ldots f_n \in D(T) \subset L_p(\Omega, \mu)$.

Reason : if
$$\varphi(z) = \|\sum_{i} z_{i} x_{i} \|_{X}^{p}$$
,
$$\int \varphi(f_{1}(\omega), \dots, f_{n}(\omega)) d\mu(\omega) - \int \varphi(Tf_{1}(\omega'), \dots, Tf_{n}(\omega')) d\mu'(\omega')$$

is equal to

$$\|\sum f_i x_i\|_{L_p(\Omega;X)}^p - \|\sum Tf_i x_i\|_{L_p(\Omega';X)}^p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reason : if
$$\varphi(z) = \|\sum_{i} z_{i} x_{i} \|_{X}^{p}$$
,
$$\int \varphi(f_{1}(\omega), \dots, f_{n}(\omega)) d\mu(\omega) - \int \varphi(Tf_{1}(\omega'), \dots, Tf_{n}(\omega')) d\mu'(\omega')$$

is equal to

$$\|\sum f_i x_i\|_{L_p(\Omega;X)}^{\rho}-\|\sum Tf_i x_i\|_{L_p(\Omega';X)}^{\rho}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

So it is ≥ 0 for all $f_1, \ldots, f_n \in D(T)$ iff $T \in X^\circ$.

Reason : if
$$\varphi(z) = \|\sum_{i} z_{i} x_{i} \|_{X}^{p}$$
,
$$\int \varphi(f_{1}(\omega), \dots, f_{n}(\omega)) d\mu(\omega) - \int \varphi(Tf_{1}(\omega'), \dots, Tf_{n}(\omega')) d\mu'(\omega')$$

is equal to

$$\|\sum f_i x_i\|_{L_p(\Omega;X)}^p - \|\sum Tf_i x_i\|_{L_p(\Omega';X)}^p.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

So it is ≥ 0 for all $f_1, \ldots, f_n \in D(T)$ iff $T \in X^{\circ}$.

Apply the bipolar theorem for cones in H_n^p and its dual.