MATH 409, Summer 2019, Practice Problem Set 1

F. Baudier (Texas A\&M University)

May 29, 2019

1 Natural and Real Numbers, Functions

Exercise 1. Using only the commutative field axioms of \mathbb{R} prove that for all $x, y, z \in \mathbb{R}$, if $x+y=x+z$ then $y=z$.

Hint. You could use F1, F4, and F6.

Exercise 2. Using only the commutative field axioms of \mathbb{R}, prove that If x is a real number, then $0 \cdot x=x \cdot 0=0$

Hint. You could use F1, F3, F4, and F6.

Exercise 3. Using only the commutative field axioms of \mathbb{R} and Exercise 2 prove that if x and y are real numbers so that $x \cdot y=0$, then $x=0$ or $y=0$.

Hint. You could try to argue by contradiction using F1, F5, F7 and Exercise 2.

Exercise 4. Show that for all $x, y \in \mathbb{R},|x y|=|x||y|$.
Hint. Distinguish cases.

Exercise 5. Let $x, y \in \mathbb{R}$. Show that

$$
x \leqslant y \text { if and only if for all } \varepsilon>0, x \leqslant y+\varepsilon
$$

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Exercise 6. Let $x, y \in \mathbb{R}$. Show that

$$
x \geqslant y \text { if and only if for all } \varepsilon>0, x>y-100 \varepsilon
$$

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Exercise 7. Let $x, y \in \mathbb{R}$. Show that if $x<(1+\varepsilon) y$ for all $\varepsilon>0$, then $x \leqslant y$.
Hint. You could show first that y must be non-negative and then argue by contradiction.

Exercise 8. Let $x \geqslant 0$. Show that if $x<2 \varepsilon$ for all $\varepsilon>0$, then $x=0$.
Hint. You could mimic the proof of 1 . in Lemma 1 to show that $x \leqslant 0$ or you could prove the contrapositive.

Exercise 9. Let $x, y \in \mathbb{R}$. Show that if for all $\varepsilon \in(0,1), x \geqslant y-\varepsilon$ then $x \geqslant y$.
Hint. You could show that the seemingly weaker assumption "for all $\varepsilon \in(0,1)$, $x \geqslant y-\varepsilon$ " actually implies the stronger assumption "for all $\varepsilon>0, x \geqslant y-\varepsilon$ ".

2 Suprema and infima

You will need the following definitions for the next exercises.
Definition 1 (Lower bound). Let $X \subset \mathbb{R}$ be non-empty. A number $m \in \mathbb{R}$ (not necessarily in X) is said to be a lower bound for X if for all $x \in X, x \geqslant m$. A set admitting a lower bound is said to be bounded below.

Definition 2 (Infimum). Let $X \subset \mathbb{R}$ be non-empty. A number $t \in \mathbb{R}$ (not necessarily in X) is called a (finite) infimum of the set X if and only if t is an lower bound for X and $t \geqslant m$ if m is any other lower bound of X.

Exercise 10. Show that if a non-empty set $X \subseteq \mathbb{R}$ has a infimum, then it is has only one infimum, that we shall denote $\inf (X)$.

Hint. You could mimic the proof of Proposition 16 in the lecture notes.

Exercise 11. Assume that a non-empty subset X of \mathbb{R} has a finite infimum. Show that for every $\varepsilon>0$ there exists $x_{\varepsilon} \in X$ such that

$$
\inf (X) \leqslant x_{\varepsilon}<\inf (X)+\varepsilon
$$

Hint. You could mimic the proof of Lemma 2 (approximation property for suprema) in the lecture notes.

Exercise 12. Assume that a non-empty subset X of \mathbb{Z} has a finite infimum. Show that $\inf (X) \in X$.

Hint. You could mimic the proof of Proposition 17 in the lecture notes.

Recall that $-E:=\{x \in \mathbb{R}:-x \in E\}$. The results from Exercise 13 and Exercise 14 below are convenient to convert a result about suprema into a result about infima and vice-versa. They are commonly referred to as the reflection principal.

Exercise 13. Let $X \subset \mathbb{R}$ be non-empty. Show that if X has a supremum then $-X$ has an infimum, in which case

$$
\inf (-X)=-\sup (X)
$$

Exercise 14. Let $X \subset \mathbb{R}$ be non-empty. Show that X has a infimum then $-X$ has an supremum, in which case

$$
\sup (-X)=-\inf (X)
$$

Hint. You could mimic the proof of Exercise 13

Exercise 15. Let $A \subseteq B$ be non-empty subsets of \mathbb{R}. Prove that if B has a supremum, then A has a supremum and $\sup (A) \leqslant \sup (B)$.

Hint. Exploit the definitions!

Exercise 16. Let $A \subseteq B$ be non-empty subsets of \mathbb{R}. Prove that if B has a infimum, then A has a infimum and $\inf (B) \leqslant \inf (A)$.

Hint. You could mimic the proof of Exercise 15 or use the reflection principle together with Exercise 15.

Exercise 17 (The greatest lower bound property). If X is a non-empty subset of \mathbb{R} that is bounded below, show that X has a finite infimum in \mathbb{R}.

Hint. You could either mimic the proof of the least upper bound property or you could use the reflection principle and the least upper bound property.

Exercise 18. Let A and B be non-empty subsets of \mathbb{R} with the property that $a \leqslant b$ for all $a \in A$ and $b \in B$. Show that $\sup (A)$ and $\inf (B)$ exist and that $\sup (A) \leqslant \inf (B)$.

Hint. Use the least upper bound property and the greatest lower bound property.

Exercise 19 (Cuts). Let X and Y be two subsets of \mathbb{R}. We say that the pair (X, Y) is a cut if
i) X and Y are non-empty
ii) $X \cup Y=\mathbb{R}$
iii) For all $x \in X$ and for all $y \in Y$ one has $x<y$.

Show the following statements about cuts:

1. If (X, Y) is a cut then $X \cap Y=\emptyset$.
2. If (X, Y) is a cut then there exists a unique $\alpha \in \mathbb{R}$ such that either

$$
X=(-\infty, \alpha] \text { and } Y=(\alpha, \infty)
$$

or

$$
X=(-\infty, \alpha) \text { and } Y=[\alpha, \infty)
$$

Hint. Use the Least Upper Bound Property for (2).

