MATH 409, Summer 2019, Practice Problem Set 1

F. Baudier (Texas A&M University)

May 29, 2019

1 Natural and Real Numbers, Functions

Exercise 1. Using only the commutative field axioms of \mathbb{R} prove that for all $x, y, z \in \mathbb{R}$, if x + y = x + z then y = z.

Hint. You could use F1, F4, and F6.

Exercise 2. Using only the commutative field axioms of \mathbb{R} , prove that If x is a real number, then $0 \cdot x = x \cdot 0 = 0$

Hint. You could use F1, F3, F4, and F6.

Exercise 3. Using only the commutative field axioms of \mathbb{R} and Exercise 2, prove that if x and y are real numbers so that $x \cdot y = 0$, then x = 0 or y = 0.

Hint. You could try to argue by contradiction using F1, F5, F7 and Exercise 2. $\hfill \Box$

Exercise 4. Show that for all $x, y \in \mathbb{R}$, |xy| = |x||y|.

Hint. Distinguish cases.

Exercise 5. Let $x, y \in \mathbb{R}$. Show that

 $x \leqslant y$ if and only if for all $\varepsilon > 0, x \leqslant y + \varepsilon$.

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Exercise 6. Let $x, y \in \mathbb{R}$. Show that

$$x \ge y$$
 if and only if for all $\varepsilon > 0, x > y - 100\varepsilon$.

Hint. You could mimic the proof of Lemma 1 in the lecture notes. \Box

Exercise 7. Let $x, y \in \mathbb{R}$. Show that if $x < (1 + \varepsilon)y$ for all $\varepsilon > 0$, then $x \leq y$.

Hint. You could show first that y must be non-negative and then argue by contradiction.

Exercise 8. Let $x \ge 0$. Show that if $x < 2\varepsilon$ for all $\varepsilon > 0$, then x = 0.

Hint. You could mimic the proof of 1. in Lemma 1 to show that $x \leq 0$ or you could prove the contrapositive.

Exercise 9. Let $x, y \in \mathbb{R}$. Show that if for all $\varepsilon \in (0, 1)$, $x \ge y - \varepsilon$ then $x \ge y$.

Hint. You could show that the seemingly weaker assumption "for all $\varepsilon \in (0, 1)$, $x \ge y - \varepsilon$ " actually implies the stronger assumption "for all $\varepsilon > 0, x \ge y - \varepsilon$ ". \Box

2 Suprema and infima

You will need the following definitions for the next exercises.

Definition 1 (Lower bound). Let $X \subset \mathbb{R}$ be non-empty. A number $m \in \mathbb{R}$ (not necessarily in X) is said to be a lower bound for X if for all $x \in X, x \ge m$. A set admitting a lower bound is said to be bounded below.

Definition 2 (Infimum). Let $X \subset \mathbb{R}$ be non-empty. A number $t \in \mathbb{R}$ (not necessarily in X) is called a (finite) infimum of the set X if and only if t is an lower bound for X and $t \ge m$ if m is any other lower bound of X.

Exercise 10. Show that if a non-empty set $X \subseteq \mathbb{R}$ has a infimum, then it is has only one infimum, that we shall denote $\inf(X)$.

Hint. You could mimic the proof of Proposition 16 in the lecture notes. \Box

Exercise 11. Assume that a non-empty subset X of \mathbb{R} has a finite infimum. Show that for every $\varepsilon > 0$ there exists $x_{\varepsilon} \in X$ such that

$$\inf(X) \leq x_{\varepsilon} < \inf(X) + \varepsilon.$$

Hint. You could mimic the proof of Lemma 2 (approximation property for suprema) in the lecture notes. \Box

Exercise 12. Assume that a non-empty subset X of \mathbb{Z} has a finite infimum. Show that $\inf(X) \in X$.

Hint. You could mimic the proof of Proposition 17 in the lecture notes. \Box

Recall that $-E := \{x \in \mathbb{R}: -x \in E\}$. The results from Exercise 13 and Exercise 14 below are convenient to convert a result about suprema into a result about infima and vice-versa. They are commonly referred to as the reflection principal.

Exercise 13. Let $X \subset \mathbb{R}$ be non-empty. Show that if X has a supremum then -X has an infimum, in which case

$$\inf(-X) = -\sup(X).$$

Exercise 14. Let $X \subset \mathbb{R}$ be non-empty. Show that X has a infimum then -X has an supremum, in which case

$$\sup(-X) = -\inf(X).$$

Hint. You could mimic the proof of Exercise 13

Exercise 15. Let $A \subseteq B$ be non-empty subsets of \mathbb{R} . Prove that if B has a supremum, then A has a supremum and $\sup(A) \leq \sup(B)$.

Exercise 16. Let $A \subseteq B$ be non-empty subsets of \mathbb{R} . Prove that if B has a infimum, then A has a infimum and $\inf(B) \leq \inf(A)$.

Hint. You could mimic the proof of Exercise 15 or use the reflection principle together with Exercise 15. \Box

Exercise 17 (The greatest lower bound property). If X is a non-empty subset of \mathbb{R} that is bounded below, show that X has a finite infimum in \mathbb{R} .

Hint. You could either mimic the proof of the least upper bound property or you could use the reflection principle and the least upper bound property. \Box

Exercise 18. Let A and B be non-empty subsets of \mathbb{R} with the property that $a \leq b$ for all $a \in A$ and $b \in B$. Show that $\sup(A)$ and $\inf(B)$ exist and that $\sup(A) \leq \inf(B)$.

Hint. Use the least upper bound property and the greatest lower bound property. $\hfill \Box$

Exercise 19 (Cuts). Let X and Y be two subsets of \mathbb{R} . We say that the pair (X, Y) is a cut if

- i) X and Y are non-empty
- ii) $X \cup Y = \mathbb{R}$
- iii) For all $x \in X$ and for all $y \in Y$ one has x < y.

Show the following statements about cuts:

- 1. If (X, Y) is a cut then $X \cap Y = \emptyset$.
- 2. If (X, Y) is a cut then there exists a unique $\alpha \in \mathbb{R}$ such that either

$$X = (-\infty, \alpha]$$
 and $Y = (\alpha, \infty)$

or

$$X = (-\infty, \alpha)$$
 and $Y = [\alpha, \infty)$

Hint. Use the Least Upper Bound Property for (2).