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1 Natural and Real Numbers, Functions

Exercise 1. Using only the commutative field axioms of R prove that for all
x, y, z ∈ R, if x+ y = x+ z then y = z.

Hint. You could use F1, F4, and F6.

Possible solution. Assume that x+y = x+z. Since x admits an additive inverse
−x one has −x + (x + y) = −x + (x + z) and by associativity of the addition
(−x+ x) + y = (−x+ x) + z. By the property of the additive inverse it follows
that 0 + y = 0 + z, and thus y = z by F4.

Exercise 2. Using only the commutative field axioms of R, prove that If x is a
real number, then 0 · x = x · 0 = 0

Hint. You could use F1, F3, F4, and F6.

Possible solution. Note that by using F4 and F3, on has 0 · x = (0 + 0) · x =
0 · x+ 0 · x. But by F6 every element has an additive inverse and denote z the
additive inverse of 0·x, i.e. z+0·x = 0·x+z = 0. Then z+0·x = z+(0·x+0·x),
and thus by F1 z + 0 · x = (z + 0 · x) + 0 · x. And hence 0 = 0 + 0 · x = 0 · x
using F4 one more time. A similar argument works to show that x · 0 = 0.

Exercise 3. Using only the commutative field axioms of R and Exercise 2, prove
that if x and y are real numbers so that x · y = 0, then x = 0 or y = 0.

Hint. You could try to argue by contradiction using F1, F5, F7 and Exercise
2.
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Possible solution. By contradiction assume that x · y = 0 with x 6= 0 and y 6= 0.
Since x is non-zero, x has a multiplicative inverse x−1 by F7 and y = 1 · y =
(x−1 · x) · y = x−1 · (x · y) = x−1 · 0 = 0, where for the first equality we used
F5, for the third F1, and for the last one Exercise 2. But this contradicts the
assumption that y 6= 0.

Exercise 4. Show that for all x, y ∈ R, |xy| = |x||y|.

Hint. Distinguish cases.

Exercise 5. Let x, y ∈ R. Show that

x 6 y if and only if for all ε > 0, x 6 y + ε.

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Possible solution. If x 6 y then clearly x 6 y + ε whenever ε > 0. Assume now
that for all ε > 0, x 6 y + ε. Assume for the sake of a contradiction that x > y
and let ε = 2(x− y). Then x 6 y + ε = y + 2(x− y) = 2x− y, and thus y 6 x,
a contradiction.

Exercise 6. Let x, y ∈ R. Show that

x > y if and only if for all ε > 0, x > y − 100ε.

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Possible solution. The direct implication is elementary. Indeed, ff x > y then
clearly x > y − 100ε whenever ε > 0. For the converse, assume that x > y − ε
for all ε > 0. Assume by contradiction that y > x and let ε0 = y−x

100 > 0. By
our assumption, x > y − 100ε0 = y − (y − x) = x; a contradiction.

Exercise 7. Let x, y ∈ R. Show that if x < (1 + ε)y for all ε > 0, then x 6 y.

Hint. You could show first that y must be non-negative and then argue by
contradiction.
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Possible solution. Let x, y ∈ R and assume that for all ε > 0, x < (1 + ε)y.
Remark first that y > 0. Assume by contradiction that y < 0, then for all
n > 2, x < ny (simply take ε = n − 1) and x

y > n, which implies that N is
bounded; a contradiction. Therefore, we may assume that x ∈ R, y > 0 and for
all ε > 0, x < (1 + ε)y. If y = 0 the conclusion immediately holds. If y > 0 then
x < y + εy and x

y < 1 + ε, for every ε > 0. And hence, x
y 6 1 and x 6 y.

Exercise 8. Let x > 0. Show that if x < 2ε for all ε > 0, then x = 0.

Hint. You could mimic the proof of 1. in Lemma 1 to show that x 6 0 or you
could prove the contrapositive.

Possible solution. Assume that x > 0. We will prove the contrapositive. As-
sume that x 6= 0, then x > 0. If we let ε0 = x

2 > 0 then 2ε0 = x 6 x; the
contrapositive is proven.

Exercise 9. Let x, y ∈ R. Show that if for all ε ∈ (0, 1), x > y − ε then x > y.

Hint. You could show that the seemingly weaker assumption “for all ε ∈ (0, 1),
x > y−ε” actually implies the stronger assumption “for all ε > 0, x > y−ε”.

Possible solution. Let x, y ∈ R and assume that for all ε ∈ (0, 1), x > y− ε. Let
ε > 1 then y − ε 6 y − 1 6 y − 1

2 6 x, where in the last inequality we use our
assumption. Therefore for all ε > 0, x > y− ε. Now an argument similar to the
one in Exercise 5 shows that x > y.

2 Suprema and infima

You will need the following definitions for the next exercises.

Definition 1 (Lower bound). Let X ⊂ R be non-empty. A number m ∈ R (not
necessarily in X) is said to be a lower bound for X if for all x ∈ X, x > m. A
set admitting a lower bound is said to be bounded below.

Definition 2 (Infimum). Let X ⊂ R be non-empty. A number t ∈ R (not
necessarily in X) is called a (finite) infimum of the set X if and only if t is an
lower bound for X and t > m if m is any other lower bound of X.

Exercise 10. Show that if a non-empty set X ⊆ R has a infimum, then it is has
only one infimum, that we shall denote inf(X).

Hint. You could mimic the proof of Proposition 16 in the lecture notes.
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Possible solution. Assume that X has two infima t1 and t2. Then by definition
t1 is a lower bound but t2 being an infimum we have t1 6 t2. A similar argument,
tells us that t2 ≤ t1, and we conclude by antisymmetry of the order relation
that t1 = t2.

Exercise 11. Assume that a non-empty subset X of R has a finite infimum.
Show that for every ε > 0 there exists xε ∈ X such that

inf(X) 6 xε < inf(X) + ε.

Hint. You could mimic the proof of Lemma 2 (approximation property for
suprema) in the lecture notes.

Possible solution. The left-hand side inequality holds for every element in X
by definition of the infimum and only the right-hand side inequality requires a
proof. Assume by contradiction that there exists ε0 > 0 such that for all x ∈ X,
inf(X) + ε0 6 x, and thus inf(X) + ε0 is a lower bound for X that is strictly
larger than inf(X); a contradiction.

Exercise 12. Assume that a non-empty subset X of Z has a finite infimum.
Show that inf(X) ∈ X.

Hint. You could mimic the proof of Proposition 17 in the lecture notes.

Recall that −E := {x ∈ R : − x ∈ E}. The results from Exercise 13 and
Exercise 14 below are convenient to convert a result about suprema into a result
about infima and vice-versa. They are commonly referred to as the reflection
principal.

Exercise 13. Let X ⊂ R be non-empty. Show that if X has a supremum then
−X has an infimum, in which case

inf(−X) = − sup(X).

Possible solution. Assume that E has a supremum s = sup(E), we will show
that t = −s is the infimum of −E. Indeed t is a lower bound for E since for all
x ∈ E, −x ∈ −E and t 6 x follows from −x 6 −t = s. Assume now that l is
another lower bound for −E then −l is an upper bound for E and s 6 −l, and
thus l 6 −s = t and the implication follows.
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Exercise 14. Let X ⊂ R be non-empty. Show that X has a infimum then −X
has an supremum, in which case

sup(−X) = − inf(X).

Hint. You could mimic the proof of Exercise 13

Exercise 15. Let A ⊆ B be non-empty subsets of R. Prove that if B has a
supremum, then A has a supremum and sup(A) 6 sup(B).

Hint. Exploit the definitions!

Possible solution. If s = sup(B) then for all b ∈ B, b 6 s. Since A ⊆ B, for
every a ∈ A, a 6 s and s is an upper bound for A. By the least upper bound
property sup(A) exists and sup(A) 6 s by the definition of the supremum.

Exercise 16. Let A ⊆ B be non-empty subsets of R. Prove that if B has a
infimum, then A has a infimum and inf(B) 6 inf(A).

Hint. You could mimic the proof of Exercise 15 or use the reflection principle
together with Exercise 15.

Possible solution. A proof similar to the one above will work or you can use the
reflection principle as follows. If A ⊂ B then −A ⊂ −B (prove it!). If B has an
infimum, then −B has a supremum and inf(B) = − sup(−B) 6 − sup(−A) =
inf(A).

Exercise 17 (The greatest lower bound property). If X is a non-empty subset
of R that is bounded below, show that X has a finite infimum in R.

Hint. You could either mimic the proof of the least upper bound property or
you could use the reflection principle and the least upper bound property.

Possible solution. Assume that E is bounded below then −E is bounded above
and has a supremum by the least upper bound property. It follows from the
reflection principle that E has an infimum.

Exercise 18. Let A and B be non-empty subsets of R with the property that
a 6 b for all a ∈ A and b ∈ B. Show that sup(A) and inf(B) exist and that
sup(A) 6 inf(B).
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Hint. Use the least upper bound property and the greatest lower bound prop-
erty.

Possible solution. Fix b in B. Then by assumption, for all a in A we have a 6 b,
i.e. b is an upper bound for A. By the least upper bound property, sup(A)
exists, and since every b ∈ B is an upper bound for A, we have sup(A) 6 b
for all b ∈ B. Therefore sup(A) is a lower bound for B. By the greatest lower
bound property, inf(B) exists, and since sup(A) is a lower bound for B, we have
sup(A) 6 inf(B).

Exercise 19 (Cuts). Let X and Y be two subsets of R. We say that the pair
(X,Y ) is a cut if

i) X and Y are non-empty

ii) X ∪ Y = R

iii) For all x ∈ X and for all y ∈ Y one has x < y.

Show the following statements about cuts:

1. If (X,Y ) is a cut then X ∩ Y = ∅.

2. If (X,Y ) is a cut then there exists a unique α ∈ R such that either

X = (−∞, α] and Y = (α,∞)

or
X = (−∞, α) and Y = [α,∞)

Hint. Use the Least Upper Bound Property for (2).
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