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1 Natural and Real Numbers, Functions

Ezercise 1. Using only the commutative field axioms of R prove that for all
z,y,z € R, if x +y =x + 2z then y = 2.

Hint. You could use F1, F4, and F6. O

Possible solution. Assume that z+y = x+z. Since r admits an additive inverse
—x one has —z + (z +y) = —z + (z + 2) and by associativity of the addition
(—z4+2x)+y = (—x+x)+ 2. By the property of the additive inverse it follows
that 0 +y = 0+ 2z, and thus y = z by F4. O

Ezercise 2. Using only the commutative field axioms of R, prove that If z is a
real number, then 0-z=2-0=0

Hint. You could use F1, F3, F4, and F6. O

Possible solution. Note that by using F4 and F3, on has 0- 2z = (04 0) - 2 =
0-2+0-2. But by F6 every element has an additive inverse and denote z the
additive inverse of 0-x, i.e. z+0-2 = 0-2+2z =0. Then 24+0-z = 24+ (0-2+0-2),
and thus by F1 24+ 0-2=(240-2)+0-2. And hence 0 =04+0-2=0-x
using F4 one more time. A similar argument works to show that z-0=0. O

Exzercise 3. Using only the commutative field axioms of R and Exercise 2] prove
that if x and y are real numbers so that = -y = 0, then z =0 or y = 0.

Hint. You could try to argue by contradiction using F1, F5, F7 and Exercise
O



Possible solution. By contradiction assume that z-y = 0 with x # 0 and y # 0.
Since x is non-zero, = has a multiplicative inverse x=! by F7 and y = 1 -y =
(z7t-z)-y=a"t (z-y) =21 0 =0, where for the first equality we used
F5, for the third F1, and for the last one Exercise 2] But this contradicts the
assumption that y # 0. O

Ezercise 4. Show that for all z,y € R, |zy| = |z||y|.

Hint. Distinguish cases. O

Ezercise 5. Let z,y € R. Show that
x <y if and only if for alle > 0,2 <y +e.

Hint. You could mimic the proof of Lemma 1 in the lecture notes. O

Possible solution. If x < y then clearly x < y + & whenever € > 0. Assume now
that for all ¢ > 0, < y + . Assume for the sake of a contradiction that x > y
and let e =2(z —y). Then z < y+e=y+ 2(x —y) = 2z — y, and thus y < z,
a contradiction. O

Ezercise 6. Let x,y € R. Show that
x >y if and only if for all e > 0,2 > y — 100e.

Hint. You could mimic the proof of Lemma 1 in the lecture notes. O

Possible solution. The direct implication is elementary. Indeed, ff x > y then
clearly x > y — 100e whenever € > 0. For the converse, assume that z > y — ¢
for all € > 0. Assume by contradiction that y > z and let &g = 455 > 0. By
our assumption, >y — 100eg = y — (y — ) = x; a contradiction. O

Ezercise 7. Let z,y € R. Show that if x < (1 + &)y for all € > 0, then = < y.

Hint. You could show first that y must be non-negative and then argue by
contradiction. O



Possible solution. Let x,y € R and assume that for all ¢ > 0, z < (1 4 €)y.
Remark first that y > 0. Assume by contradiction that y < 0, then for all
n > 2, x < ny (simply take e = n — 1) and % > n, which implies that N is
bounded; a contradiction. Therefore, we may assume that z € R, y > 0 and for
alle > 0, x < (14¢€)y. If y = 0 the conclusion immediately holds. If y > 0 then
x < y-+ey and % < 1+¢, for every € > 0. And hence, % <land z <y. O

FEzercise 8. Let x > 0. Show that if x < 2¢ for all € > 0, then x = 0.

Hint. You could mimic the proof of 1. in Lemma 1 to show that < 0 or you
could prove the contrapositive. O

Possible solution. Assume that x > 0. We will prove the contrapositive. As-
sume that = # 0, then @ > 0. If we let ¢ = § > 0 then 29 = x < z; the

contrapositive is proven. O

Ezercise 9. Let z,y € R. Show that if for all ¢ € (0,1), x > y — € then z > y.

Hint. You could show that the seemingly weaker assumption “for all ¢ € (0, 1),
x > y—e” actually implies the stronger assumption “for alle > 0, x > y—¢e”. O

Possible solution. Let x,y € R and assume that for all e € (0,1), x > y—e. Let
ez2ltheny—e<y—1<y— % < z, where in the last inequality we use our
assumption. Therefore for all € > 0, x > y —e. Now an argument similar to the
one in Exercise [f] shows that = > y. O

2 Suprema and infima

You will need the following definitions for the next exercises.

Definition 1 (Lower bound). Let X C R be non-empty. A number m € R (not
necessarily in X)) is said to be a lower bound for X if for all x € X, z > m. A
set admitting a lower bound is said to be bounded below.

Definition 2 (Infimum). Let X C R be non-empty. A number ¢t € R (not
necessarily in X) is called a (finite) infimum of the set X if and only if ¢ is an
lower bound for X and ¢t > m if m is any other lower bound of X.

Ezercise 10. Show that if a non-empty set X C R has a infimum, then it is has
only one infimum, that we shall denote inf(X).

Hint. You could mimic the proof of Proposition 16 in the lecture notes. O



Possible solution. Assume that X has two infima t; and t;. Then by definition
t1 is a lower bound but ¢5 being an infimum we have t; < £3. A similar argument,
tells us that ¢t < t;, and we conclude by antisymmetry of the order relation
that tl = t2. O

Exercise 11. Assume that a non-empty subset X of R has a finite infimum.
Show that for every ¢ > 0 there exists . € X such that

inf(X) <z, <inf(X) +e.

Hint. You could mimic the proof of Lemma 2 (approximation property for
suprema) in the lecture notes. O

Possible solution. The left-hand side inequality holds for every element in X
by definition of the infimum and only the right-hand side inequality requires a
proof. Assume by contradiction that there exists g > 0 such that for all z € X,
inf(X) 4+ eo < 2, and thus inf(X) + £¢ is a lower bound for X that is strictly
larger than inf(X); a contradiction. O

Ezercise 12. Assume that a non-empty subset X of Z has a finite infimum.
Show that inf(X) € X.

Hint. You could mimic the proof of Proposition 17 in the lecture notes. O

Recall that —F := {x € R: — 2 € E}. The results from Exercise |13| and
Exercise [14] below are convenient to convert a result about suprema into a result
about infima and vice-versa. They are commonly referred to as the reflection
principal.

Ezercise 13. Let X C R be non-empty. Show that if X has a supremum then
—X has an infimum, in which case

inf(—X) = —sup(X).

Possible solution. Assume that E has a supremum s = sup(E), we will show
that ¢t = —s is the infimum of —FE. Indeed t is a lower bound for E since for all
r € FE, —x € —F and t < z follows from —x < —t = s. Assume now that [ is
another lower bound for —F then —! is an upper bound for F and s < —[, and
thus [ < —s =t and the implication follows. O



Exercise 14. Let X C R be non-empty. Show that X has a infimum then —X
has an supremum, in which case

sup(—X) = —inf(X).

Hint. You could mimic the proof of Exercise [I3] O

Exercise 15. Let A C B be non-empty subsets of R. Prove that if B has a
supremum, then A has a supremum and sup(4) < sup(B).

Hint. Exploit the definitions! O

Possible solution. If s = sup(B) then for all b € B, b < s. Since A C B, for
every a € A, a < s and s is an upper bound for A. By the least upper bound
property sup(A) exists and sup(A) < s by the definition of the supremum. O

Exercise 16. Let A C B be non-empty subsets of R. Prove that if B has a
infimum, then A has a infimum and inf(B) < inf(A).

Hint. You could mimic the proof of Exercise or use the reflection principle
together with Exercise O

Possible solution. A proof similar to the one above will work or you can use the
reflection principle as follows. If A C B then —A C —B (prove it!). If B has an
infimum, then —B has a supremum and inf(B) = —sup(—B) < —sup(—A4) =
inf(A). O

Ezercise 17 (The greatest lower bound property). If X is a non-empty subset
of R that is bounded below, show that X has a finite infimum in R.

Hint. You could either mimic the proof of the least upper bound property or
you could use the reflection principle and the least upper bound property. [

Possible solution. Assume that E is bounded below then —F is bounded above
and has a supremum by the least upper bound property. It follows from the
reflection principle that £ has an infimum. O

Ezercise 18. Let A and B be non-empty subsets of R with the property that
a < bforalla € Aand b e B. Show that sup(A) and inf(B) exist and that
sup(A) < inf(B).



Hint. Use the least upper bound property and the greatest lower bound prop-
erty. O

Possible solution. Fix bin B. Then by assumption, for all a in A we have a < b,
i.e. b is an upper bound for A. By the least upper bound property, sup(A)
exists, and since every b € B is an upper bound for A, we have sup(4) < b
for all b € B. Therefore sup(A) is a lower bound for B. By the greatest lower
bound property, inf(B) exists, and since sup(A) is a lower bound for B, we have
sup(A) < inf(B). O

Ezercise 19 (Cuts). Let X and Y be two subsets of R. We say that the pair
(X,Y) is a cut if

i) X and Y are non-empty
i) XUY =R
ili) For all z € X and for all y € Y one has « < y.
Show the following statements about cuts:
1. If (X,Y) is a cut then X NY = 0.
2. If (X,Y) is a cut then there exists a unique o € R such that either
X =(—o0,a] and Y = (o, 00)

or
X =(—o0,a) and Y = [a, 00)

Hint. Use the Least Upper Bound Property for (2). O



	Natural and Real Numbers, Functions
	Suprema and infima

