MATH 409, Summer 2019, Practice Problem Set 1

F. Baudier (Texas A\&M University)

May 29, 2019

1 Natural and Real Numbers, Functions

Exercise 1. Using only the commutative field axioms of \mathbb{R} prove that for all $x, y, z \in \mathbb{R}$, if $x+y=x+z$ then $y=z$.

Hint. You could use F1, F4, and F6.
Possible solution. Assume that $x+y=x+z$. Since x admits an additive inverse $-x$ one has $-x+(x+y)=-x+(x+z)$ and by associativity of the addition $(-x+x)+y=(-x+x)+z$. By the property of the additive inverse it follows that $0+y=0+z$, and thus $y=z$ by F4.

Exercise 2. Using only the commutative field axioms of \mathbb{R}, prove that If x is a real number, then $0 \cdot x=x \cdot 0=0$

Hint. You could use F1, F3, F4, and F6.
Possible solution. Note that by using F4 and F3, on has $0 \cdot x=(0+0) \cdot x=$ $0 \cdot x+0 \cdot x$. But by F6 every element has an additive inverse and denote z the additive inverse of $0 \cdot x$, i.e. $z+0 \cdot x=0 \cdot x+z=0$. Then $z+0 \cdot x=z+(0 \cdot x+0 \cdot x)$, and thus by F1 $z+0 \cdot x=(z+0 \cdot x)+0 \cdot x$. And hence $0=0+0 \cdot x=0 \cdot x$ using F4 one more time. A similar argument works to show that $x \cdot 0=0$.

Exercise 3. Using only the commutative field axioms of \mathbb{R} and Exercise 2 prove that if x and y are real numbers so that $x \cdot y=0$, then $x=0$ or $y=0$.

Hint. You could try to argue by contradiction using F1, F5, F7 and Exercise 2.

Possible solution. By contradiction assume that $x \cdot y=0$ with $x \neq 0$ and $y \neq 0$. Since x is non-zero, x has a multiplicative inverse x^{-1} by F7 and $y=1 \cdot y=$ $\left(x^{-1} \cdot x\right) \cdot y=x^{-1} \cdot(x \cdot y)=x^{-1} \cdot 0=0$, where for the first equality we used F5, for the third F1, and for the last one Exercise 2. But this contradicts the assumption that $y \neq 0$.

Exercise 4. Show that for all $x, y \in \mathbb{R},|x y|=|x||y|$.
Hint. Distinguish cases.

Exercise 5. Let $x, y \in \mathbb{R}$. Show that

$$
x \leqslant y \text { if and only if for all } \varepsilon>0, x \leqslant y+\varepsilon
$$

Hint. You could mimic the proof of Lemma 1 in the lecture notes.

Possible solution. If $x \leqslant y$ then clearly $x \leqslant y+\varepsilon$ whenever $\varepsilon>0$. Assume now that for all $\varepsilon>0, x \leqslant y+\varepsilon$. Assume for the sake of a contradiction that $x>y$ and let $\varepsilon=2(x-y)$. Then $x \leqslant y+\varepsilon=y+2(x-y)=2 x-y$, and thus $y \leqslant x$, a contradiction.

Exercise 6. Let $x, y \in \mathbb{R}$. Show that
$x \geqslant y$ if and only if for all $\varepsilon>0, x>y-100 \varepsilon$.
Hint. You could mimic the proof of Lemma 1 in the lecture notes.
Possible solution. The direct implication is elementary. Indeed, ff $x \geqslant y$ then clearly $x \geqslant y-100 \varepsilon$ whenever $\varepsilon>0$. For the converse, assume that $x>y-\varepsilon$ for all $\varepsilon>0$. Assume by contradiction that $y>x$ and let $\varepsilon_{0}=\frac{y-x}{100}>0$. By our assumption, $x>y-100 \varepsilon_{0}=y-(y-x)=x$; a contradiction.

Exercise 7. Let $x, y \in \mathbb{R}$. Show that if $x<(1+\varepsilon) y$ for all $\varepsilon>0$, then $x \leqslant y$.
Hint. You could show first that y must be non-negative and then argue by contradiction.

Possible solution. Let $x, y \in \mathbb{R}$ and assume that for all $\varepsilon>0, x<(1+\varepsilon) y$. Remark first that $y \geqslant 0$. Assume by contradiction that $y<0$, then for all $n \geqslant 2, x<n y$ (simply take $\varepsilon=n-1$) and $\frac{x}{y}>n$, which implies that \mathbb{N} is bounded; a contradiction. Therefore, we may assume that $x \in \mathbb{R}, y \geqslant 0$ and for all $\varepsilon>0, x<(1+\varepsilon) y$. If $y=0$ the conclusion immediately holds. If $y>0$ then $x<y+\varepsilon y$ and $\frac{x}{y}<1+\varepsilon$, for every $\varepsilon>0$. And hence, $\frac{x}{y} \leqslant 1$ and $x \leqslant y$.

Exercise 8. Let $x \geqslant 0$. Show that if $x<2 \varepsilon$ for all $\varepsilon>0$, then $x=0$.
Hint. You could mimic the proof of 1 . in Lemma 1 to show that $x \leqslant 0$ or you could prove the contrapositive.

Possible solution. Assume that $x \geqslant 0$. We will prove the contrapositive. Assume that $x \neq 0$, then $x>0$. If we let $\varepsilon_{0}=\frac{x}{2}>0$ then $2 \varepsilon_{0}=x \leqslant x$; the contrapositive is proven.

Exercise 9. Let $x, y \in \mathbb{R}$. Show that if for all $\varepsilon \in(0,1), x \geqslant y-\varepsilon$ then $x \geqslant y$.
Hint. You could show that the seemingly weaker assumption "for all $\varepsilon \in(0,1)$, $x \geqslant y-\varepsilon$ " actually implies the stronger assumption "for all $\varepsilon>0, x \geqslant y-\varepsilon$ ".

Possible solution. Let $x, y \in \mathbb{R}$ and assume that for all $\varepsilon \in(0,1), x \geqslant y-\varepsilon$. Let $\varepsilon \geqslant 1$ then $y-\varepsilon \leqslant y-1 \leqslant y-\frac{1}{2} \leqslant x$, where in the last inequality we use our assumption. Therefore for all $\varepsilon>0, x \geqslant y-\varepsilon$. Now an argument similar to the one in Exercise 5 shows that $x \geqslant y$.

2 Suprema and infima

You will need the following definitions for the next exercises.
Definition 1 (Lower bound). Let $X \subset \mathbb{R}$ be non-empty. A number $m \in \mathbb{R}$ (not necessarily in X) is said to be a lower bound for X if for all $x \in X, x \geqslant m$. A set admitting a lower bound is said to be bounded below.

Definition 2 (Infimum). Let $X \subset \mathbb{R}$ be non-empty. A number $t \in \mathbb{R}$ (not necessarily in X) is called a (finite) infimum of the set X if and only if t is an lower bound for X and $t \geqslant m$ if m is any other lower bound of X.

Exercise 10. Show that if a non-empty set $X \subseteq \mathbb{R}$ has a infimum, then it is has only one infimum, that we shall denote $\inf (X)$.

Hint. You could mimic the proof of Proposition 16 in the lecture notes.

Possible solution. Assume that X has two infima t_{1} and t_{2}. Then by definition t_{1} is a lower bound but t_{2} being an infimum we have $t_{1} \leqslant t_{2}$. A similar argument, tells us that $t_{2} \leq t_{1}$, and we conclude by antisymmetry of the order relation that $t_{1}=t_{2}$.

Exercise 11. Assume that a non-empty subset X of \mathbb{R} has a finite infimum. Show that for every $\varepsilon>0$ there exists $x_{\varepsilon} \in X$ such that

$$
\inf (X) \leqslant x_{\varepsilon}<\inf (X)+\varepsilon
$$

Hint. You could mimic the proof of Lemma 2 (approximation property for suprema) in the lecture notes.

Possible solution. The left-hand side inequality holds for every element in X by definition of the infimum and only the right-hand side inequality requires a proof. Assume by contradiction that there exists $\varepsilon_{0}>0$ such that for all $x \in X$, $\inf (X)+\varepsilon_{0} \leqslant x$, and thus $\inf (X)+\varepsilon_{0}$ is a lower bound for X that is strictly larger than $\inf (X)$; a contradiction.

Exercise 12. Assume that a non-empty subset X of \mathbb{Z} has a finite infimum. Show that $\inf (X) \in X$.

Hint. You could mimic the proof of Proposition 17 in the lecture notes.

Recall that $-E:=\{x \in \mathbb{R}:-x \in E\}$. The results from Exercise 13 and Exercise 14 below are convenient to convert a result about suprema into a result about infima and vice-versa. They are commonly referred to as the reflection principal.

Exercise 13. Let $X \subset \mathbb{R}$ be non-empty. Show that if X has a supremum then $-X$ has an infimum, in which case

$$
\inf (-X)=-\sup (X)
$$

Possible solution. Assume that E has a supremum $s=\sup (E)$, we will show that $t=-s$ is the infimum of $-E$. Indeed t is a lower bound for E since for all $x \in E,-x \in-E$ and $t \leqslant x$ follows from $-x \leqslant-t=s$. Assume now that l is another lower bound for $-E$ then $-l$ is an upper bound for E and $s \leqslant-l$, and thus $l \leqslant-s=t$ and the implication follows.

Exercise 14. Let $X \subset \mathbb{R}$ be non-empty. Show that X has a infimum then $-X$ has an supremum, in which case

$$
\sup (-X)=-\inf (X)
$$

Hint. You could mimic the proof of Exercise 13

Exercise 15. Let $A \subseteq B$ be non-empty subsets of \mathbb{R}. Prove that if B has a supremum, then A has a supremum and $\sup (A) \leqslant \sup (B)$.

Hint. Exploit the definitions!
Possible solution. If $s=\sup (B)$ then for all $b \in B, b \leqslant s$. Since $A \subseteq B$, for every $a \in A, a \leqslant s$ and s is an upper bound for A. By the least upper bound property $\sup (A)$ exists and $\sup (A) \leqslant s$ by the definition of the supremum.

Exercise 16. Let $A \subseteq B$ be non-empty subsets of \mathbb{R}. Prove that if B has a infimum, then A has a infimum and $\inf (B) \leqslant \inf (A)$.

Hint. You could mimic the proof of Exercise 15 or use the reflection principle together with Exercise 15

Possible solution. A proof similar to the one above will work or you can use the reflection principle as follows. If $A \subset B$ then $-A \subset-B$ (prove it!). If B has an infimum, then $-B$ has a supremum and $\inf (B)=-\sup (-B) \leqslant-\sup (-A)=$ $\inf (A)$.

Exercise 17 (The greatest lower bound property). If X is a non-empty subset of \mathbb{R} that is bounded below, show that X has a finite infimum in \mathbb{R}.

Hint. You could either mimic the proof of the least upper bound property or you could use the reflection principle and the least upper bound property.

Possible solution. Assume that E is bounded below then $-E$ is bounded above and has a supremum by the least upper bound property. It follows from the reflection principle that E has an infimum.

Exercise 18. Let A and B be non-empty subsets of \mathbb{R} with the property that $a \leqslant b$ for all $a \in A$ and $b \in B$. Show that $\sup (A)$ and $\inf (B)$ exist and that $\sup (A) \leqslant \inf (B)$.

Hint. Use the least upper bound property and the greatest lower bound property.

Possible solution. Fix b in B. Then by assumption, for all a in A we have $a \leqslant b$, i.e. b is an upper bound for A. By the least upper bound property, $\sup (A)$ exists, and since every $b \in B$ is an upper bound for A, we have $\sup (A) \leqslant b$ for all $b \in B$. Therefore $\sup (A)$ is a lower bound for B. By the greatest lower bound property, $\inf (B)$ exists, and since $\sup (A)$ is a lower bound for B, we have $\sup (A) \leqslant \inf (B)$.

Exercise 19 (Cuts). Let X and Y be two subsets of \mathbb{R}. We say that the pair (X, Y) is a cut if
i) X and Y are non-empty
ii) $X \cup Y=\mathbb{R}$
iii) For all $x \in X$ and for all $y \in Y$ one has $x<y$.

Show the following statements about cuts:

1. If (X, Y) is a cut then $X \cap Y=\emptyset$.
2. If (X, Y) is a cut then there exists a unique $\alpha \in \mathbb{R}$ such that either

$$
X=(-\infty, \alpha] \text { and } Y=(\alpha, \infty)
$$

or

$$
X=(-\infty, \alpha) \text { and } Y=[\alpha, \infty)
$$

Hint. Use the Least Upper Bound Property for (2).

