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1 Warm up

Exercise 1. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε > 0 there exists N ∈ N such that for all n > N , |xn − `| 6 ε.

Hint. Exploit the definition.

Exercise 2. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε ∈ (0, 2) there exists N ∈ N such that for all n > N , |xn − `| < ε.

Hint. Exploit the definition.

Exercise 3. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε > 0 there exists N ∈ N such that for all n > N , |xn − `| < 256ε.

Hint. Exploit the definition.

Exercise 4. Let (xn)∞n=1 and (yn)∞n=1 be convergent sequences. Show that

1. the sequence (xn + yn)∞n=1 is convergent and that

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn.

2. the sequence (2xn − 5yn)∞n=1 is convergent and that

lim
n→∞

(2xn − 5yn) = 2 lim
n→∞

xn − 5 lim
n→∞

yn.
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3. the sequence (xn · yn)∞n=1 is convergent and that

lim
n→∞

(xn · yn) = lim
n→∞

xn · lim
n→∞

yn.

Hint. Use the definition of convergence and the algebraic equality, ab − cd =
b(a− c) + c(b− d) (for 3)

Exercise 5. Show that ( 1
3n )∞n=1 converges and compute lim

n→∞

1

3n
.

Hint. Try to use the idea of the proof of 3. in Example 1.

2 Useful results about sequences

Exercise 6. Let (xn)∞n=1 be a sequence of real numbers and ` ∈ R. Show that
limn→∞ xn = ` if and only if limn→∞ |xn − `| = 0.

Hint. Simply consider the sequences (xn)∞n=1 and (yn)∞n=1 = (|xn − `|)∞n=1, and
apply the definition of convergence.

Exercise 7. Let (xn)∞n=1 and (yn)∞n=1 be two sequences of real numbers and
` ∈ R. Assume that limn→∞ xn = 0 and that there exists N ∈ N so that for all
n > N we have |yn − `| 6 |xn|. Show that limn→∞ yn = `.

Hint. Exploit the definition of convergence.

Exercise 8. Let (xn)∞n=1 and (yn)∞n=1 be sequences of real numbers. Assume
that (xn)∞n=1 is bounded and that limn→∞ yn = 0. Let (zn)∞n=1 = (xn · yn)∞n=1.
Show that limn→∞ zn = 0

Hint. Exploit the definitions of convergence, boundedness, and the properties
of the absolute value.

Exercise 9. Let (xn)∞n=1 be a sequence of real numbers. Show that (xn)∞n=1 is
increasing if and only if for all n ∈ N, xn ≤ xn+1.

Hint. One implication follows directly from the definition. The other one can
be proven using an induction.
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3 Around the Monotone Convergence Theorem

Exercise 10. Let (xn)∞n=1 be a sequence of real numbers. Show without using
the Monotone Convergence Theorem that if (xn)∞n=1 is decreasing and bounded
below then (xn)∞n=1 is convergent.

Hint. You could mimic the proof of the increasing version and use the ap-
proximation property of infima to show that (xn)∞n=1 converges to inf{xn : n ∈
N}.

Exercise 11. Show that if |a| < 1 then lim
n→∞

an = 0.

Hint. Use the Monotone Convergence Theorem.

Exercise 12. Let (xn)∞n=1 be a bounded sequence of real numbers. For all n ∈ N,
let tn := inf{xk : k ≥ n}. Show that (tn)∞n=1 is convergent.

Hint. You could use the Monotone Convergent Theorem and mimic the proof
of Lemma 7 in the lecture notes.

Exercise 13 (The Nested Interval Theorem). Recall that a sequence of set
(An)n∈N is nested if for all n ∈ N, An+1 ⊆ An. Recall also that a closed
interval is a subset of R of the form [a, b]. Show that a nested sequence of closed
intervals has a non-empty intersection.

Hint. You could use the Least Upper Bound Theorem or the Monotone Con-
vergent Theorem.

Exercise 14. Let 0 < x1 < y1 and set for all n ∈ N,

xn+1 =
√
xnyn and yn+1 =

xn + yn
2

.

i) Prove that for all n ∈ N, 0 < xn < yn.

ii) Prove that (xn)∞n=1 is increasing and bounded above.

iii) Prove that (yn)∞n=1 is decreasing and bounded below.

iv) Prove that for all n ∈ N, 0 < yn+1 − xn+1 <
y1−x1

2n .
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v) Prove that limn→∞ xn = limn→∞ yn.

This common limit α := limn→∞ xn = limn→∞ yn in v) above is called the
arithmetic-geometric mean of x1 and y1 and has many applications.

Hint. For i) use induction. For ii)-iii) use i). For iv) use induction. For v) use
the Monotone Convergence Theorem and the Squeeze Theorem.

4 Subsequences

Exercise 15. Let (xn)∞n=1 be a sequence of real numbers and a ∈ R. If the
sequence (xn)∞n=1 does not converge to a, prove that there exists an ε0 > 0 and
a subsequence (xnk

)∞k=1 of (xn)∞n=1, so that |xnk
− a| > ε0 for all k ∈ N.

Hint. Negate the definition of convergence and construct the subsequence re-
cursively.

Exercise 16. Let (xn)∞n=1 be a sequence of real numbers and ` ∈ R. Assume that
for every subsequence (yn)∞n=1 of (xn)∞n=1, there exists a further subsequence
(zn)∞n=1 of (yn)∞n=1 that converges to `. Prove that the original sequence (xn)∞n=1

converges to `.

Hint. Argue by contradiction using Exercise 15.

Exercise 17. For this exercise we will define a top point of a sequence (xn)∞n=1

as follows: we say that xp is a top point of the sequence if for all n ≥ p, xn ≤ xp.
Prove the monotone subsequence lemma using the notion of top point.

Hint. Consider the following three cases: the sequence has infinitely many top
points, or finitely many top points, or no top points.

Exercise 18. Let (xn)∞n=1 be a bounded sequence of real numbers. Let t :=
lim infn→∞ xn. Show that there exists a subsequence (yn)∞n=1 of (xn)∞n=1 such
that limn→∞ yn = t.

Hint. Construct the subsequence recursively using the approximation property
for suprema and conclude with the Squeeze Theorem.
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5 Constructing sequences

Exercise 19. Prove that for every real number x there exists a sequence of
rational numbers (qn)∞n=1 with limn→∞ qn = x.

Hint. Use the density of Q in R and the Squeeze Theorem.

Exercise 20. Let X be a non-empty subset of R that is bounded above. Assume
that sup(X) /∈ X. Prove that there exists a strictly increasing sequence (xn)∞n=1

of X so that limn→∞ xn = sup(X).

Hint. Construct the sequence recursively using the approximation property for
suprema.

Exercise 21. Let X be a non-empty subset of R that is bounded below. Assume
that inf(X) /∈ X. Prove that there exists a strictly decreasing sequence (xn)∞n=1

of X so that limn→∞ xn = inf(X).

Hint. Mimic the proof of Exercise 20.

6 Cauchy Sequences

Exercise 22. Show that a Cauchy sequence is bounded.

Hint. The proof is similar to the proof of the fact that a convergent sequence is
bounded.

Exercise 23. Let (xn)∞n=1 and (yn)∞n=1 be two Cauchy sequences such that |yn| ≥
α > 0 for all n ∈ N. Show that the sequence (xn

yn
)∞n=1 is Cauchy.

Hint. Use the Triangle Inequality and ad-hoc algebraic manipulations.

Exercise 24. Let (xn)∞n=1 be a sequence of integers, i.e. xn ∈ Z for all n ∈ N.

(i) If (xn)∞n=1 is Cauchy, show that it is eventually constant (i.e. there exists
n0 ∈ N so that for all n > n0 we have xn = xn0

).

(ii) If (xn)∞n=1 converges to some ` ∈ R, then ` ∈ Z.
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Hint. For i) use the definition of Cauchy sequence for a well chosen ε and derive
a contradiction if the sequence is not eventually constant. For ii) use i).

Exercise 25. Let (xn)∞n=1 be a sequence. Suppose that for every ε > 0 there
exists N ∈ N such that for all m ≥ n ≥ N , |

∑m
k=n xk| < ε. Prove that

lim
n→∞

n∑
k=1

xk exists and is finite.

Hint. If you introduce a well chosen sequence it is a one line argument.

Exercise 26. Let (xn)∞n=1 be a sequence of real numbers. Suppose that for all
n ∈ N, |xn+1 − xn| ≤ 1

3n . Show that (xn)∞n=1 is convergent.

Hint. Show that (xn)∞n=1 is Cauchy.
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