MATH 409, Summer 2019, Practice Problem Set 2

F. Baudier (Texas A\&M University)

May 29, 2019

1 Warm up

Exercise 1. Show that a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent to $\ell \in \mathbb{R}$, if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n \geqslant N,\left|x_{n}-\ell\right| \leqslant \varepsilon$.

Hint. Exploit the definition.
Possible solution.

Exercise 2. Show that a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent to $\ell \in \mathbb{R}$, if and only if for every $\varepsilon \in(0,2)$ there exists $N \in \mathbb{N}$ such that for all $n \geqslant N,\left|x_{n}-\ell\right|<\varepsilon$.

Hint. Exploit the definition.
Possible solution.

Exercise 3. Show that a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent to $\ell \in \mathbb{R}$, if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n \geqslant N,\left|x_{n}-\ell\right|<256 \varepsilon$.

Hint. Exploit the definition.
Possible solution.

Exercise 4. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be convergent sequences. Show that

1. the sequence $\left(x_{n}+y_{n}\right)_{n=1}^{\infty}$ is convergent and that

$$
\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n}
$$

2. the sequence $\left(2 x_{n}-5 y_{n}\right)_{n=1}^{\infty}$ is convergent and that

$$
\lim _{n \rightarrow \infty}\left(2 x_{n}-5 y_{n}\right)=2 \lim _{n \rightarrow \infty} x_{n}-5 \lim _{n \rightarrow \infty} y_{n}
$$

3. the sequence $\left(x_{n} \cdot y_{n}\right)_{n=1}^{\infty}$ is convergent and that

$$
\lim _{n \rightarrow \infty}\left(x_{n} \cdot y_{n}\right)=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} y_{n} .
$$

Hint. Use the definition of convergence and the algebraic equality, $a b-c d=$ $b(a-c)+c(b-d)($ for 3$)$

Possible solution. Assume that $\lim _{n \rightarrow \infty} x_{n}=\ell_{1}<\infty$ and $\lim _{n \rightarrow \infty} y_{n}=\ell_{2}<$ ∞.

1. Let $\varepsilon>0$, then there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1},\left|x_{n}-\ell_{1}\right|<$ $\frac{\varepsilon}{2}$ and for all $n \geq N_{2},\left|y_{n}-\ell_{2}\right|<\frac{\varepsilon}{2}$. If follows from the triangle inequality that $\left|x_{n}+y_{n}-\left(\ell_{1}+\ell_{2}\right)\right|=\left|x_{n}-\ell_{1}+y_{n}-\ell_{2}\right| \leq\left|x_{n}-\ell_{1}\right|+\left|y_{n}-\ell_{2}\right|$, and hence for $n \geq \max \left\{N_{1}, N_{2}\right\}, \left\lvert\, x_{n}+y_{n}-\left(\ell_{1}+\ell_{2}\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.$.
2. If follows from the triangle inequality that $\left|x_{n} \cdot y_{n}-\left(\ell_{1} \cdot \ell_{2}\right)\right|=\mid\left(x_{n}-\ell_{1}\right) y_{n}+$ $\ell_{1}\left(y_{n}-\ell_{2}\right)\left|\leq\left|x_{n}-\ell_{1}\right|\right| y_{n}\left|+\left|y_{n}-\ell_{2}\right|\right| \ell_{1} \mid$. Since $\left(y_{n}\right)_{n=1}^{\infty}$ is convergent, and thus bounded, there exists $M>0$ such that for all $n \in \mathbb{N},\left|y_{n}\right| \leq M$. Let $\varepsilon>0$. If $\left|\ell_{1}\right|>0$, then there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{1},\left|x_{n}-\ell_{1}\right|<\frac{\varepsilon}{2 M}$ and for all $n \geq N_{2},\left|y_{n}-\ell_{2}\right|<\frac{\varepsilon}{2\left|\ell_{1}\right|}$, and hence for $n \geq \max \left\{N_{1}, N_{2}\right\},\left|x_{n} \cdot y_{n}-\left(\ell_{1} \cdot \ell_{2}\right)\right|<\frac{\varepsilon}{2 M} M+\frac{\varepsilon}{2 \mid \ell_{1}}\left|\ell_{1}\right|=\varepsilon$. If $\left|\ell_{1}\right|=0$ then for $n \geq \max \left\{N_{1}, N_{2}\right\},\left|x_{n} \cdot y_{n}\right|<\frac{\varepsilon}{2 M} M<\varepsilon$, and the proof is complete.

Exercise 5. Show that $\left(\frac{1}{3^{n}}\right)_{n=1}^{\infty}$ converges and compute $\lim _{n \rightarrow \infty} \frac{1}{3^{n}}$.
Hint. Try to use the idea of the proof of 3. in Example 1.
Possible solution. It follows from the Archimedean Principle that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $0<\frac{1}{\varepsilon}<N$. It can be easily shown by induction (do it!) that $n \leq 3^{n}$ for all $n \in \mathbb{N}$. For $n \geq N,\left|\frac{1}{3^{n}}-0\right|=\frac{1}{3^{n}} \leq \frac{1}{n} \leq \frac{1}{N}<\varepsilon$ and $\lim _{n \rightarrow \infty} \frac{1}{3^{n}}=0$.

2 Useful results about sequences

Exercise 6. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and $\ell \in \mathbb{R}$. Show that $\lim _{n \rightarrow \infty} x_{n}=\ell$ if and only if $\lim _{n \rightarrow \infty}\left|x_{n}-\ell\right|=0$.

Hint. Simply consider the sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}=\left(\left|x_{n}-\ell\right|\right)_{n=1}^{\infty}$, and apply the definition of convergence.

Possible solution. Assume that $\lim _{n \rightarrow \infty} x_{n}=\ell$. Let $\varepsilon>0$, then there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|x_{n}-\ell\right|<\varepsilon$. But $\left|\left|x_{n}-\ell\right|-0\right|=\left|x_{n}-\ell\right|$ and for $n \geq N,\left|\left|x_{n}-\ell\right|-0\right|<\varepsilon$, and thus $\lim _{n \rightarrow \infty}\left|x_{n}-\ell\right|=0$.

Assume now that $\lim _{n \rightarrow \infty}\left|x_{n}-\ell\right|=0$, Let $\varepsilon>0$, then there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|\left|x_{n}-\ell\right|-0\right|<\varepsilon$ but $\left|\left|x_{n}-\ell\right|-0\right|=\left|x_{n}-\ell\right|$ and for $n \geq N,\left|x_{n}-\ell\right|<\varepsilon$. Therefore, $\lim _{n \rightarrow \infty} x_{n}=\ell$.

Exercise 7. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be two sequences of real numbers and $\ell \in \mathbb{R}$. Assume that $\lim _{n \rightarrow \infty} x_{n}=0$ and that there exists $N \in \mathbb{N}$ so that for all $n \geqslant N$ we have $\left|y_{n}-\ell\right| \leqslant\left|x_{n}\right|$. Show that $\lim _{n \rightarrow \infty} y_{n}=\ell$.

Hint. Exploit the definition of convergence.
Possible solution. Assume that $\lim _{n \rightarrow \infty} x_{n}=0$ and that there exists $N \in \mathbb{N}$ so that for all $n \geqslant N$ we have $\left|y_{n}-\ell\right| \leqslant\left|x_{n}\right|$. Let $\varepsilon>0$. Then there $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1},\left|x_{n}\right|<\varepsilon$. If $n \geq \max \left\{N, N_{1}\right\}$ then, $\left|y_{n}-\ell\right| \leq\left|x_{n}\right|<\varepsilon$. Therefore, $\lim _{n \rightarrow \infty} y_{n}=\ell$.

Exercise 8. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. Assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded and that $\lim _{n \rightarrow \infty} y_{n}=0$. Let $\left(z_{n}\right)_{n=1}^{\infty}=\left(x_{n} \cdot y_{n}\right)_{n=1}^{\infty}$. Show that $\lim _{n \rightarrow \infty} z_{n}=0$

Hint. Exploit the definitions of convergence, boundedness, and the properties of the absolute value.

Possible solution. Assume that there exists $M \geq 0$ such that for all $n \in \mathbb{N}$, $\left|x_{n}\right| \leq M$ and that $\lim _{n \rightarrow \infty} y_{n}=0$. If $M=0\left|x_{n} y_{n}\right|=0$ and the conclusion clearly holds. Otherwise, if $\varepsilon>0$, then there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|y_{n}\right|<\frac{\varepsilon}{M}$. This yields that $\left|x_{n} y_{n}\right|=\left|x_{n}\right|\left|y_{n}\right| \leq M\left|y_{n}\right|<M \frac{\varepsilon}{M}=\varepsilon$ whenever $n \geq N$. Therefore, $\left(z_{n}\right)_{n=1}^{\infty}$ converges to 0 .

Exercise 9. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ is increasing if and only if for all $n \in \mathbb{N}, x_{n} \leq x_{n+1}$.

Hint. One implication follows directly from the definition. The other one can be proven using an induction.

Possible solution. Assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is increasing, i.e. for all $k \leq m, x_{k} \leq$ x_{m}. Let $n \in \mathbb{N}$, then by simply taking $k=n$ and $m=n+1$, one has $x_{n} \leq x_{n+1}$.

Assume now that for all $n \in \mathbb{N}, x_{n} \leq x_{n+1}$. Since when $k<m$ one can always write $m=k+r$ for some $r \in \mathbb{N}$, the conclusion will follow if one can prove that for all $k, r \in \mathbb{N}, x_{k} \leq x_{k+r}$. Let $k \in \mathbb{N}$ and for $r \in \mathbb{N}$ let $P(r)$ be the statement: $x_{k} \leq x_{k+r}$. Our assumption says that $P(1)$ is true. Assume now that $P(r)$ is true. On one hand, $x_{k} \leq x_{k+r}$ by our induction hypothesis. On the other hand, $x_{k+r} \leq x_{k+r+1}$ by our assumption, and hence by transitivity of the order relation $x_{k} \leq x_{k+r+1}$ and $P(r+1)$ is true. By the Principle of Mathematical Induction $P(r)$ is true for all $r \in \mathbb{N}$. Since k was fixed but arbitrary, one just proved that for all $k, r \in \mathbb{N}, x_{k} \leq x_{k+r}$ and the conclusion follows.

3 Around the Monotone Convergence Theorem

Exercise 10. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Show without using the Monotone Convergence Theorem that if $\left(x_{n}\right)_{n=1}^{\infty}$ is decreasing and bounded below then $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent.

Hint. You could mimic the proof of the increasing version and use the approximation property of infima to show that $\left(x_{n}\right)_{n=1}^{\infty}$ converges to $\inf \left\{x_{n}: n \in\right.$ $\mathbb{N}\}$.

Possible solution.

Exercise 11. Show that if $|a|<1$ then $\lim _{n \rightarrow \infty} a^{n}=0$.
Hint. Use the Monotone Convergence Theorem.
Possible solution. Assume that $|a|<1$, then $|a|^{n+1}=|a|^{n} \cdot a<|a|^{n}$ and $\left(|a|^{n}\right)_{n=1}^{\infty}$ is strictly decreasing. It is clear that $\left(|a|^{n}\right)_{n=1}^{\infty}$ is bounded below by 0 , and by the Monotone Convergence Theorem, $\left(|a|^{n}\right)_{n=1}^{\infty}$ is convergent. Denote ℓ the limit. Then $\lim _{n \rightarrow \infty}|a|^{n}=\lim _{n \rightarrow \infty}|a|^{n+1}=\ell$ and since $|a|^{n+1}=|a|^{n} \cdot a$ by the basic manipulations of limits ℓ satisfies the equation $\ell=\ell \cdot|a|$. The only solutions are $\ell=0$ or $|a|=1$ and the second alternative is impossible, thus $\lim _{n \rightarrow \infty}|a|^{n}=0$. We conclude with the Squeeze Theorem since for all $n \in \mathbb{N}$, $-|a|^{n} \leq a^{n} \leq|a|^{n}$.

Exercise 12. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a bounded sequence of real numbers. For all $n \in \mathbb{N}$, let $t_{n}:=\inf \left\{x_{k}: k \geq n\right\}$. Show that $\left(t_{n}\right)_{n=1}^{\infty}$ is convergent.

Hint. You could use the Monotone Convergent Theorem and mimic the proof of Lemma 7 in the lecture notes.

Possible solution. Let $n \in \mathbb{N}$. Since $\left\{x_{k}: k \geq n\right\} \supset\left\{x_{k}: k \geq n+1\right\}, t_{n}=$ $\inf \left\{x_{k}: k \geq n\right\} \leq \inf \left\{x_{k}: k \geq n+1\right\}=t_{n+1}$, and $\left(t_{n}\right)_{n=1}^{\infty}$ is increasing. Since $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded, $\left(t_{n}\right)_{n=1}^{\infty}$ is also bounded. By the Monotone Convergence Theorem $\left(t_{n}\right)_{n=1}^{\infty}$ is convergent.

Exercise 13 (The Nested Interval Theorem). Recall that a sequence of set $\left(A_{n}\right)_{n \in \mathbb{N}}$ is nested if for all $n \in \mathbb{N}, A_{n+1} \subseteq A_{n}$. Recall also that a closed interval is a subset of \mathbb{R} of the form $[a, b]$. Show that a nested sequence of closed intervals has a non-empty intersection.

Hint. You could use the Least Upper Bound Theorem or the Monotone Convergent Theorem.

Possible solution.

Exercise 14. Let $0<x_{1}<y_{1}$ and set for all $n \in \mathbb{N}$,

$$
x_{n+1}=\sqrt{x_{n} y_{n}} \text { and } y_{n+1}=\frac{x_{n}+y_{n}}{2}
$$

i) Prove that for all $n \in \mathbb{N}, 0<x_{n}<y_{n}$.
ii) Prove that $\left(x_{n}\right)_{n=1}^{\infty}$ is increasing and bounded above.
iii) Prove that $\left(y_{n}\right)_{n=1}^{\infty}$ is decreasing and bounded below.
iv) Prove that for all $n \in \mathbb{N}, 0<y_{n+1}-x_{n+1}<\frac{y_{1}-x_{1}}{2^{n}}$.
v) Prove that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.

This common limit $\alpha:=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$ in v) above is called the arithmetic-geometric mean of x_{1} and y_{1} and has many applications.

Hint. For i) use induction. For ii)-iii) use i). For iv) use induction. For v) use the Monotone Convergence Theorem and the Squeeze Theorem.

Possible solution. (i) For $n=1$ the inequality holds by assumption. If $n \geq 2$, then

$$
x_{n}=\sqrt{x_{n-1} y_{n-1}} \text { and } y_{n}=\frac{x_{n-1}+y_{n-1}}{2}
$$

and one needs to show that the geometric mean is smaller that the arithmetic mean i.e. $\sqrt{x_{n-1} y_{n-1}}<\frac{x_{n-1}+y_{n-1}}{2}$ or equivalently, $\left(x_{n-1}+y_{n-1}\right)^{2}>$ $4 x_{n-1} y_{n-1}$. But,

$$
\begin{aligned}
\left(x_{n-1}+y_{n-1}\right)^{2}-4 x_{n-1} y_{n-1} & =x_{n-1}^{2}+2 x_{n-1} y_{n-1}+y_{n-1}^{2}-4 x_{n-1} y_{n-1} \\
& =x_{n-1}^{2}-2 x_{n-1} y_{n-1}+y_{n-1}^{2} \\
& =\left(x_{n-1}-y_{n-1}\right)^{2} \geq 0 .
\end{aligned}
$$

The conclusion follows since one can easily prove by induction (and we omit the details) that for all $n \in \mathbb{N}, x_{n}, y_{n}>0$ and $x_{n} \neq y_{n}$.
(ii) By (i) for all $n \in \mathbb{N}, x_{n+1}=\sqrt{x_{n} y_{n}}>\sqrt{x_{n} x_{n}}=\left|x_{n}\right|=x_{n}$ and $\left(x_{n}\right)_{n=1}^{\infty}$ is strictly increasing.
(iii) Similarly for all $n \in \mathbb{N}, y_{n+1}=\frac{x_{n}+y_{n}}{2}<\frac{y_{n}+y_{n}}{2}=y_{n}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ is strictly decreasing.
(iv) The first inequality was proven in (i) already. We now look at the second inequality. For $n=1$, one simply needs to prove that $y_{2}-x_{2}<\frac{y_{1}-x_{1}}{2}$. But,

$$
\begin{aligned}
\frac{y_{1}-x_{1}}{2}-y_{2}+x_{2} & =\frac{y_{1}-x_{1}}{2}-\frac{y_{1}+x_{1}}{2}+\sqrt{x_{1} y_{1}} \\
& =\sqrt{x_{1} y_{1}}-x_{1}
\end{aligned}
$$

Since $x_{1}<y_{1}, \sqrt{x_{1} y_{1}}-x_{1}>0$ and this yields that $y_{2}-x_{2}<\frac{y_{1}-x_{1}}{2}$.
Assume now that $y_{n+1}-x_{n+1}<\frac{y_{1}-x_{1}}{2^{n}}$. We need to show that $\frac{y_{1}-x_{1}}{2^{n+1}}-$ $y_{n+2}-x_{n+2}>0$. But,

$$
\begin{aligned}
\frac{y_{1}-x_{1}}{2^{n+1}}-y_{n+2}+x_{n+2} & =\frac{1}{2} \frac{y_{1}-x_{1}}{2^{n}}-\frac{y_{n+1}+x_{n+1}}{2}+\sqrt{x_{n+1} y_{n+1}} \\
& >\frac{1}{2}\left(y_{n+1}-x_{n+1}\right)-\frac{y_{n+1}+x_{n+1}}{2}+\sqrt{x_{n+1} y_{n+1}} \\
& =\sqrt{x_{n+1} y_{n+1}}-x_{n+1}>0,
\end{aligned}
$$

and the induction is complete.
(v) By (ii), (iii) and the Monotone Convergence Theorem both $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ are convergent. By (iv) and the Squeeze Theorem $\lim _{n \rightarrow \infty}\left(y_{n}-\right.$ $\left.x_{n}\right)=0$ and thus $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.

4 Subsequences

Exercise 15. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and $a \in \mathbb{R}$. If the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ does not converge to a, prove that there exists an $\varepsilon_{0}>0$ and a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$, so that $\left|x_{n_{k}}-a\right| \geqslant \varepsilon_{0}$ for all $k \in \mathbb{N}$.

Hint. Negate the definition of convergence and construct the subsequence recursively.

Possible solution. Assume that $\left(x_{n}\right)_{n=1}^{\infty}$ does not converge to a. Then, there exists $\varepsilon_{0}>0$ so that

$$
\begin{equation*}
\text { for every } k \in \mathbb{N} \text {, there exists } n_{k} \geqslant k \text { with }\left|x_{n_{k}}-a\right| \geqslant \varepsilon_{0} \text {. } \tag{*}
\end{equation*}
$$

We shall now construct the subsequence recursively. In particular, for $k=1$, there exists $n_{1} \in \mathbb{N}$ with $\left|x_{n_{1}}-a\right| \geqslant \varepsilon_{0}$. Assume now that there exist $n_{1}<$ $\cdots<n_{k}$ and $\left(x_{n_{i}}\right)_{i=1}^{k}$ with $\left|x_{n_{i}}-a\right| \geqslant \varepsilon_{0}$ for $1 \leqslant i \leqslant k$. By $|*|$, there exists $N \geqslant n_{k}+1$ with $\left|x_{N}-a\right| \geqslant \varepsilon_{0}$. Define $n_{k+1}=N$. Then, $n_{k+1} \geqslant n_{k}+1>n_{k}$, $\left|x_{n_{k+1}}-a\right| \geqslant \varepsilon_{0}$ and the recursive construction is complete.

Exercise 16. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers and $\ell \in \mathbb{R}$. Assume that for every subsequence $\left(y_{n}\right)_{n=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$, there exists a further subsequence $\left(z_{n}\right)_{n=1}^{\infty}$ of $\left(y_{n}\right)_{n=1}^{\infty}$ that converges to ℓ. Prove that the original sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges to ℓ.

Hint. Argue by contradiction using Exercise 15.
Possible solution. If $\left(x_{n}\right)_{n=1}^{\infty}$ does not converge to ℓ, then by Exercise 15 there exist $\varepsilon_{0}>0$ and a subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$ so that

$$
\begin{equation*}
\left|x_{n_{k}}-\ell\right| \geqslant \varepsilon_{0} \text { for all } k \in \mathbb{N} . \tag{**}
\end{equation*}
$$

By assumption, $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ has a further subsequence $\left(x_{n_{k_{m}}}\right)_{m=1}^{\infty}$ that converges to ℓ and therefore there is $m_{0} \in \mathbb{N}$ so that for all $m \geqslant m_{0},\left|x_{n_{k_{m}}}-\ell\right|<\varepsilon_{0}$. As $k_{m_{0}}$, for instance, is still in \mathbb{N}, by $|* *|,\left|x_{n_{k_{m_{0}}}}-\ell\right| \geqslant \varepsilon_{0}$. This contradiction completes the proof.

Exercise 17. For this exercise we will define a top point of a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ as follows: we say that x_{p} is a top point of the sequence if for all $n \geq p, x_{n} \leq x_{p}$. Prove the monotone subsequence lemma using the notion of top point.

Hint. Consider the following three cases: the sequence has infinitely many top points, or finitely many top points, or no top points.

Possible solution. Assume first that $\left(x_{n}\right)_{n=1}^{\infty}$ has no top points. Let $k_{1}=1$. Since $x_{k_{1}}$ is not a top point there exists $k_{2}>k_{1}$ such that $x_{k_{2}}>x_{k_{1}}$. But $x_{k_{2}}$ is not a top point either and there exists $k_{3}>k_{2}>k_{1}$ such that $x_{k_{3}}>$ $x_{k_{2}}>x_{k_{1}}$. If we continue this process indefinitely we can construct recursively a subsequence $\left(x_{k_{1}}\right)_{n=1}^{\infty}$ that is strictly increasing. Now, assume that a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ has infinitely many top points then there exist $p_{1}<p_{2}<\cdots<p_{k}<\cdots$
such that for all $m \leq n, x_{p_{m}} \geq x_{p_{n}}$ and the subsequence $\left(x_{p_{k}}\right)_{k=1}^{\infty}$ is decreasing. If $\left(x_{n}\right)_{n=1}^{\infty}$ has finitely many top points and let x_{p} the largest of those top points. Let $k_{1}=p+1$, then $x_{k_{1}}$ is not a top point and hence there exists $k_{2}>k_{1}$ such that $x_{k_{2}}>x_{k_{1}}$. Since $x_{k_{2}}$ is not a top point there exists $k_{3}>k_{2}>k_{1}$ such that $x_{k_{3}}>x_{k_{2}}>x_{k_{1}}$, and we can construct recursively a subsequence $\left(x_{k_{n}}\right)_{n=1}^{\infty}$ that is (strictly) increasing. In all three cases, we were able to show the existence of a monotone subsequence.

Exercise 18. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a bounded sequence of real numbers. Let $t:=$ $\liminf _{n \rightarrow \infty} x_{n}$. Show that there exists a subsequence $\left(y_{n}\right)_{n=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} y_{n}=t$.

Hint. Construct the subsequence recursively using the approximation property for suprema and conclude with the Squeeze Theorem.

5 Constructing sequences

Exercise 19. Prove that for every real number x there exists a sequence of rational numbers $\left(q_{n}\right)_{n=1}^{\infty}$ with $\lim _{n \rightarrow \infty} q_{n}=x$.

Hint. Use the density of \mathbb{Q} in \mathbb{R} and the Squeeze Theorem.
Possible solution. Let x be a real number. Then by density of \mathbb{Q} in \mathbb{R}, for every $n \in \mathbb{N}$ there exists $q_{n} \in \mathbb{Q}$ such that $x<q_{n}<x+\frac{1}{n}$. By the Squeeze Theorem $\lim _{n \rightarrow \infty} q_{n}=x$.

Exercise 20. Let X be a non-empty subset of \mathbb{R} that is bounded above. Assume that $\sup (X) \notin X$. Prove that there exists a strictly increasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of X so that $\lim _{n \rightarrow \infty} x_{n}=\sup (X)$.

Hint. Construct the sequence recursively using the approximation property for suprema.

Possible solution. Set $s=\sup (X)$. We will recursively choose for each $n \in \mathbb{N}$ a number $x_{n} \in X$, so that $x_{1}<\cdots<x_{n}$ and $\left|x_{n}-s\right|<\frac{1}{n}$. This will yield the desired sequence. To do this rigorously we will use the Principle of Mathematical Induction. Let $P(n)$ be the statement: there exist $x_{1}<\cdots<x_{n}$ elements in X such that $s-\frac{1}{n}<x_{n} \leqslant s$.

By the approximation property for suprema (for $\varepsilon=1$), we may choose $x_{1} \in X$ with $s-1<x_{1} \leqslant s$ and $P(1)$ is true.

Assume now that there exist $x_{1}<\cdots<x_{n}$ elements in X such that $s-\frac{1}{n}<$ $x_{n} \leqslant s$. Since $x_{n} \leqslant s$ and $s \notin X$, we have $x_{n}<s$, i.e. $s-x_{n}>0$. Set
$\varepsilon=\min \left\{\frac{1}{n+1}, s-x_{n}\right\}$, which is positive. By the approximation property of suprema we may choose $x_{n+1} \in X$ with $s-\varepsilon<x_{n+1} \leqslant s$. Since $s-\varepsilon<x_{n+1} \leqslant$ $s<s+\varepsilon$, we conclude $\left|x_{n+1}-s\right|<\varepsilon \leqslant 1 /(n+1)$. Furthermore, observe that $x_{n}=s-\left(s-x_{n}\right) \leqslant s-\varepsilon<x_{n+1}$, therefore x_{n+1} satisfies the desired properties. By the Principle of Mathematical Induction for all $n \in \mathbb{N} P(n)$ is true, i.e. for every $n \in \mathbb{N}$ there exist $x_{1}<\cdots<x_{n}$ elements in X such that $s-\frac{1}{n}<x_{n} \leqslant s$. The sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is the desired sequence, since by the Squeeze Theorem $\lim _{n \rightarrow \infty} x_{n}=s$.

Exercise 21. Let X be a non-empty subset of \mathbb{R} that is bounded below. Assume that $\inf (X) \notin X$. Prove that there exists a strictly decreasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of X so that $\lim _{n \rightarrow \infty} x_{n}=\inf (X)$.

Hint. Mimic the proof of Exercise 20 .

6 Cauchy Sequences

Exercise 22. Show that a Cauchy sequence is bounded.
Hint. The proof is similar to the proof of the fact that a convergent sequence is bounded.

Possible solution. Assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy. Then for $\varepsilon=1$ there exists $N \in \mathbb{N}$ such that for all $n, m \geq N,\left|x_{n}-x_{m}\right| \leq 1$. In particular for $m=N$ and by reverse triangle inequality $\left|x_{n}\right| \leq 1+\left|x_{N}\right|$ for all $n \geq N$. Let $M:=$ $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N-1}\right|, 1+\left|x_{N}\right|\right\}$, then for all $n \in \mathbb{N},\left|x_{n}\right| \leq M$ and $\left(x_{n}\right)_{n=1}^{\infty}$ is bounded.

Exercise 23. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be two Cauchy sequences such that $\left|y_{n}\right| \geq$ $\alpha>0$ for all $n \in \mathbb{N}$. Show that the sequence $\left(\frac{x_{n}}{y_{n}}\right)_{n=1}^{\infty}$ is Cauchy.

Hint. Use the Triangle Inequality and ad-hoc algebraic manipulations.
Possible solution. If follows from the triangle inequality and the assumptions that $\left|\frac{x_{n}}{y_{n}}-\frac{x_{m}}{y_{m}}\right|=\left|\frac{x_{n} y_{m}-y_{n} x_{m}}{y_{n} y_{m}}\right|=\left|\frac{\left(x_{n}-x_{m}\right) y_{m}-\left(y_{n}-y_{m}\right) x_{m}}{y_{n} y_{m}}\right| \leq\left|x_{n}-x_{m}\right| \frac{\left|y_{n}\right|}{\alpha^{2}}+$ $\left|y_{n}-y_{m}\right| \frac{\left|x_{m}\right|}{\alpha^{2}}$. Since a Cauchy sequence is bounded (cf Exercise 22 there exists $M>0$ such that for all $n \in \mathbb{N}, \max \left\{\left|y_{n}\right|,\left|x_{n}\right|\right\} \leq M$. Let $\varepsilon>0$. Then there exist $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n, m \geq N_{1},\left|x_{n}-x_{m}\right|<\frac{\varepsilon \alpha^{2}}{2 M}$ and for all $n, m \geq N_{2},\left|y_{n}-y_{m}\right|<\frac{\varepsilon \alpha^{2}}{2 M}$, and hence for $n, m \geq \max \left\{N_{1}, N_{2}\right\},\left|\frac{x_{n}}{y_{n}}-\frac{x_{m}}{y_{m}}\right| \leq$ $\left|x_{n}-x_{m}\right| \frac{\left|y_{n}\right|}{\alpha^{2}}+\left|y_{n}-y_{m}\right| \frac{\left|x_{m}\right|}{\alpha^{2}}<\frac{M}{\alpha^{2}} \frac{\varepsilon \alpha^{2}}{2 M}+\frac{M}{\alpha^{2}} \frac{\varepsilon \alpha^{2}}{2 M}<\varepsilon$.

Exercise 24. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of integers, i.e. $x_{n} \in \mathbb{Z}$ for all $n \in \mathbb{N}$.
(i) If $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy, show that it is eventually constant (i.e. there exists $n_{0} \in \mathbb{N}$ so that for all $n \geqslant n_{0}$ we have $\left.x_{n}=x_{n_{0}}\right)$.
(ii) If $\left(x_{n}\right)_{n=1}^{\infty}$ converges to some $\ell \in \mathbb{R}$, then $\ell \in \mathbb{Z}$.

Hint. For i) use the definition of Cauchy sequence for a well chosen ε and derive a contradiction if the sequence is not eventually constant. For ii) use i).

Possible solution. (i) Fix $\varepsilon=1 / 2$ (or any other number in (0,1)). As $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy, there exists $N \in \mathbb{N}$, so that for all $m, n \in \mathbb{N}$ with $m \geqslant n \geqslant N$ we have $\left|x_{n}-x_{m}\right|<\varepsilon=1 / 2$. In particular, for all $n \geqslant N$ we have $\left|x_{n}-x_{N}\right|<1 / 2$. For $n \in \mathbb{N}$ with $n \geqslant N$, as $x_{n}-x_{N}$ is in \mathbb{Z}, it is either zero or $\left|x_{n}-x_{N}\right| \geqslant 1$. Since the second case is impossible, we conclude that $x_{n}=x_{N}$ for all $n \geq N$.
(ii) If $\left(x_{n}\right)_{n=1}^{\infty}$ converges to some $\ell \in \mathbb{R}$, it is Cauchy. By (i), there exists N so that $x_{n}=x_{N}$ for all $n \geqslant N$. This yields $\lim _{n \rightarrow \infty} x_{n}=x_{N}$ and hence $\ell=x_{N} \in \mathbb{Z}$.

Exercise 25. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence. Suppose that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m \geq n \geq N,\left|\sum_{k=n}^{m} x_{k}\right|<\varepsilon$. Prove that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}$ exists and is finite.

Hint. If you introduce a well chosen sequence it is a one line argument.
Possible solution. Consider the sequence defined as $s_{n}=\sum_{k=1}^{n} x_{k}$, for $n \in \mathbb{N}$. Then if $m \geq n,\left|s_{m}-s_{n}\right|=\left|\sum_{k=n+1}^{m} x_{k}\right|$, and our assumption says that $\left(s_{n}\right)_{n=1}^{\infty}$ is Cauchy. Since every Cauchy sequence is convergent $\left(s_{n}\right)_{n=1}^{\infty}$ is convergent.

Exercise 26. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that for all $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{1}{3^{n}}$. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent.

Hint. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy.
Possible solution. Let $m, n \in \mathbb{N}$. Without loss of generality we can assume that $m>n$. Then

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & =\left|x_{m}-x_{m-1}+x_{m-1}-\cdots+x_{n+2}-x_{n+2}+x_{n+1}-x_{n}\right| \\
& =\left|\sum_{i=n}^{m} x_{i}-\sum_{i=n}^{m-1} x_{i}\right| \\
& =\left|\sum_{i=n}^{m-1}\left(x_{i+1}-x_{i}\right)\right| \\
& =\sum_{i=n}^{m-1}\left|x_{i+1}-x_{i}\right| \text { (by triangle inequality) } \\
& =\sum_{i=n}^{m-1} \frac{1}{3^{i}} \text { (by our assumption) }
\end{aligned}
$$

It remains to show that $\sum_{i=n}^{m-1} \frac{1}{3^{i}}$ is small than whenever m, n are large enough. By induction one can show that

$$
\sum_{i=0}^{k} \frac{1}{3^{i}}=\frac{3}{2}\left(1-\frac{1}{3^{k+1}}\right)
$$

Therefore,

$$
\begin{aligned}
\sum_{i=n}^{m-1} \frac{1}{3^{i}} & =\frac{1}{3^{n}} \sum_{i=0}^{m-n-1} \frac{1}{3^{i}} \\
& =\frac{1}{3^{n}} \frac{3}{2}\left(1-\frac{1}{3^{m-n}}\right) \\
& =\frac{3}{2}\left(\frac{1}{3^{n}}-\frac{1}{3^{m}}\right)
\end{aligned}
$$

Now let $\varepsilon>0$. Since $\left(\frac{1}{3^{n}}\right)_{n=1}^{\infty}$ converges to 0 , there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left|\frac{1}{3^{n}}\right|<\frac{\varepsilon}{3}$ and if $m>n \geq N$,

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & \leq \sum_{i=n}^{m-1} \frac{1}{3^{i}} \\
& \leq \frac{3}{2}\left(\frac{1}{3^{n}}-\frac{1}{3^{m}}\right) \\
& \leq \frac{3}{2}\left(\frac{1}{3^{n}}+\frac{1}{3^{m}}\right) \\
& <\frac{3}{2}\left(\frac{\varepsilon}{3}+\frac{\varepsilon}{3}\right) \\
& <\varepsilon
\end{aligned}
$$

and $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy.

