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1 Warm up

Exercise 1. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε > 0 there exists N ∈ N such that for all n > N , |xn − `| 6 ε.

Hint. Exploit the definition.

Possible solution.

Exercise 2. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε ∈ (0, 2) there exists N ∈ N such that for all n > N , |xn − `| < ε.

Hint. Exploit the definition.

Possible solution.

Exercise 3. Show that a sequence (xn)∞n=1 is convergent to ` ∈ R, if and only if
for every ε > 0 there exists N ∈ N such that for all n > N , |xn − `| < 256ε.

Hint. Exploit the definition.

Possible solution.

Exercise 4. Let (xn)∞n=1 and (yn)∞n=1 be convergent sequences. Show that

1. the sequence (xn + yn)∞n=1 is convergent and that

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn.
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2. the sequence (2xn − 5yn)∞n=1 is convergent and that

lim
n→∞

(2xn − 5yn) = 2 lim
n→∞

xn − 5 lim
n→∞

yn.

3. the sequence (xn · yn)∞n=1 is convergent and that

lim
n→∞

(xn · yn) = lim
n→∞

xn · lim
n→∞

yn.

Hint. Use the definition of convergence and the algebraic equality, ab − cd =
b(a− c) + c(b− d) (for 3)

Possible solution. Assume that limn→∞ xn = `1 < ∞ and limn→∞ yn = `2 <
∞.

1. Let ε > 0, then there exist N1, N2 ∈ N such that for all n ≥ N1, |xn−`1| <
ε
2 and for all n ≥ N2, |yn− `2| < ε

2 . If follows from the triangle inequality
that |xn + yn − (`1 + `2)| = |xn − `1 + yn − `2| ≤ |xn − `1|+ |yn − `2|, and
hence for n ≥ max{N1, N2}, |xn + yn − (`1 + `2) ≤ ε

2 + ε
2 = ε.

2. If follows from the triangle inequality that |xn ·yn−(`1 ·`2)| = |(xn−`1)yn+
`1(yn − `2)| ≤ |xn − `1||yn| + |yn − `2||`1|. Since (yn)∞n=1 is convergent,
and thus bounded, there exists M > 0 such that for all n ∈ N, |yn| ≤M .
Let ε > 0. If |`1| > 0, then there exist N1, N2 ∈ N such that for all
n ≥ N1, |xn − `1| < ε

2M and for all n ≥ N2, |yn − `2| < ε
2|`1| , and hence

for n ≥ max{N1, N2}, |xn · yn − (`1 · `2)| < ε
2MM + ε

2|`1| |`1| = ε. If

|`1| = 0 then for n ≥ max{N1, N2}, |xn · yn| < ε
2MM < ε, and the proof

is complete.

Exercise 5. Show that ( 1
3n )∞n=1 converges and compute lim

n→∞

1

3n
.

Hint. Try to use the idea of the proof of 3. in Example 1.

Possible solution. It follows from the Archimedean Principle that for every ε > 0
there exists N ∈ N such that 0 < 1

ε < N . It can be easily shown by induction
(do it!) that n ≤ 3n for all n ∈ N. For n ≥ N , | 13n − 0| = 1

3n ≤
1
n ≤

1
N < ε and

limn→∞
1
3n = 0.
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2 Useful results about sequences

Exercise 6. Let (xn)∞n=1 be a sequence of real numbers and ` ∈ R. Show that
limn→∞ xn = ` if and only if limn→∞ |xn − `| = 0.

Hint. Simply consider the sequences (xn)∞n=1 and (yn)∞n=1 = (|xn − `|)∞n=1, and
apply the definition of convergence.

Possible solution. Assume that limn→∞ xn = `. Let ε > 0, then there exists
N ∈ N such that for all n ≥ N , |xn − `| < ε. But

∣∣|xn − `| − 0
∣∣ = |xn − `| and

for n ≥ N ,
∣∣|xn − `| − 0

∣∣ < ε, and thus limn→∞ |xn − `| = 0.
Assume now that limn→∞ |xn − `| = 0, Let ε > 0, then there exists N ∈ N

such that for all n ≥ N ,
∣∣|xn − `| − 0

∣∣ < ε but
∣∣|xn − `| − 0

∣∣ = |xn − `| and for
n ≥ N , |xn − `| < ε. Therefore, limn→∞ xn = `.

Exercise 7. Let (xn)∞n=1 and (yn)∞n=1 be two sequences of real numbers and
` ∈ R. Assume that limn→∞ xn = 0 and that there exists N ∈ N so that for all
n > N we have |yn − `| 6 |xn|. Show that limn→∞ yn = `.

Hint. Exploit the definition of convergence.

Possible solution. Assume that limn→∞ xn = 0 and that there exists N ∈ N so
that for all n > N we have |yn − `| 6 |xn|. Let ε > 0. Then there N1 ∈ N such
that for all n ≥ N1, |xn| < ε. If n ≥ max{N,N1} then, |yn − `| ≤ |xn| < ε.
Therefore, limn→∞ yn = `.

Exercise 8. Let (xn)∞n=1 and (yn)∞n=1 be sequences of real numbers. Assume
that (xn)∞n=1 is bounded and that limn→∞ yn = 0. Let (zn)∞n=1 = (xn · yn)∞n=1.
Show that limn→∞ zn = 0

Hint. Exploit the definitions of convergence, boundedness, and the properties
of the absolute value.

Possible solution. Assume that there exists M ≥ 0 such that for all n ∈ N,
|xn| ≤ M and that limn→∞ yn = 0. If M = 0 |xnyn| = 0 and the conclusion
clearly holds. Otherwise, if ε > 0, then there exists N ∈ N such that for all
n ≥ N , |yn| < ε

M . This yields that |xnyn| = |xn||yn| ≤ M |yn| < M ε
M = ε

whenever n ≥ N . Therefore, (zn)∞n=1 converges to 0.

Exercise 9. Let (xn)∞n=1 be a sequence of real numbers. Show that (xn)∞n=1 is
increasing if and only if for all n ∈ N, xn ≤ xn+1.
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Hint. One implication follows directly from the definition. The other one can
be proven using an induction.

Possible solution. Assume that (xn)∞n=1 is increasing, i.e. for all k ≤ m, xk ≤
xm. Let n ∈ N, then by simply taking k = n and m = n+1, one has xn ≤ xn+1.

Assume now that for all n ∈ N, xn ≤ xn+1. Since when k < m one can
always write m = k + r for some r ∈ N, the conclusion will follow if one can
prove that for all k, r ∈ N, xk ≤ xk+r. Let k ∈ N and for r ∈ N let P (r) be the
statement: xk ≤ xk+r. Our assumption says that P (1) is true. Assume now
that P (r) is true. On one hand, xk ≤ xk+r by our induction hypothesis. On
the other hand, xk+r ≤ xk+r+1 by our assumption, and hence by transitivity
of the order relation xk ≤ xk+r+1 and P (r + 1) is true. By the Principle of
Mathematical Induction P (r) is true for all r ∈ N. Since k was fixed but
arbitrary, one just proved that for all k, r ∈ N, xk ≤ xk+r and the conclusion
follows.

3 Around the Monotone Convergence Theorem

Exercise 10. Let (xn)∞n=1 be a sequence of real numbers. Show without using
the Monotone Convergence Theorem that if (xn)∞n=1 is decreasing and bounded
below then (xn)∞n=1 is convergent.

Hint. You could mimic the proof of the increasing version and use the ap-
proximation property of infima to show that (xn)∞n=1 converges to inf{xn : n ∈
N}.

Possible solution.

Exercise 11. Show that if |a| < 1 then lim
n→∞

an = 0.

Hint. Use the Monotone Convergence Theorem.

Possible solution. Assume that |a| < 1, then |a|n+1 = |a|n · a < |a|n and
(|a|n)∞n=1 is strictly decreasing. It is clear that (|a|n)∞n=1 is bounded below by 0,
and by the Monotone Convergence Theorem, (|a|n)∞n=1 is convergent. Denote `
the limit. Then limn→∞ |a|n = limn→∞ |a|n+1 = ` and since |a|n+1 = |a|n · a
by the basic manipulations of limits ` satisfies the equation ` = ` · |a|. The only
solutions are ` = 0 or |a| = 1 and the second alternative is impossible, thus
limn→∞ |a|n = 0. We conclude with the Squeeze Theorem since for all n ∈ N,
−|a|n ≤ an ≤ |a|n.
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Exercise 12. Let (xn)∞n=1 be a bounded sequence of real numbers. For all n ∈ N,
let tn := inf{xk : k ≥ n}. Show that (tn)∞n=1 is convergent.

Hint. You could use the Monotone Convergent Theorem and mimic the proof
of Lemma 7 in the lecture notes.

Possible solution. Let n ∈ N. Since {xk : k ≥ n} ⊃ {xk : k ≥ n + 1}, tn =
inf{xk : k ≥ n} ≤ inf{xk : k ≥ n + 1} = tn+1, and (tn)∞n=1 is increasing. Since
(xn)∞n=1 is bounded, (tn)∞n=1 is also bounded. By the Monotone Convergence
Theorem (tn)∞n=1 is convergent.

Exercise 13 (The Nested Interval Theorem). Recall that a sequence of set
(An)n∈N is nested if for all n ∈ N, An+1 ⊆ An. Recall also that a closed
interval is a subset of R of the form [a, b]. Show that a nested sequence of closed
intervals has a non-empty intersection.

Hint. You could use the Least Upper Bound Theorem or the Monotone Con-
vergent Theorem.

Possible solution.

Exercise 14. Let 0 < x1 < y1 and set for all n ∈ N,

xn+1 =
√
xnyn and yn+1 =

xn + yn
2

.

i) Prove that for all n ∈ N, 0 < xn < yn.

ii) Prove that (xn)∞n=1 is increasing and bounded above.

iii) Prove that (yn)∞n=1 is decreasing and bounded below.

iv) Prove that for all n ∈ N, 0 < yn+1 − xn+1 <
y1−x1

2n .

v) Prove that limn→∞ xn = limn→∞ yn.

This common limit α := limn→∞ xn = limn→∞ yn in v) above is called the
arithmetic-geometric mean of x1 and y1 and has many applications.

Hint. For i) use induction. For ii)-iii) use i). For iv) use induction. For v) use
the Monotone Convergence Theorem and the Squeeze Theorem.
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Possible solution. (i) For n = 1 the inequality holds by assumption. If n ≥ 2,
then

xn =
√
xn−1yn−1 and yn =

xn−1 + yn−1
2

,

and one needs to show that the geometric mean is smaller that the arith-
metic mean i.e.

√
xn−1yn−1 <

xn−1+yn−1

2 or equivalently, (xn−1+yn−1)2 >
4xn−1yn−1. But,

(xn−1 + yn−1)2 − 4xn−1yn−1 = x2n−1 + 2xn−1yn−1 + y2n−1 − 4xn−1yn−1
= x2n−1 − 2xn−1yn−1 + y2n−1
= (xn−1 − yn−1)2 ≥ 0.

The conclusion follows since one can easily prove by induction (and we
omit the details) that for all n ∈ N, xn, yn > 0 and xn 6= yn.

(ii) By (i) for all n ∈ N, xn+1 =
√
xnyn >

√
xnxn = |xn| = xn and (xn)∞n=1 is

strictly increasing.

(iii) Similarly for all n ∈ N, yn+1 = xn+yn
2 < yn+yn

2 = yn and (yn)∞n=1 is
strictly decreasing.

(iv) The first inequality was proven in (i) already. We now look at the second
inequality. For n = 1, one simply needs to prove that y2 − x2 < y1−x1

2 .
But,

y1−x1

2 − y2 + x2 = y1−x1

2 − y1+x1

2 +
√
x1y1

=
√
x1y1 − x1

Since x1 < y1,
√
x1y1 − x1 > 0 and this yields that y2 − x2 < y1−x1

2 .

Assume now that yn+1 − xn+1 <
y1−x1

2n . We need to show that y1−x1

2n+1 −
yn+2 − xn+2 > 0. But,

y1−x1

2n+1 − yn+2 + xn+2 = 1
2
y1−x1

2n − yn+1+xn+1

2 +
√
xn+1yn+1

> 1
2 (yn+1 − xn+1)− yn+1+xn+1

2 +
√
xn+1yn+1

=
√
xn+1yn+1 − xn+1 > 0,

and the induction is complete.

(v) By (ii), (iii) and the Monotone Convergence Theorem both (xn)∞n=1 and
(yn)∞n=1 are convergent. By (iv) and the Squeeze Theorem limn→∞(yn −
xn) = 0 and thus limn→∞ xn = limn→∞ yn.

4 Subsequences

Exercise 15. Let (xn)∞n=1 be a sequence of real numbers and a ∈ R. If the
sequence (xn)∞n=1 does not converge to a, prove that there exists an ε0 > 0 and
a subsequence (xnk

)∞k=1 of (xn)∞n=1, so that |xnk
− a| > ε0 for all k ∈ N.

6



Hint. Negate the definition of convergence and construct the subsequence re-
cursively.

Possible solution. Assume that (xn)∞n=1 does not converge to a. Then, there
exists ε0 > 0 so that

for every k ∈ N, there exists nk > k with |xnk
− a| > ε0. (∗)

We shall now construct the subsequence recursively. In particular, for k = 1,
there exists n1 ∈ N with |xn1

− a| > ε0. Assume now that there exist n1 <
· · · < nk and (xni

)ki=1 with |xni
− a| > ε0 for 1 6 i 6 k. By (∗), there exists

N > nk + 1 with |xN − a| > ε0. Define nk+1 = N . Then, nk+1 > nk + 1 > nk,
|xnk+1

− a| > ε0 and the recursive construction is complete.

Exercise 16. Let (xn)∞n=1 be a sequence of real numbers and ` ∈ R. Assume that
for every subsequence (yn)∞n=1 of (xn)∞n=1, there exists a further subsequence
(zn)∞n=1 of (yn)∞n=1 that converges to `. Prove that the original sequence (xn)∞n=1

converges to `.

Hint. Argue by contradiction using Exercise 15.

Possible solution. If (xn)∞n=1 does not converge to `, then by Exercise 15 there
exist ε0 > 0 and a subsequence (xnk

)∞k=1 of (xn)∞n=1 so that

|xnk
− `| > ε0 for all k ∈ N. (∗∗)

By assumption, (xnk
)∞k=1 has a further subsequence (xnkm

)∞m=1 that converges
to ` and therefore there is m0 ∈ N so that for all m > m0, |xnkm

− `| < ε0. As
km0

, for instance, is still in N, by (∗∗), |xnkm0
− `| > ε0. This contradiction

completes the proof.

Exercise 17. For this exercise we will define a top point of a sequence (xn)∞n=1

as follows: we say that xp is a top point of the sequence if for all n ≥ p, xn ≤ xp.
Prove the monotone subsequence lemma using the notion of top point.

Hint. Consider the following three cases: the sequence has infinitely many top
points, or finitely many top points, or no top points.

Possible solution. Assume first that (xn)∞n=1 has no top points. Let k1 = 1.
Since xk1 is not a top point there exists k2 > k1 such that xk2 > xk1 . But
xk2 is not a top point either and there exists k3 > k2 > k1 such that xk3 >
xk2 > xk1 . If we continue this process indefinitely we can construct recursively
a subsequence (xk1)∞n=1 that is strictly increasing. Now, assume that a sequence
(xn)∞n=1 has infinitely many top points then there exist p1 < p2 < · · · < pk < · · ·
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such that for all m ≤ n, xpm ≥ xpn and the subsequence (xpk)∞k=1 is decreasing.
If (xn)∞n=1 has finitely many top points and let xp the largest of those top points.
Let k1 = p+ 1, then xk1 is not a top point and hence there exists k2 > k1 such
that xk2 > xk1 . Since xk2 is not a top point there exists k3 > k2 > k1 such that
xk3 > xk2 > xk1 , and we can construct recursively a subsequence (xkn)∞n=1 that
is (strictly) increasing. In all three cases, we were able to show the existence of
a monotone subsequence.

Exercise 18. Let (xn)∞n=1 be a bounded sequence of real numbers. Let t :=
lim infn→∞ xn. Show that there exists a subsequence (yn)∞n=1 of (xn)∞n=1 such
that limn→∞ yn = t.

Hint. Construct the subsequence recursively using the approximation property
for suprema and conclude with the Squeeze Theorem.

5 Constructing sequences

Exercise 19. Prove that for every real number x there exists a sequence of
rational numbers (qn)∞n=1 with limn→∞ qn = x.

Hint. Use the density of Q in R and the Squeeze Theorem.

Possible solution. Let x be a real number. Then by density of Q in R, for every
n ∈ N there exists qn ∈ Q such that x < qn < x+ 1

n . By the Squeeze Theorem
limn→∞ qn = x.

Exercise 20. Let X be a non-empty subset of R that is bounded above. Assume
that sup(X) /∈ X. Prove that there exists a strictly increasing sequence (xn)∞n=1

of X so that limn→∞ xn = sup(X).

Hint. Construct the sequence recursively using the approximation property for
suprema.

Possible solution. Set s = sup(X). We will recursively choose for each n ∈ N a
number xn ∈ X, so that x1 < · · · < xn and |xn − s| < 1

n . This will yield the
desired sequence. To do this rigorously we will use the Principle of Mathematical
Induction. Let P (n) be the statement: there exist x1 < · · · < xn elements in X
such that s− 1

n < xn 6 s.

By the approximation property for suprema (for ε = 1), we may choose
x1 ∈ X with s− 1 < x1 6 s and P (1) is true.

Assume now that there exist x1 < · · · < xn elements in X such that s− 1
n <

xn 6 s. Since xn 6 s and s /∈ X, we have xn < s, i.e. s − xn > 0. Set
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ε = min{ 1
n+1 , s − xn}, which is positive. By the approximation property of

suprema we may choose xn+1 ∈ X with s− ε < xn+1 6 s. Since s− ε < xn+1 6
s < s + ε, we conclude |xn+1 − s| < ε 6 1/(n + 1). Furthermore, observe that
xn = s− (s−xn) 6 s−ε < xn+1, therefore xn+1 satisfies the desired properties.
By the Principle of Mathematical Induction for all n ∈ N P (n) is true, i.e. for
every n ∈ N there exist x1 < · · · < xn elements in X such that s− 1

n < xn 6 s.
The sequence (xn)∞n=1 is the desired sequence, since by the Squeeze Theorem
limn→∞ xn = s.

Exercise 21. Let X be a non-empty subset of R that is bounded below. Assume
that inf(X) /∈ X. Prove that there exists a strictly decreasing sequence (xn)∞n=1

of X so that limn→∞ xn = inf(X).

Hint. Mimic the proof of Exercise 20.

6 Cauchy Sequences

Exercise 22. Show that a Cauchy sequence is bounded.

Hint. The proof is similar to the proof of the fact that a convergent sequence is
bounded.

Possible solution. Assume that (xn)∞n=1 is Cauchy. Then for ε = 1 there exists
N ∈ N such that for all n,m ≥ N , |xn − xm| ≤ 1. In particular for m = N
and by reverse triangle inequality |xn| ≤ 1 + |xN | for all n ≥ N . Let M :=
max{|x1|, |x2|, . . . , |xN−1|, 1 + |xN |}, then for all n ∈ N, |xn| ≤M and (xn)∞n=1

is bounded.

Exercise 23. Let (xn)∞n=1 and (yn)∞n=1 be two Cauchy sequences such that |yn| ≥
α > 0 for all n ∈ N. Show that the sequence (xn

yn
)∞n=1 is Cauchy.

Hint. Use the Triangle Inequality and ad-hoc algebraic manipulations.

Possible solution. If follows from the triangle inequality and the assumptions

that |xn

yn
− xm

ym
| = |xnym−ynxm

ynym
| = | (xn−xm)ym−(yn−ym)xm

ynym
| ≤ |xn − xm| |yn|α2 +

|yn− ym| |xm|
α2 . Since a Cauchy sequence is bounded (cf Exercise 22) there exists

M > 0 such that for all n ∈ N, max{|yn|, |xn|} ≤ M . Let ε > 0. Then there

exist N1, N2 ∈ N such that for all n,m ≥ N1, |xn − xm| < εα2

2M and for all

n,m ≥ N2, |yn − ym| < εα2

2M , and hence for n,m ≥ max{N1, N2}, |xn

yn
− xm

ym
| ≤

|xn − xm| |yn|α2 + |yn − ym| |xm|
α2 < M

α2
εα2

2M + M
α2

εα2

2M < ε.
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Exercise 24. Let (xn)∞n=1 be a sequence of integers, i.e. xn ∈ Z for all n ∈ N.

(i) If (xn)∞n=1 is Cauchy, show that it is eventually constant (i.e. there exists
n0 ∈ N so that for all n > n0 we have xn = xn0

).

(ii) If (xn)∞n=1 converges to some ` ∈ R, then ` ∈ Z.

Hint. For i) use the definition of Cauchy sequence for a well chosen ε and derive
a contradiction if the sequence is not eventually constant. For ii) use i).

Possible solution. (i) Fix ε = 1/2 (or any other number in (0, 1)). As (xn)∞n=1

is Cauchy, there exists N ∈ N, so that for all m,n ∈ N with m > n > N we
have |xn−xm| < ε = 1/2. In particular, for all n > N we have |xn−xN | < 1/2.
For n ∈ N with n > N , as xn − xN is in Z, it is either zero or |xn − xN | > 1.
Since the second case is impossible, we conclude that xn = xN for all n ≥ N .

(ii) If (xn)∞n=1 converges to some ` ∈ R, it is Cauchy. By (i), there exists
N so that xn = xN for all n > N . This yields limn→∞ xn = xN and hence
` = xN ∈ Z.

Exercise 25. Let (xn)∞n=1 be a sequence. Suppose that for every ε > 0 there
exists N ∈ N such that for all m ≥ n ≥ N , |

∑m
k=n xk| < ε. Prove that

lim
n→∞

n∑
k=1

xk exists and is finite.

Hint. If you introduce a well chosen sequence it is a one line argument.

Possible solution. Consider the sequence defined as sn =
∑n
k=1 xk, for n ∈ N.

Then if m ≥ n, |sm−sn| = |
∑m
k=n+1 xk|, and our assumption says that (sn)∞n=1

is Cauchy. Since every Cauchy sequence is convergent (sn)∞n=1 is convergent.

Exercise 26. Let (xn)∞n=1 be a sequence of real numbers. Suppose that for all
n ∈ N, |xn+1 − xn| ≤ 1

3n . Show that (xn)∞n=1 is convergent.

Hint. Show that (xn)∞n=1 is Cauchy.

Possible solution. Let m,n ∈ N. Without loss of generality we can assume that
m > n. Then

|xm − xn| = |xm − xm−1 + xm−1 − · · ·+ xn+2 − xn+2 + xn+1 − xn|
= |
∑m
i=n+1 xi −

∑m−1
i=n xi|

= |
∑m−1
i=n (xi+1 − xi)|

=
∑m−1
i=n |xi+1 − xi| (by triangle inequality)

=
∑m−1
i=n

1
3i (by our assumption)
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It remains to show that
∑m−1
i=n

1
3i is small than whenever m,n are large enough.

By induction one can show that

k∑
i=0

1

3i
=

3

2
(1− 1

3k+1
).

Therefore,

m−1∑
i=n

1

3i
=

1

3n

m−n−1∑
i=0

1

3i

=
1

3n
3

2
(1− 1

3m−n
)

=
3

2
(

1

3n
− 1

3m
).

Now let ε > 0. Since ( 1
3n )∞n=1 converges to 0, there exists N ∈ N such that

for all n ≥ N , | 13n | <
ε
3 and if m > n ≥ N ,

|xm − xn| ≤
∑m−1
i=n

1
3i

≤ 3

2
(

1

3n
− 1

3m
)

≤ 3

2
(

1

3n
+

1

3m
)

<
3

2
(
ε

3
+
ε

3
)

< ε,

and (xn)∞n=1 is Cauchy.
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