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1 Limits

Exercise 1. Use only the definition of the limit of a function to show if
a ∈ R then lim

x→a
x2 = a2.

Exercise 2. Show that the function f(x) = sin( 1
x ) does not have a limit at

x0 = 0.

Hint: Exhibit two sequences (xn)∞n=1 and (yn)∞n=1 converging to 0 such that
(f(xn))∞n=1 and (f(yn))∞n=1 do not have the same limit and invoke the sequential
characterization of limits.

Exercise 3. Let x0 ∈ R and assume that f : (a, b)\{x0} → (c, d) with x0 ∈ (a, b)
and g : (c, d)→ R. Show taht if f has a limit at x0 and limx→x0 f(x) := ` ∈ (c, d)
and if g is continuous at ` then g ◦ f has a limit at x0 and limx→x0

g ◦ f(x) :=
g(limx→x0

f(x)).

Hint.

Exercise 4. Let x0 ∈ (a, b) and assume that f : (a, b) \ {x0} → R. Assume that
f has a limit at x0. If limx→x0

f(x) 6= 0 show that:

1. there exist α > 0 an δ > 0 such that if |x − x0| < δ and x 6= x0 then
|f(x)| > α,

2. lim
x→x0

1

f(x)
=

1

lim
x→x0

f(x)
without using the sequential characterization of

limits.
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Hint. For 1. find inspiration on the analogous result for sequences and for 2.
use 1..

Exercise 5. Prove the comparison theorem for functions without using the se-
quential characterization of limits.

Hint. Find inspiration in the proof of the comparison theorem for sequences.

Exercise 6. Prove the squeeze theorem for functions without using the sequential
characterization of limits.

Hint. Find inspiration in the proof of the squeeze theorem for sequences.

Exercise 7. Show that lim
θ→0

sin(θ)

θ
= 1.

Hint. Show that cos(θ) ≤ sin(θ)
θ ≤ 1

cos(θ) and use the squeeze theorem.

Exercise 8. Prove the Squeeze Theorem for functions.

Hint: Either mimic the proof of the Squeeze Theorem for sequences of use the
sequential characterization of limits together with the Squeeze Theorem for
sequences.

Exercise 9. Let f : (a, b)→ R, x0 ∈ (a, b) and ` ∈ R. Show that,

limx→x0 f(x) = ` if and only if limx→x+
0
f(x) = limx→x−

0
f(x) = `.

2 Continuity

Exercise 10. Let x0 ∈ R and assume that f : (a, b)→ (c, d) with x0 ∈ (a, b) and
g : (c, d)→ R. Show that if f is continuous at x0 and if g is continuous at f(x0)
then g ◦ f is continuous at x0.

Hint. You can exploit the definitions.
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We define the notion of open set.

Definition 1 (Open set). A subset U of R is open if for every x ∈ U there
exists ε > 0 such that (x− ε, x+ ε) ⊆ U .

Exercise 11. Let a < b. Show that (a, b) is open.

Hint. Exploit the definitions.

Exercise 12 (Characterization of continuity in terms of open sets). Let f : R→
R. Prove that f is continuous on R if and only if for every open subset U of R,
f−1(U) is open.

Hint. Use the ε− δ definition of continuity and the previous exercise.

We now define the notion of compact set.

Definition 2 (Compact set). A subset K of R is compact if every open cover
of K admits a finite open subcover, i.e. if K ⊆

⋃
i∈I Ui where Ui is open for all

i ∈ I then there exists n ∈ N and i1, . . . , in ∈ I such that K ⊆
⋃n
k=1 Uik .

Exercise 13 (The continuous image of a compact set is compact). Let f : R→ R.
be continuous. Prove that if K is compact, then f(K) is compact.

Hint. Use the previous exercise.

Exercise 14. [Converse of the Intermediate Value Theorem for increasing func-
tions] Let f : [a, b] → R be an increasing function such that f(a) < f(b) and
whenever f(a) < y0 < f(b) there exists x0 ∈ (a, b) such that f(x0) = y0. Show
that f is continuous on [a, b].

Hint. Use the definition of continuity and the monotonicity of the function.

3 Applications of the Intermediate Value Theo-
rem

Exercise 15. A function f is said to have a fixed point in [a, b] is there exist
c ∈ [a, b] such that f(c) = c. Let f : [a, b] → [a, b] be a continuous function.
Show that f has a fixed point in [a, b].

Hint. Consider the function g : [a, b]→ R with g(x) = x− f(x).
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Exercise 16. Let I be an interval and let f : I → R. Assume f is continuous on I
and f is injective. Show that either f is strictly increasing or strictly decreasing
on I.

Hint. Try a proof by contradiction. The key point is a correct negation of the
statement “f is strictly increasing or strictly decreasing on I”.

Exercise 17. Let f : [a, b]→ R be continuous and injective on [a, b], then f([a, b])
is a closed bounded interval and the inverse of f onto its image, f−1 : f([a, b])→
[a, b], is continuous.

Hint: Show that f−1 is strictly monotone using Exercise 16 and then use Exer-
cise 14.

4 Uniform Continuity

Exercise 18. Show that the function f(x) = x2 is uniformly continuous on
(−1, 1) but not on R.

Exercise 19. Show that the function f(x) = sin( 1
x ) is not uniformly continuous

on (0, 2).

Exercise 20. A function f : [a, b] → R is Lipschitz if there exists C > 0 such
that |f(x1)−f(x2)| ≤ C|x1−x2| for all x1, x2 ∈ [a, b]. Show that f is uniformly
continuous on [a, b].

Exercise 21. Let f : (a, b)→ R be uniformly continuous and (xn)∞n=1 a Cauchy
sequence of elements in (a, b). Show that (f(xn))∞n=1 is a Cauchy sequence.

Hint. It follows from the definitions.

Exercise 22. Let f : (a, b) → R. Show that f is uniformly continuous on (a, b)
if and only if there is a continuous function g : [a, b] → R which extends f , i.e.
g satisfies g(x) = f(x) for all x ∈ (a, b).

Hint. Use the previous exercise.

4



5 Applications of the Extreme Value Theorem

Exercise 23. Let f : [0, 1] → R be a continuous function and let ε > 0. Prove
that there exists n ∈ N so that for k = 1, . . . , n we have

sup

{
f(x) :

k − 1

n
6 x 6

k

n

}
− inf

{
f(x) :

k − 1

n
6 x 6

k

n

}
< ε.

Hint. Use the Extreme Value Value Theorem and uniform continuity.

For the next exercise we recall the following definition.

Definition 3. Let f : R→ R. We say that f diverges to +∞ when x tends to
+∞ if for all M > 0 there exists x0 ∈ R such that for all x > x0, f(x) > M .
And we say that f diverges to +∞ when x tends to −∞ if for all M > 0 there
exists x0 ∈ R such that for all x < x0, f(x) > M .

Exercise 24. Let f : R→ R be a continuous function and assume that

lim
x→+∞

f(x) = lim
x→−∞

f(x) = +∞.

Prove that there exists xm ∈ R such that f(xm) = inf{f(x) : x ∈ R}.

Hint. Use the Extreme Value Value Theorem.

6 Pathological functions

We start with a preliminary result that will be needed in a later exercise.

Exercise 25 (Density of the irrationals in the reals). 1. Prove that
√

2 is ir-
rational.

2. Prove that the irrational are dense in R, i.e. for every real number x < y
there exists α ∈ R \Q so that x < α < y.

Hint. For (2) use (1).

Exercise 26 (A function discontinuous everywhere). The Dirichlet function is
defined on R by

χQ(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q.

Prove that every point x ∈ R is a point of discontinuity of χQ.
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Hint. Use the density of the irrationals to prove that every rational is a point
of discontinuity. Use the density of the rationals to prove that every irrational
is a point of discontinuity.

Exercise 27 (A function discontinuous at every rational point but continuous at
every irrational in (0, 1)). Let g be defined on R by

g(x) =

{
0 if x ∈ R \Q
1
q if x = p

q ∈ Q (in reduced form).

Prove that g is discontinuous at every rational point but continuous at every
irrational in (0, 1).

Hint. Use the density of the irrationals to prove discontinuity at every rational.
To prove continuity at every irrational in (0, 1) consider the set F = {pq : 0 <
p
q < 1 and 2 6 q 6 N} for some well chosen N .

Exercise 28 (A function discontinuous at every irrational point but continuous
at every rational point). Let Q = {qn : n ∈ N} be an enumeration of the set
of rational numbers (i.e. for each q ∈ Q there is exactly one n ∈ N such that
q = qn). Let f : R→ R be the function defined by the rule

f(x) =

{
0 if x ∈ R \Q
1
n if x ∈ Q and x = qn.

Prove that f is continuous at x if and only if x ∈ R \Q.

Hint. Show that for all x0 ∈ R \Q we have limx→x0
f(x) = 0. You might want

to consider the set FN = {qn : 1 6 n 6 N} for some well chosen N .
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