MATH 409, Summer 2019, Practice Problem Set 3

F. Baudier (Texas A&M University)

June 6, 2019

1 Limits

Exercise 1. Use only the definition of the limit of a function to show if $a \in \mathbb{R}$ then $\lim_{x \to a} x^2 = a^2$.

Exercise 2. Show that the function $f(x) = \sin(\frac{1}{x})$ does not have a limit at $x_0 = 0$.

Hint: Exhibit two sequences $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ converging to 0 such that $(f(x_n))_{n=1}^{\infty}$ and $(f(y_n))_{n=1}^{\infty}$ do not have the same limit and invoke the sequential characterization of limits.

Exercise 3. Let $x_0 \in \mathbb{R}$ and assume that $f: (a, b) \setminus \{x_0\} \to (c, d)$ with $x_0 \in (a, b)$ and $g: (c, d) \to \mathbb{R}$. Show taht if f has a limit at x_0 and $\lim_{x \to x_0} f(x) := \ell \in (c, d)$ and if g is continuous at ℓ then $g \circ f$ has a limit at x_0 and $\lim_{x \to x_0} g \circ f(x) := g(\lim_{x \to x_0} f(x))$.

Hint.

Exercise 4. Let $x_0 \in (a, b)$ and assume that $f: (a, b) \setminus \{x_0\} \to \mathbb{R}$. Assume that f has a limit at x_0 . If $\lim_{x \to x_0} f(x) \neq 0$ show that:

- 1. there exist $\alpha > 0$ an $\delta > 0$ such that if $|x x_0| < \delta$ and $x \neq x_0$ then $|f(x)| > \alpha$,
- 2. $\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{\lim_{x \to x_0} f(x)}$ without using the sequential characterization of limits.

Hint. For 1. find inspiration on the analogous result for sequences and for 2. use 1.. $\hfill \Box$

Exercise 5. Prove the comparison theorem for functions without using the sequential characterization of limits.

Hint. Find inspiration in the proof of the comparison theorem for sequences. \Box

Exercise 6. Prove the squeeze theorem for functions without using the sequential characterization of limits.

Hint. Find inspiration in the proof of the squeeze theorem for sequences. \Box

Exercise 7. Show that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$.

Hint. Show that $\cos(\theta) \leq \frac{\sin(\theta)}{\theta} \leq \frac{1}{\cos(\theta)}$ and use the squeeze theorem. \Box

Exercise 8. Prove the Squeeze Theorem for functions.

Hint: Either mimic the proof of the Squeeze Theorem for sequences of use the sequential characterization of limits together with the Squeeze Theorem for sequences. \Box

Exercise 9. Let $f: (a, b) \to \mathbb{R}, x_0 \in (a, b)$ and $\ell \in \mathbb{R}$. Show that,

 $\lim_{x \to x_0} f(x) = \ell \text{ if and only if } \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \ell.$

2 Continuity

Exercise 10. Let $x_0 \in \mathbb{R}$ and assume that $f: (a, b) \to (c, d)$ with $x_0 \in (a, b)$ and $g: (c, d) \to \mathbb{R}$. Show that if f is continuous at x_0 and if g is continuous at $f(x_0)$ then $g \circ f$ is continuous at x_0 .

Hint. You can exploit the definitions.

We define the notion of open set.

Definition 1 (Open set). A subset U of \mathbb{R} is open if for every $x \in U$ there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq U$.

Exercise 11. Let a < b. Show that (a, b) is open.

Hint. Exploit the definitions.

Exercise 12 (Characterization of continuity in terms of open sets). Let $f \colon \mathbb{R} \to \mathbb{R}$. Prove that f is continuous on \mathbb{R} if and only if for every open subset U of \mathbb{R} , $f^{-1}(U)$ is open.

Hint. Use the $\varepsilon - \delta$ definition of continuity and the previous exercise.

We now define the notion of compact set.

Definition 2 (Compact set). A subset K of \mathbb{R} is compact if every open cover of K admits a finite open subcover, i.e. if $K \subseteq \bigcup_{i \in I} U_i$ where U_i is open for all $i \in I$ then there exists $n \in \mathbb{N}$ and $i_1, \ldots, i_n \in I$ such that $K \subseteq \bigcup_{k=1}^n U_{i_k}$.

Exercise 13 (The continuous image of a compact set is compact). Let $f : \mathbb{R} \to \mathbb{R}$. be continuous. Prove that if K is compact, then f(K) is compact.

Hint. Use the previous exercise.

Exercise 14. [Converse of the Intermediate Value Theorem for increasing functions] Let $f: [a,b] \to \mathbb{R}$ be an increasing function such that f(a) < f(b) and whenever $f(a) < y_0 < f(b)$ there exists $x_0 \in (a,b)$ such that $f(x_0) = y_0$. Show that f is continuous on [a,b].

Hint. Use the definition of continuity and the monotonicity of the function. \Box

3 Applications of the Intermediate Value Theorem

Exercise 15. A function f is said to have a fixed point in [a, b] is there exist $c \in [a, b]$ such that f(c) = c. Let $f: [a, b] \to [a, b]$ be a continuous function. Show that f has a fixed point in [a, b].

Hint. Consider the function $g: [a, b] \to \mathbb{R}$ with g(x) = x - f(x).

Exercise 16. Let I be an interval and let $f: I \to \mathbb{R}$. Assume f is continuous on I and f is injective. Show that either f is strictly increasing or strictly decreasing on I.

Hint. Try a proof by contradiction. The key point is a correct negation of the statement "f is strictly increasing or strictly decreasing on I".

Exercise 17. Let $f: [a, b] \to \mathbb{R}$ be continuous and injective on [a, b], then f([a, b]) is a closed bounded interval and the inverse of f onto its image, $f^{-1}: f([a, b]) \to [a, b]$, is continuous.

Hint: Show that f^{-1} is strictly monotone using Exercise 16 and then use Exercise 14.

4 Uniform Continuity

Exercise 18. Show that the function $f(x) = x^2$ is uniformly continuous on (-1, 1) but not on \mathbb{R} .

Exercise 19. Show that the function $f(x) = \sin(\frac{1}{x})$ is not uniformly continuous on (0, 2).

Exercise 20. A function $f: [a, b] \to \mathbb{R}$ is Lipschitz if there exists C > 0 such that $|f(x_1) - f(x_2)| \leq C|x_1 - x_2|$ for all $x_1, x_2 \in [a, b]$. Show that f is uniformly continuous on [a, b].

Exercise 21. Let $f: (a, b) \to \mathbb{R}$ be uniformly continuous and $(x_n)_{n=1}^{\infty}$ a Cauchy sequence of elements in (a, b). Show that $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence.

Hint. It follows from the definitions.

Exercise 22. Let $f: (a, b) \to \mathbb{R}$. Show that f is uniformly continuous on (a, b) if and only if there is a continuous function $g: [a, b] \to \mathbb{R}$ which extends f, i.e. g satisfies g(x) = f(x) for all $x \in (a, b)$.

Hint. Use the previous exercise.

5 Applications of the Extreme Value Theorem

Exercise 23. Let $f : [0,1] \to \mathbb{R}$ be a continuous function and let $\varepsilon > 0$. Prove that there exists $n \in \mathbb{N}$ so that for $k = 1, \ldots, n$ we have

$$\sup\left\{f(x):\frac{k-1}{n}\leqslant x\leqslant \frac{k}{n}\right\}-\inf\left\{f(x):\frac{k-1}{n}\leqslant x\leqslant \frac{k}{n}\right\}<\varepsilon.$$

Hint. Use the Extreme Value Value Theorem and uniform continuity.

For the next exercise we recall the following definition.

Definition 3. Let $f : \mathbb{R} \to \mathbb{R}$. We say that f diverges to $+\infty$ when x tends to $+\infty$ if for all M > 0 there exists $x_0 \in \mathbb{R}$ such that for all $x > x_0$, f(x) > M. And we say that f diverges to $+\infty$ when x tends to $-\infty$ if for all M > 0 there exists $x_0 \in \mathbb{R}$ such that for all $x < x_0$, f(x) > M.

Exercise 24. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and assume that

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty.$$

Prove that there exists $x_m \in \mathbb{R}$ such that $f(x_m) = \inf\{f(x) : x \in \mathbb{R}\}$.

Hint. Use the Extreme Value Value Theorem.

6 Pathological functions

We start with a preliminary result that will be needed in a later exercise.

- *Exercise* 25 (Density of the irrationals in the reals). 1. Prove that $\sqrt{2}$ is irrational.
 - 2. Prove that the irrational are dense in \mathbb{R} , i.e. for every real number x < y there exists $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ so that $x < \alpha < y$.

Hint. For (2) use (1).

Exercise~26 (A function discontinuous everywhere). The Dirichlet function is defined on $\mathbb R$ by

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Prove that every point $x \in \mathbb{R}$ is a point of discontinuity of $\chi_{\mathbb{Q}}$.

Hint. Use the density of the irrationals to prove that every rational is a point of discontinuity. Use the density of the rationals to prove that every irrational is a point of discontinuity. \Box

Exercise 27 (A function discontinuous at every rational point but continuous at every irrational in (0, 1)). Let g be defined on \mathbb{R} by

$$g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \in \mathbb{Q} \text{ (in reduced form).} \end{cases}$$

Prove that g is discontinuous at every rational point but continuous at every irrational in (0, 1).

Hint. Use the density of the irrationals to prove discontinuity at every rational. To prove continuity at every irrational in (0, 1) consider the set $F = \{\frac{p}{q} : 0 < \frac{p}{q} < 1 \text{ and } 2 \leq q \leq N\}$ for some well chosen N.

Exercise 28 (A function discontinuous at every irrational point but continuous at every rational point). Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$ be an enumeration of the set of rational numbers (i.e. for each $q \in \mathbb{Q}$ there is exactly one $n \in \mathbb{N}$ such that $q = q_n$). Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by the rule

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{n} & \text{if } x \in \mathbb{Q} \text{ and } x = q_n. \end{cases}$$

Prove that f is continuous at x if and only if $x \in \mathbb{R} \setminus \mathbb{Q}$.

Hint. Show that for all $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ we have $\lim_{x \to x_0} f(x) = 0$. You might want to consider the set $F_N = \{q_n : 1 \leq n \leq N\}$ for some well chosen N.