MATH 409, Summer 2019, Practice Problem Set 3

F. Baudier (Texas A\&M University)

June 18, 2019

1 Limits

Exercise 1. Use only the definition of the limit of a function to show if $a \in \mathbb{R}$ then $\lim _{x \rightarrow a} x^{2}=a^{2}$.
Solution. Fix $\varepsilon>0$ and set $\delta=\min \left\{\frac{\varepsilon}{2|a|+1}, 1\right\}$. Then, if $x \in \mathbb{R}$ with $0<$ $|x-a|<\delta$, we have

$$
\begin{aligned}
\left|x^{2}-a^{2}\right| & =|x-a| \cdot|x+a|<\delta|(x-a)+2 a| \leqslant \delta(\delta+2|a|) \\
& \leqslant \delta(1+2|a|) \leqslant \frac{\varepsilon}{2|a|+1}(1+2|a|)=\varepsilon
\end{aligned}
$$

Exercise 2. Show that the function $f(x)=\sin \left(\frac{1}{x}\right)$ does not have a limit at $x_{0}=0$.

Hint: Exhibit two sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ converging to 0 such that $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ and $\left(f\left(y_{n}\right)\right)_{n=1}^{\infty}$ do not have the same limit and invoke the sequential characterization of limits.
Possible solution. For $n \geq 1$ let $x_{n}=\frac{1}{n \pi}$ and $y_{n}=\frac{1}{\frac{\pi}{2}+2 n \pi}$, then both $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ converge to 0 but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$ while $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=1$. By the sequential characterization of limits f does not have a limit at 0 .

Exercise 3. Let $x_{0} \in \mathbb{R}$ and assume that $f:(a, b) \backslash\left\{x_{0}\right\} \rightarrow(c, d)$ with $x_{0} \in(a, b)$ and $g:(c, d) \rightarrow \mathbb{R}$. Show that if f has a limit at x_{0} and $\lim _{x \rightarrow x_{0}} f(x):=\ell \in(c, d)$ and if g is continuous at ℓ then $g \circ f$ has a limit at x_{0} and $\lim _{x \rightarrow x_{0}} g \circ f(x):=$ $g\left(\lim _{x \rightarrow x_{0}} f(x)\right)$.

Hint.

Solution.

Exercise 4. Let $x_{0} \in(a, b)$ and assume that $f:(a, b) \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}$. Assume that f has a limit at x_{0}. If $\lim _{x \rightarrow x_{0}} f(x) \neq 0$ show that:

1. there exist $\alpha>0$ an $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ and $x \neq x_{0}$ then $|f(x)|>\alpha$,
2. $\lim _{x \rightarrow x_{0}} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow x_{0}} f(x)}$ without using the sequential characterization of limits.

Hint. For 1. find inspiration on the analogous result for sequences and for 2. use 1..

Solution. 1. Assume that $\lim _{x \rightarrow x_{0}} f(x)=\ell \neq 0$. Let $\varepsilon_{0}=\frac{|\ell|}{2}>0$, then there exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ and $x \neq x_{0}$ then $|f(x)-\ell|<\varepsilon_{0}$ and by reverse triangle inequality $|f(x)|>-\varepsilon_{0}+|\ell|=\frac{|\ell|}{2}>0$. So $\alpha=\frac{|\ell|}{2}$ will do.
2. Assume $\lim _{x \rightarrow x_{0}} f(x)=\ell \neq 0$, then by (1) there exist $\alpha>0$ an $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<\delta_{1}$ and $x \neq x_{0}$ then $|f(x)|>\alpha$. Let $\varepsilon>0$, then there exists $\delta_{2}>0$ such that if $\left|x-x_{0}\right|<\delta_{2}$ and $x \neq x_{0}$, then $|f(x)-\ell|<\varepsilon \alpha|\ell|$. For $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, if $\left|x-x_{0}\right|<\delta$ and $x \neq x_{0}$, then $\left|\frac{1}{f(x)}-\frac{1}{\ell}\right|=\left|\frac{\ell-f(x)}{f(x) \ell}\right|<\frac{|f(x)-\ell|}{\alpha|\ell|}<\varepsilon$.

Exercise 5. Prove the comparison theorem for functions without using the sequential characterization of limits.

Hint. Find inspiration in the proof of the comparison theorem for sequences.
Solution.

Exercise 6. Prove the squeeze theorem for functions without using the sequential characterization of limits.

Hint. Find inspiration in the proof of the squeeze theorem for sequences.
Solution.

Exercise 7. Show that $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$.
Hint. Show that $\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq \frac{1}{\cos (\theta)}$ and use the squeeze theorem.
Solution. By comparing areas of two triangles with ad-hoc side lengths and the area of a region subtended by and arc of angle θ in the trigonometric circle one can easily get the desired inequalities. We conclude by the squeeze theorem since $\lim _{\theta \rightarrow 0} \cos (\theta)=1$.

Exercise 8. Prove the Squeeze Theorem for functions.
Hint: Either mimic the proof of the Squeeze Theorem for sequences of use the sequential characterization of limits together with the Squeeze Theorem for sequences.

Exercise 9. Let $f:(a, b) \rightarrow \mathbb{R}, x_{0} \in(a, b)$ and $\ell \in \mathbb{R}$. Show that,

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell \text { if and only if } \lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell
$$

Hint. One implication is immediate the other one follows from the definitions.

Solution. If $\lim _{x \rightarrow x_{0}} f(x)=\ell$ then by definition of a two-sided limit we immediately have that $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell$. For the converse, assume that $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell$. Let $\varepsilon>0$, then there exists $\delta_{1}>0$ and $\delta_{2}>0$ such that for all $x \in(a, b)$ such that if $x_{0}<x<x_{0}+\delta_{1}$, then $|f(x)-\ell|<\varepsilon$ and if $x_{0}-\delta_{2}<x<x_{0}$, then $|f(x)-\ell|<\varepsilon$. Now take $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$. If $\left|x-x_{0}\right|<\delta$ and $x \neq x_{0}$, then $|f(x)-\ell|<\varepsilon$.

2 Continuity

Exercise 10. Let $x_{0} \in \mathbb{R}$ and assume that $f:(a, b) \rightarrow(c, d)$ with $x_{0} \in(a, b)$ and $g:(c, d) \rightarrow \mathbb{R}$. Show that if f is continuous at x_{0} and if g is continuous at $f\left(x_{0}\right)$ then $g \circ f$ is continuous at x_{0}.

Hint. You can exploit the definitions.
Solution.

We define the notion of open set.

Definition 1 (Open set). A subset U of \mathbb{R} is open if for every $x \in U$ there exists $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq U$.

Exercise 11. Let $a<b$. Show that (a, b) is open.
Hint. Exploit the definitions.

Exercise 12 (Characterization of continuity in terms of open sets). Let $f: \mathbb{R} \rightarrow$ \mathbb{R}. Prove that f is continuous on \mathbb{R} if and only if for every open subset U of \mathbb{R}, $f^{-1}(U)$ is open.

Hint. Use the $\varepsilon-\delta$ definition of continuity and the previous exercise.
Solution. Assume that f is continuous and let U be an open subset of \mathbb{R}. By definition $f^{-1}(U)=\{x \in \mathbb{R}: f(x) \in U\}$. If $f^{-1}(U)=\emptyset$ then $f^{-1}(U)$ is trivially open. Otherwise let $x \in f^{-1}(U)$, then $f(x) \in U$ and there exists $\varepsilon>0$ such that $(f(x)-\varepsilon, f(x)+\varepsilon) \subseteq U$. Thus, $f^{-1}((f(x)-\varepsilon, f(x)+\varepsilon)) \subseteq f^{-1}(U)$, but $f^{-1}((f(x)-\varepsilon, f(x)+\varepsilon))=\{y \in \mathbb{R}: f(x)-\varepsilon<f(y)<f(x)+\varepsilon\}=\{y \in$ $\mathbb{R}:|f(y)-f(x)|<\varepsilon\}$. By continuity of f at x there exists $\delta>0$ such that if $|y-x|<\delta$ then $|f(y)-f(x)|<\varepsilon$, which translated in terms of sets means that $\{y \in \mathbb{R}:|y-x|<\delta\} \subset\{y \in \mathbb{R}:|f(y)-f(x)|<\varepsilon\}$. In other words, for every $x \in f^{-1}(U)$ there exists $\delta>0$ such that $(x-\delta, x+\delta) \subset f^{-1}(U)$ and $f^{-1}(U)$ is open.

For the converse, assume that for every open subset U of $\mathbb{R}, f^{-1}(U)$ is open. Let $\varepsilon>0$ and $x_{0} \in \mathbb{R}$ and consider the set $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ which is open by (1). Note that $x_{0} \in f^{-1}\left(\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)\right)$ since $f\left(x_{0}\right) \in$ $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and hence there exists $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq$ $f^{-1}\left(\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)\right)$, which means that for every $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ one has $f(x) \in\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$, and f is continuous at x_{0}. Since x_{0} was fixed but arbitrary f is continuous on \mathbb{R}.

We now define the notion of compact set.
Definition 2 (Compact set). A subset K of \mathbb{R} is compact if every open cover of K admits a finite open subcover, i.e. if $K \subseteq \bigcup_{i \in I} U_{i}$ where U_{i} is open for all $i \in I$ then there exists $n \in \mathbb{N}$ and $i_{1}, \ldots, i_{n} \in I$ such that $K \subseteq \bigcup_{k=1}^{n} U_{i_{k}}$.

Exercise 13 (The continuous image of a compact set is compact). Let $f: \mathbb{R} \rightarrow \mathbb{R}$. be continuous. Prove that if K is compact, then $f(K)$ is compact.

Hint. Use the previous exercise.

Solution. Assume that K is compact and let $\left(U_{i}\right)_{i \in I}$ be an open covering of $f(K)$, i.e. $f(K) \subseteq \bigcup_{i \in I} U_{i}$ where U_{i} is open for all $i \in I$. Then, $K \subseteq$ $f^{-1}\left(\bigcup_{i \in I} U_{i}\right)=\bigcup_{i \in I} f^{-1}\left(U_{i}\right)$, and $\bigcup_{i \in I} f^{-1}\left(U_{i}\right)$ is an open covering of K. Indeed by (1) $f^{-1}\left(U_{i}\right)$ is open since f is continuous. By compactness of K there exists $n \in \mathbb{N}$ and $i_{1}, \ldots, i_{n} \in I$ such that $K \subseteq \bigcup_{k=1}^{n} f^{-1}\left(U_{i_{k}}\right)$ and $f(K) \subseteq \bigcup_{k=1}^{n} U_{i_{k}}$, and $f(K)$ is compact.

Exercise 14. [Converse of the Intermediate Value Theorem for increasing functions] Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function such that $f(a)<f(b)$ and whenever $f(a)<y_{0}<f(b)$ there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=y_{0}$. Show that f is continuous on $[a, b]$.

Hint. Use the definition of continuity and the monotonicity of the function.
Solution. Assume that f is increasing. Let $x_{0} \in(a, b)$ and $\varepsilon>0$. If $f(a) \geq$ $f\left(x_{0}\right)-\varepsilon$, let $c_{1}=a$ and notice that if $c_{1}<x<x_{0}$, then $0 \leq f\left(x_{0}\right)-$ $f(x) \leq f\left(x_{0}\right)-f(a) \leq \varepsilon$. Otherwise, let $y_{0}=f\left(x_{0}\right)-\varepsilon$ and thus $f(a)<y_{0}=$ $f\left(x_{0}\right)-\varepsilon<f\left(x_{0}\right) \leq f(b)$. Therefore, by assumption, there exists $c_{1} \in(a, b)$ such that $f\left(c_{1}\right)=y_{0}$. Since $f\left(c_{1}\right)=\alpha=f\left(x_{0}\right)-\varepsilon<f\left(x_{0}\right)$, it must be the case that $c_{1}<x_{0}$ as f is increasing. Furthermore, if $c_{1}<x<x_{0}$, then $0 \leq f\left(x_{0}\right)-f(x) \leq f\left(x_{0}\right)-f\left(c_{1}\right)=f\left(x_{0}\right)-y_{0}=f\left(x_{0}\right)-\left(f\left(x_{0}\right)-\varepsilon\right)=\varepsilon$. Hence in either case, there exists $c_{1} \in\left[a, x_{0}\right)$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon$ for all $x \in\left(c_{1}, x_{0}\right)$.

Now if $f(b) \leq f\left(x_{0}\right)+\varepsilon$, let $c_{2}=b$ and notice that if $x_{0}<x<c_{2}$ then $0 \leq f(x)-f\left(x_{0}\right) \leq f(b)-f\left(x_{0}\right) \leq \varepsilon$. Otherwise, $f(b)>f\left(x_{0}\right)+\varepsilon$, and let $y_{0}=f\left(x_{0}\right)+\varepsilon$. Therefore, by assumptions, there exists $c_{2} \in(a, b)$ such that $f\left(c_{2}\right)=y_{0}$. Since $f\left(c_{2}\right)=y_{0}=f\left(x_{0}\right)+\varepsilon>f\left(x_{0}\right)$, it must be the case that $c_{2}>x_{0}$ as f is increasing. Furthermore, if $c_{2}>x>x_{0}$, then $0 \leq f(x)-f\left(x_{0}\right) \leq f\left(c_{2}\right)-f\left(x_{0}\right)=y_{0}-f\left(x_{0}\right)=f\left(x_{0}\right)+\varepsilon-f\left(x_{0}\right)=\varepsilon$. Hence in either case, there exists $c_{2} \in\left(x_{0}, b\right]$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon$ for all $x \in\left(x_{0}, c_{2}\right)$. Therefore, if we let $\delta=\min \left\{x_{0}-c_{1}, c_{2}-x_{0}\right\}>0$ it follows that for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right),\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon$, and hence f is continuous at x_{0}. Continuity at a or b can be shown similarly.

3 Applications of the Intermediate Value Theorem

Exercise 15. A function f is said to have a fixed point in $[a, b]$ if there exists $c \in[a, b]$ such that $f(c)=c$. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Show that f has a fixed point in $[a, b]$.

Hint. Consider the function $g:[a, b] \rightarrow \mathbb{R}$ with $g(x)=x-f(x)$.

Possible solution. Define $g:[a, b] \rightarrow \mathbb{R}$ with $g(x)=x-f(x)$. Then g is continuous as the difference of continuous functions. As the image of $[a, b]$ under f is contained in $[a, b]$, we deduce $f(a) \geqslant a$ and therefore $g(a)=a-f(a) \leqslant 0$. Similarly, we obtain $g(b)=b-f(b) \geqslant 0$.

If it so happens that $g(a)=0$, then $f(a)=a$ and a is the desired number. Similarly, if $g(b)=0$ then $f(b)=b$ and b is the desired number. If neither of the above happens to be true, then $g(a)<0<g(b)$. Applying the intermediate value theorem to g, we conclude that there if $c \in(a, b)$ so that $g(c)=0$, i.e. $f(c)=c$.

Exercise 16. Let I be an interval and let $f: I \rightarrow \mathbb{R}$. Assume f is continuous on I and f is injective. Show that either f is strictly increasing or strictly decreasing on I.

Hint. Try a proof by contradiction. The key point is a correct negation of the statement " f is strictly increasing or strictly decreasing on I ".

Solution. Assume that f is continuous and injective on I. Assume by contradiction that f is neither strictly increasing nor strictly decreasing then there exist $x_{1}<x_{2}<x_{3}$ in I such that $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ and $f\left(x_{3}\right) \leq f\left(x_{2}\right)$ (or $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ and $f\left(x_{3}\right) \geq f\left(x_{2}\right)$) (why?). Since the proof for the latter case is similar to the proof of the former case we only treat the case where $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ and $f\left(x_{3}\right) \leq f\left(x_{2}\right)$. Since f is injective $f\left(x_{1}\right)<f\left(x_{2}\right)$ and $f\left(x_{3}\right)<f\left(x_{2}\right)$. Let α such that $f\left(x_{1}\right)<\alpha<f\left(x_{2}\right)$ and $f\left(x_{3}\right)<\alpha<f\left(x_{2}\right)$ (why such an α exists?). Since f is continuous on $\left[x_{1}, x_{2}\right.$], the IVT implies that there exists $c \in\left(x_{1}, x_{2}\right)$ such that $f(c)=\alpha$. Similarly, since f is continuous on $\left[x_{2}, x_{3}\right]$, the IVT implies that there exists $d \in\left(x_{2}, x_{3}\right)$ such that $f(d)=\alpha$ and thus $f(c)=f(d)$ for some $x_{1}<c<x_{2}<d<x_{3}$ which contradicts the injectivity of f. Therefore f is either strictly increasing or strictly decreasing.

Exercise 17. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and injective on $[a, b]$, then $f([a, b])$ is a closed bounded interval and the inverse of f onto its image, $f^{-1}: f([a, b]) \rightarrow$ $[a, b]$, is continuous.

Hint: Show that f^{-1} is strictly monotone using Exercise 16 and then use Exercise 14.

Proof. Note that f is either strictly increasing or strictly decreasing by Exercise 16. We will assume that f is strictly increasing as the proof in the case f is strictly decreasing will follow by similar arguments (or by considering $g=-f$). Since f is strictly increasing, we obtain $f(a)<f(b)$. Since f is continuous, we obtain by the Intermediate Value Theorem that $f([a, b])=[f(a), f(b)]$. We claim that f^{-1} is strictly increasing. To see this, suppose $y_{1}, y_{2} \in f([a, b])$ are
such that $y_{1}<y_{2}$. Choose $x_{1}, x_{2} \in[a, b]$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since $f\left(x_{1}\right)<f\left(x_{2}\right)$, it must be the case that $x_{1}<x_{2}$ as f was strictly increasing. Hence $f^{-1}\left(y_{1}\right)=f^{-1}\left(f\left(x_{1}\right)\right)=x_{1}<x_{2}=f^{-1}\left(f\left(x_{2}\right)\right)=f^{-1}\left(y_{2}\right)$. Hence f^{-1} is strictly increasing. Therefore, $f^{-1}:[f(a), f(b)] \rightarrow[a, b]$ is a strictly increasing function such that $f^{-1}([f(a), f(b)])=[a, b]$. Therefore f^{-1} is continuous by the converse of the Intermediate Value Theorem for monotone functions as f^{-1} satisfies the conclusions of the Intermediate Value Theorem.

4 Uniform Continuity

Exercise 18. Show that the function $f(x)=x^{2}$ is uniformly continuous on $(-1,1)$ but not on \mathbb{R}.

Solution. Let $\varepsilon>0$ and let $\delta=\frac{\varepsilon}{2}$. If $x, y \in(-1,1)$ are such that $|x-y|<\delta$, then $\left|x^{2}-y^{2}\right|=|x-y||x+y| \leq|x-y|(|x|+|y|) \leq 2|x-y|<2 \delta<\varepsilon$ and the function $x \mapsto x^{2}$ is uniformly continuous on $(-1,1)$. Now for every $n \in \mathbb{N}$, let $x_{n}=n$ and $y_{n}=n-\frac{1}{n}$. Then, $\left|x_{n}-y_{n}\right|=\left|n-\left(n-\frac{1}{n}\right)\right|=\frac{1}{n}$ but $\left|x_{n}^{2}-y_{n}^{2}\right|=\left|n^{2}-\left(n-\frac{1}{n}\right)^{2}\right|=\left|n^{2}-\left(n^{2}-2+\frac{1}{n^{2}}\right)\right|=2-\frac{1}{n^{2}} \geq 1$ and f is not uniformly continuous on \mathbb{R}.

Exercise 19. Show that the function $f(x)=\sin \left(\frac{1}{x}\right)$ is not uniformly continuous on (0,2).

Solution. Let $x_{n}=\frac{1}{2 \pi(n+1)}$ and $y_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n}$, for all $n \in \mathbb{N}$. Then for all $n \in \mathbb{N}$, $x_{n}, y_{n} \in(0,2)$, and $\left|x_{n}-y_{n}\right|=\frac{1}{\frac{\pi}{2}+2 \pi n}-\frac{1}{2 \pi(n+1)}=\frac{4}{2 \pi(1+4 n)}-\frac{1}{2 \pi(n+1)} \leq \frac{1}{2 \pi n}-$ $\frac{1}{4 \pi n}=\frac{1}{4 \pi n}$, but $\left|\sin \left(\frac{1}{x_{n}}\right)-\sin \left(\frac{1}{y_{n}}\right)\right|=\left|\sin (2 \pi(n+1))-\sin \left(\frac{\pi}{2}+2 \pi n\right)\right|=|0-1|=1$. Therefore, f is not uniformly continuous on (0,2)

Exercise 20. A function $f:[a, b] \rightarrow \mathbb{R}$ is Lipschitz if there exists $C>0$ such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq C\left|x_{1}-x_{2}\right|$ for all $x_{1}, x_{2} \in[a, b]$. Show that f is uniformly continuous on $[a, b]$.

Hint. It is straightforward from the definition.
Solution. Let $\varepsilon>0$ and let $\delta=\frac{\varepsilon}{C}$, then if $x, y \in[a, b]$ are such that $|x-y|<\delta$ then $|f(x)-f(y)| \leq C|x-y|<C \frac{\varepsilon}{C}=\varepsilon$.

Exercise 21. Let $f:(a, b) \rightarrow \mathbb{R}$ be uniformly continuous and $\left(x_{n}\right)_{n=1}^{\infty}$ a Cauchy sequence of elements in (a, b). Show that $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Hint. It follows from the definitions.
Solution. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence of element in (a, b) and $\varepsilon>0$. By uniform continuity of f, there exists $\delta>0$ such that for all $x, y \in(a, b)$, if $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$. Since $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy there exists $N \in \mathbb{N}$ such that for all $n, m \geq N,\left|x_{n}-x_{m}\right|<\delta$ and thus $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon$.

Exercise 22. Let $f:(a, b) \rightarrow \mathbb{R}$. Show that f is uniformly continuous on (a, b) if and only if there is a continuous function $g:[a, b] \rightarrow \mathbb{R}$ which extends f, i.e. g satisfies $g(x)=f(x)$ for all $x \in(a, b)$.

Hint. Use the previous exercise.
Solution. Assume that there is a continuous function $g:[a, b] \rightarrow \mathbb{R}$ which extends f. Then g is uniformly continuous on $[a, b]$ and thus on (a, b) and f being the restriction of g on (a, b) it is also uniformly continuous on (a, b). Assume now that f is uniformly continuous on (a, b). Define $g:(a, b) \rightarrow \mathbb{R}$ by $g(x)=$ $f(x)$. The function g is clearly continuous on (a, b). It remains to show that $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exist and are finite and set $g(a)=\lim _{x \rightarrow a^{+}} f(x)$ and $g(b)=\lim _{x \rightarrow b^{-}} f(x)$ to complete the proof. Let $\left(z_{n}\right)_{n=1}^{\infty}$ be a sequence in (a, b) that is convergent to a. Then $\left(x_{n}\right)_{n=1}^{\infty}$ is Cauchy and by the previous exercise $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty}$ is also Cauchy. Since every Cauchy sequence of real numbers is convergent $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty}$ converges to some real number ℓ_{z}. At this point we still need to justify that the limit does not depend on the sequence. Let $\left(z_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be sequence in (a, b) that converge to a and such that $\left(f\left(z_{n}\right)\right)_{n=1}^{\infty}$ converges to some real number ℓ_{z} and $\left(f\left(y_{n}\right)\right)_{n=1}^{\infty}$ converges to some real number ℓ_{y}. Let $\varepsilon>0$, and note that $\left|\ell_{z}-\ell_{y}\right| \leq\left|\ell_{z}-f\left(z_{n}\right)\right|+\left|f\left(z_{n}\right)-f\left(y_{n}\right)\right|+\left|f\left(y_{n}\right)-\ell_{y}\right|$. But there exists $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1},\left|\ell_{z}-f\left(z_{n}\right)\right|<\frac{\varepsilon}{3}, N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2},\left|\ell_{y}-f\left(y_{n}\right)\right|<\frac{\varepsilon}{3}$. There is also $N_{3} \in \mathbb{N}$ such that for all $n \geq N_{3},\left|f\left(z_{n}\right)-f\left(y_{n}\right)\right|<\frac{\varepsilon}{3}$. Indeed, since f is uniformly continuous on (a, b) there exists $\delta>0$ such that if $|x-y|<\delta$ then $|f(x)-f(y)|<\frac{\varepsilon}{3}$. Let $K_{1} \geq 1$ such that for all $n \geq K_{1},\left|x_{n}-a\right|<\frac{\delta}{2}$ and $K_{2} \geq 1$ such that $\left|y_{n}-a\right|<\frac{\delta}{2}$ then for $n \geq \max \left\{K_{1}, K_{2}\right\}$ one has $\left|x_{n}-y_{n}\right|<\delta$ and thus $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\frac{\varepsilon}{3}$. So if $N_{3}=\max \left\{K_{1}, K_{2}\right\}$ then for all $n \geq N_{3},\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\frac{\varepsilon}{3}$. Therefore, if $n \geq \max \left\{N_{1}, N_{2}, N_{3}\right\},\left|\ell_{z}-\ell_{y}\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$. We just proved that for all $\varepsilon>0,\left|\ell_{z}-\ell_{y}\right|<\varepsilon$ which implies that $\ell_{z}=\ell_{y}$. By sequential characterization of limits, $\lim _{x \rightarrow a^{+}} f(x)$ exists and is finite and we set $g(a)=\lim _{x \rightarrow a^{+}} f(x)$. The case of b is identical.

5 Applications of the Extreme Value Theorem

Exercise 23. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $\varepsilon>0$. Prove that there exists $n \in \mathbb{N}$ so that for $k=1, \ldots, n$ we have

$$
\sup \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\}-\inf \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\}<\varepsilon
$$

Hint. Use the Extreme Value Value Theorem and uniform continuity.
Solution. Since f is continuous on $[0,1]$, it is uniformly continuous on $[0,1]$. Hence, there exists $\delta>0$, that for all $x, y \in[0,1]$ with $|x-y|<\delta$, one has $|f(x)-f(y)|<\varepsilon$. By the Archimedean Property, there exists $n \in \mathbb{N}$, such that $1 / n \leqslant \delta$. We will show that this n satisfies the desired property.

Let $1 \leqslant k \leqslant n$. By the Extreme Value Theorem, there exist x_{0}, y_{0} in $[(k-1) / n, k / n]$, so that $f\left(x_{0}\right)=\sup \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\}$ and $f\left(y_{0}\right)=$ $\inf \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\}$. As $x_{0}, y_{0} \in[(k-1) / n, k / n]$, we have $\left|x_{0}-y_{0}\right|<$ $1 / n \leqslant \delta$ and therefore $\left|f\left(x_{0}\right)-f\left(y_{0}\right)\right|<\varepsilon$. In conclusion,

$$
\begin{aligned}
& \sup \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\}-\inf \left\{f(x): \frac{k-1}{n} \leqslant x \leqslant \frac{k}{n}\right\} \\
& =f\left(x_{0}\right)-f\left(y_{0}\right) \leqslant\left|f\left(x_{0}\right)-f\left(y_{0}\right)\right|<\varepsilon
\end{aligned}
$$

For the next exercise we recall the following definition.
Definition 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that f diverges to $+\infty$ when x tends to $+\infty$ if for all $M>0$ there exists $x_{0} \in \mathbb{R}$ such that for all $x>x_{0}, f(x)>M$. And we say that f diverges to $+\infty$ when x tends to $-\infty$ if for all $M>0$ there exists $x_{0} \in \mathbb{R}$ such that for all $x<x_{0}, f(x)>M$.

Exercise 24. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and assume that

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=+\infty
$$

Prove that there exists $x_{m} \in \mathbb{R}$ such that $f\left(x_{m}\right)=\inf \{f(x): x \in \mathbb{R}\}$.
Hint. Use the Extreme Value Value Theorem.
Solution. Let $y_{0}=f(0)$. Since $\lim _{x \rightarrow-\infty} f(x)=+\infty$, there exists $x_{1} \in \mathbb{R}$ such that for all $x<x_{1}, f(x)>y_{0}$ and since $\lim _{x \rightarrow \infty} f(x)=+\infty$, there exists $x_{2} \in \mathbb{R}$ such that and for all $x>x_{2}, f(x)>y_{0}$. One can clearly assume that $x_{1}<x_{2}$ and f being continuous on the sequentially compact interval $\left[x_{1}, x_{2}\right]$, by the EVT f attains its minimum, say $t \in \mathbb{R}$, at $x_{t} \in\left[x_{1}, x_{2}\right]$. Let $m=\min \left\{y_{0}, t\right\}=\min \{f(0), t\}$, then for all $x \in \mathbb{R}, f(x) \geq m$ and there exists
$x_{m} \in \mathbb{R}$ such that $f\left(x_{m}\right)=m$. Indeed, if $t \leq f(0)$ then $m=t$ and we simply take x_{m} to be x_{t}. Otherwise, $t>f(0)$ and $m=f(0)$ and we take x_{m} to be 0 . It remains to check that m is actually the infimum of f. Note that m is a lower bound. Assume that r is another lower bound, i.e. for all $x \in \mathbb{R}$, $f(x) \geq r$, then $m=f\left(x_{m}\right) \geq r$ and $m \geq r$. By definition of the infimum, $m=\inf \{f(x): x \in \mathbb{R}\}$.

6 Pathological functions

We start with a preliminary result that will be needed in a later exercise.
Exercise 25 (Density of the irrationals in the reals). 1. Prove that $\sqrt{2}$ is irrational.
2. Prove that the irrational are dense in \mathbb{R}, i.e. for every real number $x<y$ there exists $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ so that $x<\alpha<y$.

Hint. For (2) use (1).
Solution. 1. By contradiction.
2. Let $x<y$. Then $\frac{x}{\sqrt{2}}<\frac{y}{\sqrt{2}}$ and by the density of the rational in \mathbb{R}, there exists $q \in \mathbb{Q}$ such that $\frac{x}{\sqrt{2}}<q<\frac{y}{\sqrt{2}}$ and $x<\sqrt{2} q<y$. Let $\alpha=\sqrt{2} q$ then $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ (why?) and the conclusion follows.

Exercise 26 (A function discontinuous everywhere). The Dirichlet function is defined on \mathbb{R} by

$$
\chi_{\mathbb{Q}}(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

Prove that every point $x \in \mathbb{R}$ is a point of discontinuity of $\chi_{\mathbb{Q}}$.
Hint. Use the density of the irrationals to prove that every rational is a point of discontinuity. Use the density of the rationals to prove that every irrational is a point of discontinuity.

Solution. Let $x \in \mathbb{Q}$. By density of the irrationals in \mathbb{R}, for every $\delta>0$, there exists $y \in \mathbb{R} \backslash \mathbb{Q}$ such that $x-\delta<y<x+\delta$ but $\left|\chi_{\mathbb{Q}}(y)-\chi_{\mathbb{Q}}(x)\right|=|0-1|=1$. Therefore $\chi_{\mathbb{Q}}$ is not continuous at any rational point.

Let $x \in \mathbb{R} \backslash \mathbb{Q}$. By density of the rationals in \mathbb{R}, for every $\delta>0$, there exists $y \in \mathbb{Q}$ such that $x-\delta<y<x+\delta$ but $\left|\chi_{\mathbb{Q}}(y)-\chi_{\mathbb{Q}}(x)\right|=|1-0|=1$. Therefore $\chi_{\mathbb{Q}}$ is not continuous at any irrational point.

Exercise 27 (A function discontinuous at every rational point but continuous at every irrational in $(0,1))$. Let g be the Thomae's function, defined on \mathbb{R} by

$$
g(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ 1 & \text { if } x=0 \\ \frac{1}{q} & \text { if } x=\frac{p}{q} \in \mathbb{Q} \backslash\{0\} \text { (in reduced form) }\end{cases}
$$

Prove that g is discontinuous at every rational point but continuous at every irrational in $(0,1)$.

Hint. Use the density of the irrationals to prove discontinuity at every rational. To prove continuity at every irrational in $(0,1)$ consider the set $F=\left\{\frac{p}{q}: 0<\right.$ $\frac{p}{q}<1$ and $\left.2 \leqslant q \leqslant N\right\}$ for some well chosen N.

Solution. Assume $r=\frac{p}{q} \in \mathbb{Q}$ (in reduced form with $q \geq 1$). Then for every $\delta>0$, there exists $y \in \mathbb{R} \backslash \mathbb{Q}$ such that $r-\delta<y<r+\delta$ but $|g(y)-g(r)|=$ $\left|0-\frac{1}{q}\right|=\frac{1}{q}>0$. Therefore g is not continuous at any rational point.

Now if $x_{0} \in(\mathbb{R} \backslash \mathbb{Q}) \cap(0,1)$. We will show that $\lim _{x \rightarrow x_{0}} g(x)=0$ and hence g will be continuous at any irrational point in $(0,1)$ since by definition $g\left(x_{0}\right)=0$. Let $\varepsilon>0$, then by the Archimedean Principle there exists $N \in \mathbb{N}$ such that $\frac{1}{N} \leq \varepsilon$. Define $F=\left\{\frac{p}{q}: 0<\frac{p}{q}<1\right.$ and $\left.2 \leqslant q \leqslant N\right\}$. Remark that F is finite, indeed $F=\left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \ldots, \frac{1}{N}, \frac{2}{N}, \ldots, \frac{N-1}{N}\right\}$. Therefore $\delta=\min \left\{\left|x_{0}-z\right|: z \in F\right\}$ exists and it is strictly positive. We will show that it is the desired number.

Let $x \in(0,1)$ with $\left|x-x_{0}\right|<\delta$, with $x \neq x_{0}$. We will show that $|f(x)|<\varepsilon$. If x is irrational, then by definition $f(x)=0$ and hence the conclusion holds. Otherwise, x is rational, and then $x=\frac{p}{q}$. We will show that $q>N$. If this were not the case, then $x \in\left\{\frac{p}{q}: 0<\frac{p}{q}<1\right.$ and $\left.2 \leqslant q \leqslant N\right\}=F$ and therefore $\left|x-x_{0}\right| \geqslant \min \left\{\left|x_{0}-z\right|: z \in F\right\}=\delta$, which is absurd. We finally conclude that $|f(x)|=|1 / q| \leqslant 1 / N<\varepsilon$.

Exercise 28 (A function discontinuous at every rational point but continuous at every irrational point). Let $\mathbb{Q}=\left\{q_{n}: n \in \mathbb{N}\right\}$ be an enumeration of the set of rational numbers (i.e. for each $q \in \mathbb{Q}$ there is exactly one $n \in \mathbb{N}$ such that $\left.q=q_{n}\right)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by the rule

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ \frac{1}{n} & \text { if } x \in \mathbb{Q} \text { and } x=q_{n} .\end{cases}
$$

Prove that f is continuous at x if and only if $x \in \mathbb{R} \backslash \mathbb{Q}$.
Hint. Show that for all $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$ we have $\lim _{x \rightarrow x_{0}} f(x)=0$. You might want to consider the set $F_{N}=\left\{q_{n}: 1 \leqslant n \leqslant N\right\}$ for some well chosen N.

Solution. We will show that for all $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$ we have $\lim _{x \rightarrow x_{0}} f(x)=0$. By the definition of f, this will yield that $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} f(x)$ and thus f will be continuous at every irrational point.

Fix $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$ and let $\varepsilon>0$. We will find $\delta>0$ so that for all $x \in \mathbb{R}$ with $0<\left|x-x_{0}\right|<\delta$ we have $|f(x)-0|<\varepsilon$. By the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ with $N \in \mathbb{N}$ and $0<1 / N<\varepsilon$.

Define $F_{N}=\left\{q_{n}: 1 \leqslant n \leqslant N\right\}$. Then F_{N} is a non-empty finite set not containing x_{0} and therefore $\delta=\min \left\{\left|x_{0}-z\right|: z \in F_{N}\right\}$ exists and it is strictly positive. We will show that it is the desired number.

Let $x \in \mathbb{R}$ with $0<\left|x-x_{0}\right|<\delta$, in particular $x \neq x_{0}$. We will show that $|f(x)|<\varepsilon$. If x is irrational, then by definition $f(x)=0$ and hence the conclusion holds. Otherwise, x is rational and hence there exists a unique index m with $x=q_{m}$. We will show that $m>N$. If this were not the case, then $x \in\left\{q_{n}: 1 \leqslant n \leqslant N\right\} \cap\left(\mathbb{R} \backslash\left\{x_{0}\right\}\right)=F$ and therefore $\left|x-x_{0}\right| \geqslant \min \left\{\left|x_{0}-z\right|: z \in\right.$ $F\}=\delta$, which is absurd. We finally conclude that $|f(x)|=|1 / m| \leqslant 1 / N<\varepsilon$.

It remains to prove discontinuity at every rational point. Let $x \in \mathbb{Q}$ then $x=q_{n}$ for some $n \in \mathbb{N}$. Then for every $\delta>0$, there exists $y \in \mathbb{R} \backslash \mathbb{Q}$ such that $x-\delta<y<x+\delta$ (by density of the irrationals) but $|g(y)-g(x)|=\left|0-\frac{1}{n}\right|=$ $\frac{1}{n}>0$. Therefore g is not continuous at any rational point.

