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1 Differentiability

Exercise 1. Let x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0. Show that
f + g is differentiable at x0 and (f + g)

′
(x0) = f

′
(x0) + g

′
(x0).

Hint. Exploit the definition.

Solution. Assume that f and g are differentiable at x0. If h 6= 0, then

(f + g)(x0 + h)− (f + g)(x0)

h
=
f(x0 + h) + g(x0 + h)− (f(x0) + g(x0))

h

=
f(x0 + h)− f(x0) + g(x0 + h)− g(x0))

h

=
f(x0 + h)− f(x0)

h
+
g(x0 + h)− g(x0))

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0) and limh→0

g(x0+h)−g(x0)
h = g

′
(x0) by as-

sumption. Therefore, (f+g)(x0+h)−(f+g)(x0)
h has a limit when h tends to 0 and

(f + g) is differentiable at x0. Moreover,

(f + g)
′
(x0) = lim

h→0

(f + g)(x0 + h)− (f + g)(x0)

h

= lim
h→0

f(x0 + h)− f(x0)

h
+ lim
h→0

g(x0 + h)− g(x0)

h

= f
′
(x0) + g

′
(x0).

Exercise 2. Let λ ∈ R, x0 ∈ (a, b) and f, g : (a, b) → R differentiable at x0.
Show that λf is differentiable at x0 and (λf)

′
(x0) = λf

′
(x0).
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Hint. Exploit the definition.

Solution. Assume that f is differentiable at x0. If h 6= 0, then

(λ · f)(x0 + h)− (λ · f)(x0)

h
=
λf(x0 + h)− λf(x0)

h

= λ
f(x0 + h)− f(x0)

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0) by assumption. Therefore, (λ·f)(x0+h)−(λ·f)(x0)

h
has a limit when h tends to 0 and (λ · f) is differentiable at x0. Moreover,

(λ · f)
′
(x0) = lim

h→0

(λ · f)(x0 + h)− (λ · f)(x0)

h

= lim
h→0

λ
f(x0 + h)− f(x0)

h

= λf
′
(x0).

Exercise 3. Let x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0. Show that
f · g is differentiable at x0 and (f · g)

′
(x0) = f

′
(x0)g(x0) + f(x0)g

′
(x0).

Hint. Exploit the definition.

Solution. Assume that f and g are differentiable at x0. If h 6= 0, then

(f · g)(x0 + h)− (f · g)(x0)

h
=
f(x0 + h)g(x0 + h)− (f(x0)g(x0))

h

=
(f(x0 + h)− f(x0))g(x0 + h) + f(x0)(g(x0 + h)− g(x0))

h

=
f(x0 + h)− f(x0)

h
g(x0 + h) + f(x0)

g(x0 + h)− g(x0)

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0), limh→0

g(x0+h)−g(x0)
h = g

′
(x0) and limh→0 g(x0+

h) = g(x0) by assumption. Therefore, (f ·g)(x0+h)−(f ·g)(x0)
h has a limit when h

tends to 0 and (f · g) is differentiable at x0. Moreover,

(f · g)
′
(x0) = lim

h→0

(f · g)(x0 + h)− (f · g)(x0)

h

= lim
h→0

[
f(x0 + h)− f(x0)

h
g(x0 + h)] + f(x0) lim

h→0

g(x0 + h)− g(x0)

h

= f
′
(x0)g(x0) + f(x0)g

′
(x0).
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Exercise 4. Let f : [a, b]→ R be continuous and injective on [a, b]. Let g : f([a, b])→
[a, b] be the inverse of f onto its image. Show that if x0 ∈ (a, b) and f
is differentiable at x0 with f

′
(x0) 6= 0, then g is differentiable at f(x0) and

g
′
(f(x0)) = 1

f ′ (x0)
.

Hint: Use the sequential characterization limit and the fact the g is continuous.

Exercise 5. Let f : R → R be a periodic function with period T ∈ R (i.e.
f(x) = f(x + T ) for all x ∈ R). If f is differentiable, show that f ′ is periodic
with period T .

Hint: Exploit the definition of differentiability together with the periodicity
property.

2 Differentiability and uniform continuity

There are functions that are differentiable on some interval but not uniformly
continuous. Under certain circumstances uniform continuity can be proven from
differentiability and various addictional assumptions. Here are two examples.

Exercise 6. Let f : R → R be a differentiable function. If f ′ : R → R is
bounded, show that f is uniformly continuous.

Hint: You could show that f is Lipschitz.

Exercise 7. Let f, g : R→ R be differentiable functions so that g′(x) 6= 0 for all
x ∈ R and the function h : R → R with h(x) = f ′(x)/g′(x) is bounded. If g is
uniformly continuous, show that f is uniformly continuous as well.

Hint: You could observe (and justify) that |f(x)−f(y)| = |f(x)−f(y)|
|g(x)−g(y)| |g(x)−g(y)|

and use Cauchy’s mean value theorem.

3 Applications of the Mean Value Theorem

Exercise 8. Let f : (a, b)→ R. If f is differentiable on (a, b) with f
′
(x) = 0 for

all x ∈ (a, b), show that there exists α ∈ R such that f(x) = α for all x ∈ (a, b).

Hint. Use the Mean Value Theorem.
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Solution. Assume that f : (a, b) → R is differentiable on (a, b) with f
′
(x) = 0

for all x ∈ (a, b). Let x1 < x2 in (a, b). Since f is continuous on [x1, x2] and
differentiable on (x1, x2), by the MVT, there exists x0 ∈ (x1, x2) such that
f(x2)−f(x1)

x2−x1
= f

′
(x0) = 0 and thus f(x1) = f(x2). Pick c ∈ (a, b) and let

x ∈ (a, b), x 6= c then either x > c or x < c. In either case the above argument
shows that f(x) = f(c). If we set α = f(c) then it follows that for all x ∈ (a, b),
f(x) = α.

Exercise 9 (Decreasing function test). Let f : [a, b]→ R be continuous on [a, b]
and differentiable on (a, b). If f

′
(x) ≤ 0 for all x ∈ (a, b), then f is decreasing

on [a, b]. If f
′
(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b].

Hint: Mimic the proof of the increasing function test.

Possible solution. Let x1 < x2 in [a, b] then f is continuous on [x1, x2] and
differentiable on (x1, x2). By the MVT there exists c ∈ (x1, x2) such that

f
′
(c) = f(x2)−f(x1)

x2−x1
. But f

′
(c) ≤ 0 and thus f(x2) − f(x1) ≤ 0. Therefore for

every x1 < x2 in [a, b] one has f(x1) ≥ f(x2) and f is decreasing. In the case
where f

′
(c) < 0, then for every x1 < x2 in [a, b] one has f(x1) > f(x2) and f is

strictly decreasing.

Exercise 10 (First Derivative Test (existence of local maxima)). Let f : (a, b)→
R be differentiable on (a, b). Suppose c ∈ (a, b) has the property that there
exists δ > 0 such that

1. f
′
(x) exists and f

′
(x) ≥ 0 for all x ∈ (c− δ, c) ⊆ (a, b), and

2. f
′
(x) exists and f

′
(x) ≤ 0 for all x ∈ (c, c+ δ) ⊆ (a, b).

Show that f has a local maximum at c.

Hint: Mimic the proof of the First Derivative Test (existence of local minima).

Exercise 11 (Taylor’s Theorem for n = 2.). Let x0 ∈ (a, b) and f : (a, b) → R.
If f is 3 times differentiable on (a, b) and if x ∈ (a, b) \ {x0}, then there exists
cx ∈ (a, b) \ {x0} such that

f(x) = f(x0) + f
′
(x0)(x− x0) +

f
′′
(x0)

2
(x− x0)2 +

f (3)(cx)

6
(x− x0)3.
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Hint. Consider the functions g(t) = f(x) − f(t) − f ′(t)(x − t) − f
′′
(t)
2 (x − t)2

and h(t) = g(t)− ( x−t
x−x0

)3g(x0) and apply Rolle’s Theorem.

Solution. Let x > x0. Note that g(x) = 0 and thus h(x) = 0. Moreover, h(x0) =
g(x0)−g(x0) = 0 and h

′
(t) = g

′
(t)+3 1

x−x0
( x−t
x−x0

)2g(x0) = −f ′(t)−f ′′(t)(x−t)+

f
′
(t)− f(3)(t)

2 (x− t)2 + 2 f
′′
(t)
2 (x− t) + 3

x−x0
( x−t
x−x0

)2g(x0) = 3
x−x0

( x−t
x−x0

)2g(x0)−
f(3)(t)

2 (x− t)2. By Rolle’s Theorem there exists cx ∈ (x0, x) such that h
′
(cx) =

3
x−x0

( x−cxx−x0
)2g(x0)− f(3)(cx)

2 (x− cx)2 = 0. Therefore, f(x)− f(x0)− f ′(x0)(x−

x0)− f
′′
(x0)
2 (x− x0)2 − f(3)(cx)

6 (x− x0)3 = 0 and

f(x) = f(x0) + f
′
(x0)(x− x0) +

f
′′
(x0)

2
(x− x0)2 +

f (3)(cx)

6
(x− x0)3.

Exercise 12. If 0 < α ≤ 1, show that (1 + x)α ≤ 1 + αx for all x ∈ [−1,∞).

Hint. Consider the function f(t) = tα, t ∈ [0,∞).

Possible solution. Since f
′
(t) = αtα−1, it follows from the MVT that f(1+x)−

f(1) = f
′
(c) = αxcα−1 for some c ∈ (1, 1 + x). If x > 0, then c > 1 and since

α ≥ 1 implies α− 1 ≥ 0, it follows that cα−1 ≥ 1, hence xcα−1 ≥ x. Therefore,
we have that (1 + x)α = f(1 + x) = f(1) + αxcα−1 ≥ f(1) + αx = 1 + αx.

If −1 ≤ x ≤ 0, then c ≤ 1 so cα−1 ≥ 1, hence xcα−1 ≤ x as before since
x ≤ 0. Therefore, we still have that (1 + x)α = f(1 + x) = f(1) + αxcα−1 ≤
f(1) + αx = 1 + αx.

Exercise 13. If α ≥ 1, show that (1 + x)α ≥ 1 + αx for all x ∈ [−1,∞).

Hint. Consider the function f(t) = tα, t ∈ [0,∞).

Possible solution. Let f(t) = tα, t ∈ [0,∞). Since f
′
(t) = αtα−1, it follows

from the MVT that f(1 + x) − f(1) = f
′
(c) = αxcα−1 for some c ∈ (1, 1 + x).

If x > 0, then c > 1 and since 0 < α ≤ 1 implies α − 1 ≤ 0, it follows that
cα−1 ≤ 1, hence xcα−1 ≤ x. Therefore, we have that (1 + x)α = f(1 + x) =
f(1) + αxcα−1 ≤ f(1) + αx = 1 + αx.

If −1 ≤ x ≤ 0, then c ≤ 1 so cα−1 ≤ 1, hence xcα−1 ≥ x as before since
x ≤ 0. Therefore, we still have that (1 + x)α = f(1 + x) = f(1) + αxcα−1 ≥
f(1) + αx = 1 + αx.

5



4 Other applications

Exercise 14 (Bernoulli’s Inequality and approximation of e). Let α be a positive
real number.

1. Let (xn)∞n=1 be the sequence where xn = (1 + 1
n )n for all n ∈ N. Show

that (xn)∞n=1 is increasing.

2. Show that (xn)∞n=1 is bounded above by 3.

3. Show that (xn)∞n=1 is convergent to ` ∈ [2, 3].

4. Show that limx→0+
ln(1+x)

x = 1.

5. Show that limn→∞(1 + 1
n )n = e.

Hint. 1. You could use Exercise 12 with x = 1
n and α = n

n+1 .

2. You could use the Binomial Formula (x+ y)n =
∑n
k=0

(
n
k

)
xkyn−k and the

fact that 1
k! ≤

1
2k−1 .

3. You could use (1) and (2).

4. You could use L’Hôpital’s Rule.

5. You could use the sequential characterization of limits and (4).

Solution. 1. Let n ∈ N, and note that by (1) with x = 1
n and α = n

n+1 ,

(1+ 1
n )

n
n+1 ≤ (1+ n

n+1
1
n ) = (1+ 1

n+1 ). Therefore (1+ 1
n )n ≤ (1+ 1

n+1 )n+1,
i.e. (xn)∞n=1 is increasing.

2. By the Binomial Formula (1 + 1
n )n =

∑n
k=0

(
n
k

)
( 1
n )k1n−k, but

(
n
k

)
( 1
n )k =

n(n−1)...(n−k+1)
nk

1
k! ≤

1
k! ≤

1
2k−1 for all k ∈ N. And thus, 2 = (1 + 1

1 ) <

(1 + 1
n )n ≤ 1 + 1 +

∑n−1
k=1

1
2k

= 3− 1
2n−1 < 3.

3. By (1) and (2), (xn)∞n=1 is increasing and bounded above by 3. Since
by (3) xn ≥ 2, it follows from the MCT that (xn)∞n=1 is convergent to
` ∈ [2, 3].

4. Note that limx→0+ ln(1 + x) = limx→0+ x = 0, and x 7→ f(x) = ln(1 + x)
and x 7→ g(x) = x are differentiable on (0,∞) with g

′
(x) = 1 6= 0. Since

f
′
(x) = 1

1+x and limx→0+

1
1+x

1 = 1. It follows from L’Hôpital’s Rule, that

limx→0+
ln(1+x)

x = 1.

5. Note that ln[(1 + 1
n )n] = n ln(1 + 1

n ) =
ln(1+ 1

n )
1
n

and by the sequential

characterization of limits and (4) limn→∞ ln[(1 + 1
n )n] = 1. Since the

function x 7→ ex is continuous on R and by the sequential characterization
of limits one has that limn→∞ eln[(1+

1
n )n] = limn→∞(1 + 1

n )n = e1 = e.

6



The next exercise is Darboux’s Theorem, which can be seen as an interme-
diate value theorem for derivatives (which might not be continuous!).

Exercise 15 (Darboux’s Theorem). Let f : [a, b]→ R be a differentiable function
with f ′(a) < f ′(b). Show that for all y ∈ (f ′(a), f ′(b)) there exists c ∈ (a, b)
such that y = f ′(c).

Hint. You could consider the function ϕ(t) = f(t) − ty, and invoke the EVT,
together with Fermat’s Theorem.

Exercise 16 (Extension of the derivative). Let x0 ∈ (a, b), and f : (a, b) → R
be a continuous on (a, b) and differentiable on (a, b) \ {x0}. Let λ ∈ R. If
lim
x→x0

f ′(x) = λ, prove that f ′ is differentiable at x0 and f ′(x0) = λ.

Hint. You could use the MVT.
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