REAL ANALYSIS MATH 607 MIDTERM REVIEW PROBLEMS

Problem 1. You need to know the definitions of:

- (1) equivalence relations, partial orderings...
- (2) limsup, liminf for sets and functions...
- (3) algebras, σ -algebras, π -systems, elementary systems, Dynkin systems...
- (4) premeasures, outer measures, measures, σ -finite measures, completness of an algebra...
- (5) simple functions, measurable functions...

and the proofs of

- (1) Dynkin theorem and the lemmas leading to it,
- (2) the fundamental approximation lemma of measurable functions by simple functions,
- (3) the basic properties of the integral of nonnegative simple/measurable functions,
- (4) the monotone convergence theorem,
- (5) Fatou's lemma.

Problem 2. (1) Let X be a set and $\mathscr{E} = \{\{x\}: x \in X\}$. Show that

 $\mathcal{M}(\mathscr{E}) = \{A \in \mathscr{P}(X) : A \text{ is countable or } A^c \text{ is countable} \}.$

Problem 3. A family of sets $\mathcal{R} \subset \mathscr{P}(X)$ is called a ring if it is non-empty and closed under finite unions and differences. A ring that is closed under countable unions is called a σ -ring. Show the following assertions.

- (1) Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
- (2) If \mathcal{R} is a ring (resp. σ -ring), then \mathcal{R} is an algebra (resp. σ -algebra) iff $X \in \mathcal{R}$.
- (3) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
- (4) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Problem 4. Show that every σ -algebra has either finite or uncountably many elements.

Problem 5. Assume that the algebra \mathcal{A} generates the σ -algebra \mathcal{M} and assume that μ is a finite measure on \mathcal{M} . Show that for any $\varepsilon > 0$ and any $A \in \mathcal{M}$ there is an $\tilde{A} \in \mathcal{A}$ so that $\mu(A\Delta \tilde{A}) < \varepsilon$.

Problem 6. Let X be a nonempty set. A class $\mathscr{C} \subset \mathscr{P}(X)$ is monotone if

- (1) $(A_n)_{n \ge 1} \subset \mathscr{C}, A_n \subseteq A_{n+1} \text{ for all } n \ge 1 \implies \bigcup_{n=1}^{\infty} A_n \in \mathscr{C}.$ (2) $(A_n)_{n \ge 1} \subset \mathscr{C}, A_n \supseteq A_{n+1} \text{ for all } n \ge 1 \implies \bigcap_{n=1}^{\infty} A_n \in \mathscr{C}.$
- (a) (5 points) Show that for any $\mathscr{C} \subset \mathscr{P}(X)$ there exists a smallest monotone class, denoted mon(\mathscr{C}), that contains C.
- (b) (10 points) Show that a monotone algebra (i.e. an algebra that is monotone) is a σ -algebra.
- (c) (15 points) Show that if \mathscr{A} is an algebra, then $mon(\mathscr{A}) = \mathcal{M}(\mathscr{A})$.

Problem 7. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) = 1$.

- (1) Show that $|\mu(A \cap B) \mu(A)\mu(B)| \leq \sqrt{\mu(A)(1 \mu(A))\mu(B)(1 \mu(B))} \leq \frac{1}{4}$.
- (2) Show that $\mu(A \cap B) \mu(A)\mu(B) \leq \min\{\mu(A)(1-\mu(B)), \mu(B)(1-\mu(A))\}$.
- (3) Show that $\mu(A)\mu(B) \mu(A \cap B) \leq \min\{\mu(A)(1-\mu(A)), \mu(B)(1-\mu(B))\}$.

Problem 8. Assume (X, \mathcal{M}, μ) is a complete measure space.

- (a) (10 points) If $f: (X, \mathcal{M}, \mu) \to \mathbb{R}$ is measurable and $f = g \mu$ -almost everywhere (i.e. $\mu(\{f \neq g\}) = 0$ and we simply write μ -a.e.), then g is also measurable.
- (b) (10 points) If $f_n: (X, \mathcal{M}, \mu) \to \mathbb{R}$ is measurable for $n \in \mathbb{N}$, and $\lim_{n \to \infty} f_n = f \mu$ -a.e., then f is measurable.

Problem 9. Throughout this problem let $f: X \to Y$ be a function.

- (1) (5 points) If \mathcal{M} is a σ -algebra on X, is it true that $f(\mathcal{M}) \stackrel{\text{def}}{=} \{f(A) : A \in \mathcal{M}\}$ is a σ -algebra on Y?
- (2) (5 points) (Pushforward or direct-image σ -algebra) If \mathcal{M} is a σ -algebra on X, show that $\Sigma \stackrel{\text{def}}{=} \{B \subset Y : f^{-1}(B) \in \mathcal{M}\}$ is a σ -algebra on Y.
- (3) (5 points) (Transport Lemma) Let $\mathscr{C} \subset \mathscr{P}(Y)$. Show that $f^{-1}(\mathcal{M}(\mathscr{C})) = \mathcal{M}(f^{-1}(\mathscr{C}))$.
- (4) (5 points) Let \mathcal{M}_X be a σ -algebra on X and $\mathscr{C} \subset \mathscr{P}(Y)$. Use the transport lemma to show that f is $(\mathcal{M}_X, \mathcal{M}(\mathscr{C}))$ -mesurable if $f^{-1}(\mathscr{C}) \subset \mathcal{M}_X$.
- (5) (5 points) (Trace σ -algebra) Show that if $X \subset Y$, \mathcal{M} is a σ -algebra on Y, and f is the identity function, then $f^{-1}(\mathcal{M}) = \{X \cap A : A \in \mathcal{M}\}.$
- (6) (5 points) Show that if $X = Y \times Z$, \mathcal{M} is a σ -algebra on Y, and f is the canonical projection from $Y \times Z$ onto Y (i.e., f(y, z) = y), then $f^{-1}(\mathcal{M}) = \{A \times Z : A \in \mathcal{M}\}$.
- **Problem 10.** (1) For all $i \in I$, let $f_i: Y \to (Y_i, \mathcal{M}_i)$ where \mathcal{M}_i is a σ -algebra. Let \mathcal{M}_Y be the smallest σ -algebra making every map f_i , $(\mathcal{M}_Y, \mathcal{M}_i)$ -measurable. Let \mathcal{M}_X be a σ -algebra on X. Show that a map $f: (X, \mathcal{M}_X) \to (Y, \mathcal{M}_Y)$ is $(\mathcal{M}_X, \mathcal{M}_Y)$ -measurable if and only if for all $i \in I$, $f_i \circ f: (X, \mathcal{M}_X) \to (Y_i, \mathcal{M}_i)$ is $(\mathcal{M}_X, \mathcal{M}_Y)$ -measurable if and only if for all $i \in I$, $f_i \circ f: (X, \mathcal{M}_X) \to (Y_i, \mathcal{M}_i)$ is $(\mathcal{M}_X, \mathcal{M}_i)$ -measurable
- **Problem 11.** (1) Show that $\Sigma = \{A \in \mathscr{P}(\mathbb{R}) : A = -A\}$ is a σ -algebra. (2) Characterize the measurable functions from (\mathbb{R}, Σ) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

Problem 12. Show that a monotone function $f : \mathbb{R} \to \mathbb{R}$ is Borel.

Problem 13. Let $f: (X, \mathcal{A}, \mu) \to (Y, \mathcal{B})$ be measurable. Show that $\mu_f: \mathcal{B} \to [0, \infty]$ defined by $\mu_f(\mathcal{B}) = \mu(f^{-1}(\mathcal{B}))$ is a measure on \mathcal{B} .

Problem 14. Let $f: (X, \mathcal{M}, \mu) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be measurable.

- (1) Show that if $\mu(X) \neq 0$ then there exists $A \in \mathcal{M}$, $\mu(A) \neq 0$, such that f is bounded on A.
- (2) Show that if $\mu(\{f \neq 0\}) \neq 0$ then there exists $A \in \mathcal{M}$, $\mu(A) \neq 0$, and c > 0 such that $|f| \ge c$ on A.

Problem 15. For all $n \ge 1$, let $f_n: (X, \mathcal{M}, \mu) \rightarrow [0, \infty]$ be measurable.

- (1) Show that $\int_X \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.
- (2) Let $(a_{n,m})_{n \in \mathbb{N}, m \in \mathbb{N}} \subset [0, \infty)$. Show that $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m}$.