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Chapter 1

Introduction

In this introductory chapter we review the concept of function, the principle of
mathematical induction, and the well-ordering principle. We assume that the
reader is familiar with basic logic and set theory material from MATH 220. We
also take the opportunity to prove a few statements and thus review a few proof
techniques (double inclusion proofs, proof by contradiction...).

1.1 Functions

We recall some important definitions about functions.

1.2 Definition and Basic Properties

A function between two sets is a correspondence between elements of these two
sets that enjoy some special properties.

Definition 1: Functions

Let X and Y be nonempty sets. A function from X to Y is a correspon-
dence that assigns to every element in X one and only one element in
Y . Formally, a function from X to Y is a subset F ⊆ X × Y such that

[(∀x ∈ X)(∃!y ∈ Y ) (x, y) ∈ F ].

Note that the logical formula [(∀x ∈ X)(∃!y ∈ Y ) (x, y) ∈ F ] is equivalent
to the logical formula

[(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ F ]

∧

[(∀x ∈ X)[((x, y1) ∈ F ) ∧ ((x, y2) ∈ F )] =⇒ (y1 = y2)]].
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Remark 1

Since functions play a central role in set theory and in mathematics in
general we use a specific terminology. A function is usually denoted by
f (instead of F ) and we write f : X → Y to say that f is a function
from X to Y (instead of F ⊆ X × Y ). Since for every x ∈ X there is
a unique element y ∈ Y such that (x, y) ∈ F , we prefer a much more
convenient functional notation. Therefore, we will denote by f(x) the
unique element that is in correspondence with x. If f(x) = y we say that
y is the image of x or that x is the preimage of y. We call X the domain
of f and Y the codomain.

To show that a correspondence f : X → Y is a function we must check that

(∀x ∈ X)(∃y ∈ Y )[f(x) = y]

and

(∀x1 ∈ X)(∀x2 ∈ X)[(x1 = x2) =⇒ (f(x1) = f(x2))].

We now define what it means for two functions to be equal.

Definition 2: Equality for functions

Two functions f1 : X1 → Y1 and f2 : X2 → Y2 are equal, denoted f1 = f2,
if they have the same domain, the same codomain and their actions on
elements in X are the same. Formally,

f1 = f2 ⇐⇒ (X1 = X2) ∧ (Y1 = Y2) ∧ ((∀z ∈ X1)[f1(z) = f2(z)]).

The next definition introduces the concept of image, or range, of a function.

Definition 3: Image (or range) of a function

Let f : X → Y be a function. The image (or the range) of the function
f is the set, denoted Im(f), of all elements in the codomain that are the
image of an element in the domain. Formally,

Im(f) = {f(x) | x ∈ X} = {y ∈ Y | (∃x ∈ X)[y = f(x)]}.

Remark 2

The image of a function is a subset of the codomain of the function. It
follows from the definition that

y ∈ Im(f) ⇐⇒ (∃x ∈ X)[y = f(x)].

The next definition introduces the concept of graph of a function.
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Definition 4: Graph of a function

Let X and Y be nonempty sets and f : X → Y be a function. The graph
of the function f is the set, denoted Gf , of all ordered pairs (x, y) of
elements x ∈ X and y ∈ Y that are in correspondence. Formally,

Gf = {(x, y) ∈ X × Y | y = f(x)}.

Remark 3

The graph of a function is a subset of the Cartesian product of its domain
with its codomain. It follows from the definition that

z ∈ Gf ⇐⇒ (∃x ∈ X)[z = (x, f(x))].

Remark 4

Let X and Y be nonempty sets. We denote F (X,Y ) = {f | f : X → Y },
the set of all functions from X to Y . If X = Y , we simply write F (X).

1.3 Composition of Functions

Assume we are given two functions f and g. If the codomain of f coincides with
the domain of g then it is make sense to look at what element is obtained if we
first apply f and then g to an element in the domain of f . This procedure gives
a function from the domain of f in the codomain of g.

Definition 5: Composition of functions

Let X,Y, Z be nonempty sets, and let f : X → Y , g : Y → Z. We
define a function g ◦ f : X → Z, called the composition of f and g, by
g ◦ f(x) = g(f(x)), ∀x ∈ X.

Note that for the composition to be defined we just need the image of f to
be a subset of the domain of g.

Remark 5

In general, g ◦ f 6= f ◦ g and the composition is not a commutative
operation! Indeed, consider the function f : R→ R defined for all x ∈ R
by f(x) = 3x and the function g : R → R defined for all x ∈ R by
g(x) = x2. It is easy to see that g ◦ f and f ◦ g have the same domain
and codomain, but for instance g ◦ f(1) = 9 6= 3 = f ◦ g(1).

The composition operation is associative.
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Proposition 1: Associativity of the composition

Let W,X, Y, Z be nonempty sets. Let f : W → X, g : X → Y , and
h : Y → Z. Then, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof. Observe that W is the domain of both (h◦g)◦f and h◦ (g ◦f), and that
Z is the codomain of both (h ◦ g) ◦ f and h ◦ (g ◦ f). It remains to show that for
all w ∈W , ((h ◦ g) ◦ f)(w) = (h ◦ (g ◦ f))(w). By definition of the composition
operation it follows that if x ∈ X then

((h ◦ g) ◦ f)(w) = (h ◦ g)(f(w)) = h(g(f(w)))

and

(h ◦ (g ◦ f))(w) = h((g ◦ f)(w)) = h(g(f(w))).

Therefore, ((h◦g)◦f)(w) = h(g(f(w))) = (h◦ (g ◦f))(w) and the two functions
are equal.

1.4 Surjective and Injective Functions

1.4.1 Definitions and examples

A surjective function (or onto function) is a function whose image fills in com-
pletely the codomain.

Definition 6: Surjective function

Let X and Y be nonempty sets. A function f : X → Y is surjective (or
onto, or a surjection) if every element in the codomain of f admits a
preimage in the domain of f . Formally,

f : X → Y is surjective ⇐⇒ (∀y ∈ Y )(∃x ∈ X)[y = f(x)].

The following proposition is a characterization of surjectivity in terms of the
image of the function.

Proposition 2: Characterization of surjectivity in terms of the
image

Let X and Y be nonempty sets. Let f : X → Y be a function. Then, f
is surjective if and only if Im(f) = Y .

Proof. We know that Im(f) ⊆ Y always holds, but the definition of injectivity
says that Y ⊆ Im(f). Therefore Y = Im(f).

A function is injective (or one-to-one often abbreviated as 1 − 1) if no two
distinct elements in the domain are assigned the same element in the codomain.
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Definition 7: Injective function

Let X and Y be nonempty sets. A function f : X → Y is injective (or
one-to-one, or an injection) if every two distinct elements in the domain
have distinct images in the codomain. Formally,

f : X → Y is injective

⇐⇒
(∀x1 ∈ X)(∀x2 ∈ X)[¬(x1 = x2) =⇒ ¬(f(x1) = f(x2))].

Remark 6

In practice, to show that a function is injective we need to prove ei-
ther one of the following two logically equivalent statements (the second
statement is the contrapositive of the first statement.):

• for all x1, x2 ∈ X if x1 6= x2 then f(x1) 6= f(x2).

• for all x1, x2 ∈ X if f(x1) = f(x2) then x1 = x2.

Definition 8: Bijective function

Let X and Y be nonempty sets. Let f : X → Y be a function. Then f is
bijective (or a bijection) if f is both injective and surjective. In the case
where X = Y a bijection is simply called a permutation.

1.4.2 Injectivity, surjectivity and composition

In this section we show that injectivity, surjectivity, and bijectivity are stable
under composition.

Proposition 3: Stability of injectivity under composition

Let W,X, Y be nonempty sets. Let f : W → X, g : X → Y . If f and g
are injective, then g ◦ f is also injective.

Proof. Assume that f and g are injective. Let w1, w2 ∈W such that g◦f(w1) =
g ◦ f(w2), then g(f(w1)) = g(f(w2)) (by definition of the composition) and
f(w1) = f(w2) (by injectivity of g). Now it follows from the injectivity of f
that w1 = w2, and g ◦ f is injective.

Proposition 4: Stability of surjectivity under composition

Let W,X, Y be nonempty sets. Let f : W → X, g : X → Y . If f and g
are surjective, then g ◦ f is also surjective.
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Proof. Assume that f and g are surjective. Let y ∈ Y , then there exists x ∈ X
such that g(x) = y (by surjectivity of g). Since x ∈ X, there exists w ∈ W
such that x = f(w) (by surjectivity of f). And hence, y = g(x) = g(f(w)) =
g ◦ f(w) (by definition of the composition). We have just shown that for every
y ∈ Y there exists w ∈ W such that y = g ◦ f(w), which means that g ◦ f is
surjective.

Proposition 5: Stability of bijectivity under composition

Let W,X, Y be nonempty sets. Let f : W → X, g : X → Y . If f and g
are bijective, then g ◦ f is also bijective.

Proof. Assume that f and g are bijective, then in particular they are both
injective . By Theorem 15, g ◦ f is then injective. A similar reasoning using
Theorem 16 will show that g ◦ f is surjective, and hence g ◦ f is bijective.

1.5 Invertible Functions

In this section we take a look at those functions whose actions can be “undone”.

Definition 9: Invertibility

Let X,Y be nonempty sets. Let f : X → Y be a function. We say that
f is invertible (or admits an inverse) if there exists a function g : Y → X
such that f ◦ g = iY and g ◦ f = iX .

Being invertible is closely connected to being bijective. Indeed, as we will
see shortly invertibility and bijectivity are actually equivalent notions! The goal
of this section is to prove this equivalence.

Theorem 1

Let X,Y be nonempty sets. Let f : X → Y be a function. If f is
invertible then f is injective.

Proof. Assume that f is invertible. Then there is a function g : Y → X such
that g ◦ f = iX and f ◦ g = iY . If x1, x2 ∈ X and f(x1) = f(x2), then
x1 = g(f(x1)) = g(f(x2)) = x2. Thus f is injective.

It follows from the injectivity of invertible functions that the inverse of an
invertible function is uniquely determined.

Proposition 6: Uniqueness of the inverse

Let X and Y be nonempty sets. Let f : X → Y be a function. If f is
invertible then f has a unique inverse.
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Proof. Let f : X → Y be a function. Our goal is to show that if there are
two functions g1, g2 : Y → X such that f ◦ g1 = iY , g1 ◦ f = iX , f ◦ g2 = iY ,
and g2 ◦ f = iX , then g1 = g2. Let y ∈ Y then (f ◦ g1)(y) = iY (y) = y and
(f ◦ g2)(y) = iY (y) = y, thus (f ◦ g1)(y) = (f ◦ g2)(y). It follows from the
definition of the composition that f(g1(y)) = f(g2(y)) and since f is invertible,
f is injective (Theorem 15) and hence g1(y) = g2(y). Therefore, g1 = g2.

Remark 7

If f is invertible, by Proposition 20 the unique function satisfying the
conditions of the definition is called the inverse of f and is denoted f−1.

Proposition 7: Stability of invertibility under composition

Let X,Y, Z be nonempty sets. Let f : X → Y and g : Y → Z be invert-
ible functions. Then g◦f : X → Z is invertible and (g◦f)−1 = f−1◦g−1.

Proof. Let g−1 and f−1 be the inverses of g and f respectively. It follows from
the associativity of the composition operation that,

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ f−1) ◦ g−1

= g ◦ iY ◦ g−1

= g ◦ g−1

= iZ

and similarly,

(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ (g−1 ◦ g) ◦ f)

= f−1 ◦ iY ◦ f)

= f−1 ◦ f
= iX .

Therefore, g ◦ f is invertible and (g ◦ f)−1 = f−1 ◦ g−1.

Theorem 2

Let X,Y be nonempty sets. Let f : X → Y be a function. If f is
invertible then f is surjective.

Proof. Assume that f is invertible. Then there is a function g : Y → X such
that g ◦f = iX and f ◦g = iY . Let y ∈ Y , and put x = g(y). Then by definition
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of g, one has x ∈ X, and thus

f(x) = f(g(y)) (because f is a function)

= (f ◦ g)(y) (by definition of the composition)

= iY (y) (since f ◦ g(y) = iY (y) by our assumption)

= y (by definition of the identity function on Y.)

Therefore f is surjective.

Theorem 3

Let X,Y be nonempty sets. Let f : X → Y be a function. If f is bijective
then f is invertible.

Proof. Assume f is bijective. Given y ∈ Y , since f is surjective there is some
x ∈ X such that y = f(x), and since f is injective this x is unique. Indeed if
there are x1, x2 ∈ X such that f(x1) = y = f(x2), then x1 = x2 by injectivity
of f . So for every y ∈ Y there is a unique xy ∈ X such that y = f(xy). We will
define a function g : Y → X by assigning to every element y ∈ Y to the unique
element xy ∈ X such that f(xy) = y, i.e. g(y) = xy. By uniqueness of xy, g is
a function.

Given y ∈ Y , then g(y) = xy where f(xy) = y, and thus f(g(y)) = f(xy) = y
(since f is a function). It follows from the definition of the composition that
(f ◦ g)(y) = y, and by definition of the identity function that (f ◦ g)(y) = iY (y).
Since y ∈ Y was arbitrary, one has f ◦ g = iY .

It remains to show that (g ◦ f) = iX . Now given x ∈ X, g(f(x)) is the
element x0 ∈ X such that f(x0) = f(x). That is, g(f(x)) = x0 = x, since f is
injective. Thus g ◦ f = iX , and therefore f is invertible.

Combining the last three theorems we obtain the following corollary.

Corollary 1

Let X and Y be nonempty sets. Let f : X → Y . Then,

f is invertible if and only if f is bijective.

Proof. Assume that f is invertible, then it follows by Theorem 15 that f is
injectve and by Theorem 16 that f is surjective. Therefore, f is bijective. The
converse is Theorem 17.

We can also define the notion of right/left-inverse of a function.

Definition 10: Right-inverse

Let X,Y be nonempty sets. Let f : X → Y be a function. We say that
f is right-invertible (or admits a right-inverse) if there exists a function
g : Y → X such that f ◦ g = iY .
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Definition 11: Left-inverse

Let X,Y be nonempty sets. Let f : X → Y be a function. We say that
f is left-invertible (or admits a left-inverse) if there exists a function
g : Y → X such that g ◦ f = iX .

1.6 Functions and Sets

Recall that the image of a function f : X → Y is the set Im(f) = {y ∈ Y | (∃x ∈
X)[y = f(x)]}. We generalize this concept in the following definition.

Definition 12: Direct image of a set

Let X,Y be nonempty sets. Let f : X → Y be a function. If Z ⊆ X,
the image of Z under f is the set, denoted f(Z), of all elements in the
codomain that are the image of at least one element in Z. Formally,

f(Z) = {y ∈ Y | (∃z ∈ Z)[y = f(z)]}.

Remark 8

• Note that f(X) is simply the image of f , i.e., Im(f) = f(X).

• It follows from the definition that

v ∈ f(Z) ⇐⇒ (∃z ∈ Z) [v = f(z)].

The following proposition states that inclusion is preserved under taking
direct images.

Proposition 8

Let X,Y be nonempty sets. Let f : X → Y be a function. Let W and
Z be subsets of X. If W ⊆ Z, then f(W ) ⊆ f(Z)

Proof. If f(W ) is empty then the conclusion holds. Otherwise, let v ∈ f(W )
then there exists w ∈W such that v = f(w) (by definition of the direct image).
But since W ⊆ Z it follows that w ∈ Z and thus v ∈ f(Z) (by definition of the
direct image). Therefore, f(W ) ⊆ f(Z).

The following proposition states that the direct image of an union is the
union of the direct images.

Proposition 9

Let X,Y be nonempty sets. Let f : X → Y be a function and W and Z
be subsets of X. Then, f(W ∪ Z) = f(W ) ∪ f(Z)

Proof. The proof is a classical double inclusion argument (and we do not include
below the trivial cases when the sets are empty).
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• We first show that f(W ∪ Z) ⊆ f(W ) ∪ f−1(Z). Let y ∈ f(W ∪ Z),
then there exists x ∈ W ∪ Z such that y = f(x) (by definition of the
image) thus y = f(x) for some x ∈ W or y = f(x) for some x ∈ Z (by
definition of the union) and hence y ∈ f(W ) or y ∈ f(Z) (by definition of
the image) and y ∈ f(W ) ∪ f(Z) (by definition of the union). Therefore
f(W ∪ Z) ⊆ f(W ) ∪ f(Z).

• Now we show that f(W ) ∪ f(Z) ⊆ f(W ∪ Z)]. Let y ∈ f(W ) ∪ f(Z),
then y ∈ f(W ) or y ∈ f(Z) (by definition of the union) thus y = f(x) for
some x ∈W or y = f(x) for some x ∈ Z (by definition of the image) and
y = f(x) for some x ∈W∪Z (by definition of the union) thus y ∈ f(W∪Z)
(by definition of the inverse image). Therefore f(W )∪ f(Z) ⊆ f(W ∪Z).

The situation is slightly different as far as intersection is concerned.

Proposition 10

Let X,Y be nonempty sets. Let f : X → Y be a function and W and Z
be subsets of X. Then,

f(W ∩ Z) ⊆ f(W ) ∩ f(Z).

Proof. Let y ∈ f(W ∩ Z), then there exists x ∈ W ∩ Z such that y = f(x) (by
definition of the image), thus y = f(x) for some x ∈ W and y = f(x) for some
x ∈ Z (by definition of the intersection), and hence y ∈ f(W ) and y ∈ f(Z) (by
definition of the image), and y ∈ f(W )∩f(Z) (by definition of the intersection).
Therefore f(W ∩ Z) ⊆ f(W ) ∩ f(Z).

Definition 13: Inverse image of a set

Let X and Y be nonempty sets and let f : X → Y be a function. Let
Z be a subset of Y . Then the inverse image of Z with respect to the
function f , denoted f−1(Z), is the set of all elements in X that have
their image in Z. Formally,

f−1(Z) := {x ∈ X | f(x) ∈ Z}.

Remark 9

• In this context the symbol f−1 does not refer to the inverse of the
function f (which might not exist in the first place).

• If follows from the definition that v ∈ f−1(Z) ⇐⇒ f(v) ∈ Z.

The following proposition states that inclusion is preserved under taking
inverse images.
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Proposition 11

Let X,Y be nonempty sets. Let f : X → Y be a function. Let W and
Z be subsets of Y . If W ⊆ Z, then f−1(W ) ⊆ f−1(Z)

Proof. If f−1(W ) is empty then the conclusion holds. Otherwise, let v ∈
f−1(W ) then f(v) ∈ W and it follows from W ⊆ Z that f(v) ∈ Z, and hence
v ∈ f−1(Z). Therefore, f−1(W ) ⊆ f−1(Z).

The following proposition states that the inverse image of an union is the
union of the inverse images.

Proposition 12

Let X and Y be nonempty sets and let f : X → Y be a function. Let W
and Z be subsets of Y . Then,

f−1(W ∪ Z) = f−1(W ) ∪ f−1(Z).

Proof. The proof is a classical double inclusion argument.

• We first show the inclusion f−1(W ∪ Z) ⊆ f−1(W ) ∪ f−1(Z). Let x ∈
f−1(W ∪ Z), then f(x) ∈ W ∪ Z (by definition of the inverse image)
thus f(x) ∈ W or f(x) ∈ Z (by definition of the union) and hence
x ∈ f−1(W ) or x ∈ f−1(Z) (by definition of the inverse image) and
x ∈ f−1(W ) ∪ f−1(Z) (by definition of the union). Therefore f−1(W ∪
Z) ⊆ f−1(W ) ∪ f−1(Z).

• Then we show that f−1(W )∪ f−1(Z) ⊆ f−1(W ∪Z)]. Let x ∈ f−1(W )∪
f−1(Z), then x ∈ f−1(W ) or x ∈ f−1(Z) (by definition of the union)
and f(x) ∈W or f(x) ∈ Z (by definition of the inverse image) and hence
f(x) ∈ W ∪ Z (by definition of the union) thus x ∈ f−1(W ∪ Z) (by
definition of the inverse image). Therefore f−1(W ) ∪ f−1(Z) ⊆ f−1(W ∪
Z).

The following proposition states that the inverse image of an intersection is
the intersection of the inverses images.

Proposition 13

Let X and Y be nonempty sets and let f : X → Y be a function. Let W
and Z be subsets of Y . Then,

f−1(W ∩ Z) = f−1(W ) ∩ f−1(Z).

Proof. The proof is a classical double inclusion argument.
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• First the inclusion f−1(W ∩Z) ⊆ f−1(W )∩f−1(Z)]. Let x ∈ f−1(W ∩Z),
then f(x) ∈W ∩Z (by definition of the inverse image) thus f(x) ∈W and
f(x) ∈ Z (by definition of the intersection) and hence x ∈ f−1(W ) and x ∈
f−1(Z) (by definition of the inverse image) and x ∈ f−1(W )∩f−1(Z) (by
definition of the intersection). Therefore f−1(W ∩Z) ⊆ f−1(W )∩f−1(Z).

• Then, the inclusion f−1(W )∩ f−1(Z) ⊆ f−1(W ∩Z)]. Let x ∈ f−1(W )∩
f−1(Z), then x ∈ f−1(W ) and x ∈ f−1(Z) (by definition of the intersec-
tion) and f(x) ∈W and f(x) ∈ Z by definition of the inverse image, and
hence f(x) ∈W∩Z (by definition of the intersection) thus x ∈ f−1(W∩Z)
(by definition of the inverse image). Therefore f−1(W ) ∩ f−1(Z) ⊆
f−1(W ∩ Z).

1.7 Principle of Mathematical Induction

The principle of mathematical induction is a very powerful tool to deal with
infinite objects and to prove rigorously infinitely many (in the sense that they
can be enumerated) statements. In a very general form the principle can be
stated as follows.

Theorem 4: Principle of Mathematical Induction

Let P (n) be a predicate where the variable takes integer values. Suppose
that there exists k0 ∈ Z such that

P (k0) is true (the base case)

and

for all k ≥ k0, P (k + 1) is true under the assumption that P (k) is true
(the induction step),

then for all k ≥ k0 P (k) is true (the conclusion).

The principle of mathematical induction is most commonly used when k0 =
1. Recall that N := {1, 2, 3, . . . , } is the set of natural numbers.

Theorem 5: Strong Induction Theorem

If Y is a subset of N such that:

1. 1 ∈ Y ,

2. for all k ∈ N, if {1, 2, . . . , k} ⊆ Y implies that k + 1 ∈ Y ,

then Y = N.

Hint. Apply the principle of mathematical induction to the statement

P (n) : {1, 2, . . . , n} ⊆ Y.
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1.8 The Well-Ordering Principle

The natural total order relation on N is denoted ≤.

Definition 14: Least element

Let X be a nonempty subset of N. An element m ∈ X is said to be a
least element of X if for all k ∈ X, m ≤ k.

Proposition 14

Let X be a nonempty subset of N. If X has a least element, then this
element is unique.

Hint. Use the antisymmetry property of the ordering.

Theorem 6: Well-Ordering Principle

Every nonempty subset X of N has a least element.

Hint. Assume by contradiction that X does not have a least element and apply
the Strong Induction Theorem to Y := N \X.

Note that we deduced the Well-Ordering Principle from the Induction Ax-
iom. The Well-Ordering Principle is actually logically equivalent to the Induc-
tion Axiom. The Well-Ordering Principle has the following important applica-
tion.

Recall that we write x < y if and only if (x 6 y) ∧ (x 6= y).

Proposition 15

There is no natural number n such that 0 < n < 1.

Hint. Argue by contradiction and apply the Well-Ordering Principle to the set
X = {n ∈ N : 0 < n < 1}.

Proof. Consider the set X = {n ∈ N : 0 < n < 1}. Assume by contradiction
that X is non-empty. By the Well-Ordering Principle X has a least element
a ∈ X. But 0 < a < 1 and thus 0 < a2 < a < 1. Since a2 is a natural number
we get a contradiction with the minimality of a.
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Chapter 2

The Real Numbers

Since we will be doing real analysis we need to understand the main properties
of the set of real numbers R and of its classical subsets N, Z, and Q. The set
of real numbers is equipped with an algebraic structure and a compatible order
structure. We start by discussing its algebraic structure.

The set of real numbers R is equipped with two binary operations + and ·
satisfying the following properties hold.

C1 For all x, y ∈ R, x+ y ∈ R.

C2 For all x, y ∈ R, x· ∈ R.

F1 (Associativity) For all x, y, z ∈ R,

(x+ y) + z = x+ (y + z)

and

(x · y) · z = x · (y · z).

F2 (Commutativity) For all x, y ∈ R,

x+ y = y + x

and

x · y = y · z.

F3 (Distributivity) For all x, y, z ∈ R,

x · (y + z) = x · y + x · z.

F4 (Additive identity) There exists a unique element 0 ∈ R such that for all
x ∈ R, x+ 0 = 0 + x.

F5 (Multiplicative identity) There exists a unique element 1 ∈ R such that
1 6= 0 and for all x ∈ R, x · 1 = 1 · x.

F6 (Additive inverses) For all x ∈ R, there exists a unique element −x ∈ R
such that x+ (−x) = −x+ x = 0.

19
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F7 (Multiplicative inverses) For all x ∈ R \ {0}, there exists a unique element
x−1 ∈ R such that x · x−1 = x−1 · x = 1.

The properties F1-F7 are sufficient to recover all the usual algebraic laws
of real numbers that you have been using without any justification in previous
math courses. Every set equipped with two binary operations satisfying similar
properties is called a commutative field, and the study of such sets equipped
with such structure belongs to the field of abstract algebra.

Definition 15: Commutative fields

A set F equipped with two binary operation + and · is called a commu-
tative field if the following properties hold.

F1 (Associativity) For all x, y, z ∈ F,

(x+ y) + z = x+ (y + z)

and
(x · y) · z = x · (y · z).

F2 (Commutativity) For all x, y ∈ F,

x+ y = y + x

and
x · y = y · z.

F3 (Distributivity) For all x, y, z ∈ F,

x · (y + z) = x · y + x · z.

F4 (Additive identity) There exists a unique element 0F ∈ F such that
for all x ∈ F, x+ 0F = 0F + x.

F5 (Multiplicative identity) There exists a unique element 1F ∈ F such
that 1F 6= 0F and for all x ∈ F, x · 1F = 1F · x.

F6 (Additive inverses) For all x ∈ F, there exists a unique element
−x ∈ F such that x+ (−x) = −x+ x = 0F.

F7 (Multiplicative inverses) For all x ∈ F \ {0F}, there exists a unique
element x−1 ∈ F such that x · x−1 = x−1 · x = 1F.

The set of real numbers also comes with a total order relation, denoted ≤,
which satisfies the following properties.

OF1 (Additivity Property) For all x, y, z ∈ R, such that x ≤ y,

x+ z ≤ y + z.

OF2 (Multiplicative Property) For all x, y, z ∈ R, such that x ≤ y, x · z ≤ y · z
provided 0 ≤ z and y · z ≤ x · z provided z ≤ 0
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Every commutative field equipped with a total order relation satisfying sim-
ilar properties is called a commutative ordered field.

Definition 16: Commutative ordered fields

A commutative order field is a commutative field (F,+, ·) endowed with a
total ordering � such that for all x, y, z ∈ F the following two properties
hold.

OF1 (Additivity Property) For all x, y, z ∈ F, such that x � y,

x+ z � y + z.

OF2 (Multiplicative Property) For all x, y, z ∈ F, such that x � y,
x · z � y · z provided 0F � z and y · z � x · z provided z � 0F

Beside R, the set of rational numbers Q with the natural addition, multi-
plication and order relation is also a commutative ordered field, and thus we
cannot distinguish R and Q only by considering the algebraic and order struc-
tures. To distinguish R and Q, and to do analysis we need a metric structure
induced by the notion of absolute value.

2.1 The absolute value

Definition 17: Absolute value

The absolute value of a number x ∈ R, denoted |x|, is defined as the
(unique) real number

|x| :=

{
x if x ≥ 0,

−x if x < 0.

Theorem 7: Basic properties of the absolute value

The absolute value satisfies the following properties.

1. (Positive definitness) For all x ∈ R, |x| ≥ 0 with |x| = 0 if and only
if x = 0.

2. (Symmetry) For all x, y ∈ R, |x− y| = |y − x|.

3. (Multiplicativity) For all x, y ∈ R, |xy| = |x||y|.

4. Let x ∈ R and M ≥ 0. Then |x| ≤M if and only if −M ≤ x ≤M .

5. (Subadditivity) For all x, y ∈ R, |x+ y| ≤ |x|+ |y|.

6. (Triangle Inequality) For all x, y, z ∈ R, |x− y| ≤ |x− z|+ |y − z|.

7. (Reverse Triangle Inequality) For all x, y ∈ R,
∣∣|x| − |y|∣∣ ≤ |x− y|.
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Proof. 1. Let x ∈ R. If x ≥ 0 then |x| = x ≥ 0 and if x < 0 then |x| = −x >
0.

2. Let x, y ∈ R. If x− y ≥ 0 then y−x ≤ 0 and |x− y| = x− y and |y−x| =
−(y−x) = x−y. If x−y < 0 then y−x > 0 and |x−y| = −(x−y) = y−x
and |y − x| = y − x.

3. The proof is based on a study of various cases as in the previous two items
and we leave the details as an exercise.

4. Let x ∈ R and M ≥ 0. If |x| ≤ M then if x ≥ 0, then x = |x| and
−M ≤ 0 ≤ x = |x| ≤ M . Otherwise, if x < 0 then |x| = −x and
−M ≤ 0 < −x = |x| < M .

5. Let x, y ∈ R. Since −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y| then by adding up
theses two inequalities −(|y|+ |x|) ≤ x+ y ≤ |x|+ |y| and by the previous
item |x+ y| ≤ |x|+ |y|.

6. Let x, y, z ∈ R and set a = x−z and b = z−y. It follows from subadditivity
that |x− y| = |a+ b| ≤ |a|+ |b| = |x− z|+ |y − z|.

7. Let x, y ∈ R, then by subadditivity |x| = |x − y + y| ≤ |x − y| + |y|, and
|y| = |y−x+x| ≤ |y−x|+|x|. Thus |x|−|y| ≤ |x−y| and |y|−|x| ≤ |x−y|
and the conclusion follows from 4..

We will finish this section with a very useful lemma.

Lemma 1

Let x, y ∈ R.

1. x ≤ y if and only if x < y + ε for all ε > 0.

2. x ≥ y if and only if x > y − ε for all ε > 0.

3. x = 0 if and only if |x| < ε for all ε > 0.

Hint. Prove (1) and (2) by contradiction and use (1), (2) and the antisymmetry
of the order relation for (3).

Proof. 1. The necessary implication is relatively easy to prove. Indeed, if
x ≤ y then for all ε > 0 one has x < x + ε ≤ y + ε (we implicitly use
OF1 twice here) and the necessary implication follows. Assume now, that
x < y + ε for all ε > 0. Assume by contradiction that x > y and let
ε0 = x − y > 0. By our assumption, x < y + ε0 = y + (x − y) = x; a
contradiction.

2. We only prove the most difficult implication here. The easy one is left to
the reader. Assume that x > y− ε for all ε > 0. Assume by contradiction
that y > x and let ε0 = y − x > 0. By our assumption, x > y − ε0 =
y − (y − x) = x; a contradiction.
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3. It is clear that if x = 0 then for all ε > 0, −ε < 0 = x < ε and the forward
implication holds. If |x| < ε for all ε > 0 then 0 − ε < x < 0 + ε and we
apply (1) and (2) to get 0 ≤ x and x ≤ 0. By antisymmetry of the order
relation x = 0.

2.2 The Least Upper Bound Property

Definition 18: Upper bound

Let X ⊂ R be non-empty. A number M ∈ R (not necessarily in X) is an
upper bound for X if for all x ∈ X, x ≤ M . A set admitting an upper
bound is said to be bounded above.

Keep in mind the following remark.

Remark 10

A set has either no upper bound or infinitely many upper bounds.

Definition 19: Supremum

Let X ⊂ R be non-empty. A number s ∈ R (not necessarily in X) is
called a (finite) supremum of the set X if and only if s is an upper bound
for X and s ≤M for all upper bounds M of X.

Proposition 16: Uniqueness of the supremum

If a non-empty set X ⊆ R has a supremum, then it is has only one
supremum, that we shall denote sup(X).

Hint. At some point invoke the antisymmetry of the order relation.

Proof. Assume that X has two suprema s1 and s2. Then by definition s1 is an
upper bound but s2 being a supremum we have s2 ≤ s1. A similar argument,
tells us that s1 ≤ s2, and we conclude by antisymmetry of the order relation
that s1 = s2.

We will use the following lemma repeatedly.

Lemma 2: Approximation property for suprema

Assume that a non-empty subset X of R has a finite supremum. Then
for every ε > 0 there exists xε ∈ X such that

sup(X)− ε < xε ≤ sup(X).

Hint. The upper bound holds by definition of the supremum. For the lower
bound argue by contradiction.
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Proof. The right-hand side inequality holds for every element in X by definition
of the supremum and only the left-hand side inequality requires a proof. Assume
by contradiction that there exists ε0 > 0 such that for all x ∈ X, sup(X)− ε0 ≥
x, and thus sup(X) − ε0 is an upper bound for X that is strictly smaller than
sup(X); a contradiction.

Proposition 17: Suprema for subsets of the integers

Assume that a non-empty subset X of Z has a finite supremum. Then
sup(X) ∈ X.

Hint. Use the approximation property for suprema.

Proof. By the approximation property for suprema, for every ε > 0 there exists
xε ∈ X such that sup(X)−ε < xε ≤ sup(X). In particular for ε = 1, there exists
x1 ∈ X such that sup(X)−1 < x1 ≤ sup(X). If x1 = sup(X) then sup(X) ∈ X
and we are done. Otherwise x1 < sup(X) and one can apply the approximation
property for suprema one more time to show that there exists x2 ∈ X such that
x1 < x2 ≤ sup(X) (why?). It follows that 0 < x2 − x1 ≤ sup(X)− x1 < 1 and
hence 0 < x2 − x1 < 1. But x2 − x1 ∈ N since both x1 and x2 belong to X
which is a subset of the integers; a contradiction (why?).

The next theorem will be taken for granted and we will not provide a proof.

Theorem 8: The least upper bound property

If X is a non-empty subset of R that is bounded above, then X has a
finite supremum in R.

The least upper bound property is also referred to as “completeness” of R
since the suprema of a non-empty subset of R that is bounded above belongs to
R. In some sense there is no “hole” in R. The least upper bound property does
not hold is we consider Q instead of R. There are “holes” in Q.

Proposition 18: Unboundedness of N

N is not bounded above in R.

Hint. Argue by contradiction and use the least upper bound property.

Proof. Assume by contradiction that N is bounbed above in R, i.e. there exists
M ∈ R such that for all n ∈ N, n ≤ M . By the least upper bound property N
has a finite supremum s := sup(N) ∈ R. Since s − 1 < s, s − 1 cannot be an
upper bound for N (why?) and there must be a natural number n0 ∈ N such
that s− 1 < n0. Therefore, s < n0 + 1 and since n0 + 1 ∈ N, s is not an upper
bound either; a contradiction.
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Theorem 9: Archimedean Principle

For every x, y ∈ R, with x > 0, there is an integer n ∈ N such that
y < nx.

Hint. Argue by contradiction and use the fact that N is unbounded.

Proof. Let x, y ∈ R, with x > 0 and assume by contradiction that the conclusion
does not hold, i.e. for all n ∈ N, y ≥ nx. Since x > 0, one has that for all n ∈ N,
n ≤ y

x , which means that N is bounded above by y
x . This contradicts the fact

that N is not bounded above.

To prove that Q is dense in R we will need the following lemma.

Lemma 3: Floor Lemma

For every x ∈ R there exists a unique m ∈ Z such that m ≤ x < m+ 1.

Hint. Use the Archimedean Principle and Proposition 17.

Proof. We start by proving the uniqueness. Assume for the sake of a contradic-
tion that there are m1 6= m2 satisfying the conclusion of the lemma, and without
loss of generality that m1 < m2 (otherwise reorder them). Then m1+1 ≤ m+2.
However, m1 ≤ x < m1 + 1, and thus x < m2 but also m2 ≤ x < m2 + 1, a
contradiction. Assume that x ∈ R and consider the set X := {n ∈ N : n ≤ x}
which is bounded above by definition. We need to show that it is non-empty.
Consider −X = {−x : x ∈ X} then −X is non-empty by the Archimedean
Principle. Indeed there exists n ∈ N such that −x ≤ n and thus −n ≤ x with
−n ∈ Z. Consequently, X is non-empty as well. Proposition 17 tells us X has
a supremum k ∈ X. Since k + 1 ∈ Z and k + 1 > k, it follows that k + 1 /∈ X.
Therefore, x < k + 1, and k ≤ x < k + 1 and we simply take m = k.

Theorem 10: Density of Q in R

For all x, y ∈ R, such that x < y, there is a rational r ∈ Q such that
x < r < y.

Hint. Observe that it is sufficient to treat the case where 0 ≤ x < y. Then use
the Archimedean Principle and the Floor Lemma.

Proof. Assume that x < y. Since y−x > 0, by the Archimedean Principle there
exists n0 ∈ N such that n0(y − x) > 1 and n0x + 1 < n0y. Since n0x ∈ R,
by Lemma 3 there exists m ∈ Z such that m ≤ n0x < m + 1. Thus, m + 1 ≤
n0x+1 < n0y. It follows from n0x < m+1 and m+1 < n0y, that x < m+1

n0
< y

and the rational r = m+1
n0

is the rational sought.



26 CHAPTER 2. THE REAL NUMBERS

There is a “dual” notion to the notion of supremum that we discuss now.
Most the the results that we have proven about suprema have a dual version
that can be proven using similar arguments.

We first define lower bounds.

Definition 20: Lower bound

Let S ⊂ R be non-empty. A number m ∈ R (not necessarily in S) is said
to be a lower bound for S if for all x ∈ S, x ≥ m. A set admitting a
lower bound is said to be bounded below.

This leads to the notion of infimum.

Definition 21: Infimum

Let S ⊂ R be non-empty. A number t ∈ R (not necessarily in S) is called
a (finite) infimum of the set S if and only if t is an lower bound for S
and t ≥ m for all lower bounds m of S.

We can also prove that if a set admits an infimum then this infimum is
unique.

Proposition 19: Uniqueness of the supremum

If a non-empty set X ⊆ R has a infimum, then it is has only one infimum,
that we shall denote inf(X).

Proof. The left-hand side inequality holds for every element in X by definition
of the infimum and only the right-hand side inequality requires a proof. Assume
by contradiction that there exists ε0 > 0 such that for all x ∈ X, inf(X)+ε0 6 x,
and thus inf(X) + ε0 is a lower bound for X that is strictly larger than inf(X);
a contradiction.

Lemma 4: Approximation property for infima

Assume that a non-empty subset X of R has a finite infimum. Show that
for every ε > 0 there exists xε ∈ X such that

inf(X) 6 xε < inf(X) + ε.

Proof. The left-hand side inequality holds for every element in X by definition
of the infimum and only the right-hand side inequality requires a proof. Assume
by contradiction that there exists ε0 > 0 such that for all x ∈ X, inf(X)+ε0 6 x,
and thus inf(X) + ε0 is a lower bound for X that is strictly larger than inf(X);
a contradiction.

Definition 22: Boundedness

Let S ⊂ R be non-empty. S is said to be bounded if it is bounded above
and below.
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Recall that −E := {x ∈ R : − x ∈ E}. The following results are usually
convenient to convert a result about suprema into a result about infima and
vice-versa.

Proposition 20: Reflection Principle

Let E ⊂ R be non-empty.

1. E has a supremum if and only if −E has an infimum, in which case

inf(−E) = − sup(E).

2. E has a infimum if and only if −E has an supremum, in which case

sup(−E) = − inf(E).

Proof. The proofs of the four implications are very similar and we only
prove one implication and leave the details of the others as an exercise.

Assume that E has a supremum s = sup(E), we will show that t = −s is
the infimum of −E. Indeed t is a lower bound for E since for all x ∈ E,
−x ∈ −E and t ≤ x follows from −x ≤ −t = s. Assume now that l is
another lower bound for −E then −l is an upper bound for E and s ≤ −l,
and thus l ≤ −s = t and the implication follows.

Proposition 21: Monotone property for suprema/infima

Let A ⊆ B be non-empty subsets of R.

1. If B has a supremum, then A has a supremum and sup(A) ≤
sup(B).

2. If B has a infimum, then A has a infimum and inf(B) ≤ inf(A).

Proof. 1. If s = sup(B) then for all b ∈ B, b ≤ s. Since A ⊂ B, for every
a ∈ A, a ≤ s and s is an upper bound for A. By the least upper bound
property sup(A) exists and sup(A) ≤ s by the definition of the supremum.

2. A proof similar to the one above will work or you can use the reflection
principle and (1). Indeed, If A ⊂ B then −A ⊂ −B (prove it!). If B
has a infimum, then −B has a supremum and inf(B) = − sup(−B) ≤
− sup(−A) = inf(A).

Theorem 11: The greatest lower bound property

If E is a non-empty subset of R that is bounded below, then E has a
finite infimum in R.
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Proof. Assume that E is bounded below then −E is bounded above and has
a supremum by the least upper bound property. It follows from the reflection
principle that E has an infimum.



Chapter 3

Sequences of Real Numbers

Let us first formally define what we actually mean by a sequence of real numbers.

Definition 23: Sequence of real numbers

A sequence of real numbers is a function f : N → R. A sequence whose
terms are xn := f(n) will usually be denoted by (xn)∞n=1 or (xn)n∈N.

Remark 11

Do not confuse a sequence (xn)∞n=1, which is a function, with its image,
which is the set {xn : n ∈ N}.

3.1 Convergence of a sequence

3.1.1 Definition and basic properties

One of our main concern is to understand whether or not the terms in a sequence
converge to a certain value, and we need to formally define what we mean by
converging.

Definition 24

A sequence of real numbers (xn)∞n=1 is said to converge to a real number
` ∈ R, if for every ε > 0 there exists N := N(ε) ∈ N such that for all
n ≥ N , |xn − `| < ε.

If a sequence (xn)∞n=1 converges to ` ∈ R, we write limn→∞ xn = `

Remark 12

There is actually some freedom in the above definition. Indeed, one can
replace |xn − `| < ε in the definition by |xn − `| ≤ ε or |xn − `| < 2ε
or |xn − `| ≤ 100ε for instance, and yet obtain an equivalent definition.
This can be useful on occasion.

29
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Proposition 22: Uniqueness of the limit

A sequence of real numbers (xn)∞n=1 has at most one limit.

Hint 1. Show using the triangle inequality that if (xn)∞n=1 converges to `1 and
`2 then for every ε > 0, |`1 − `2| < ε and conclude.

Proof 1. Let ε > 0 and assume that (xn)∞n=1 converges to `1 and `2. Then,
by definition of convergence, there exist N1 ∈ N such that for all n ≥ N1,
|xn − `1| < ε

2 , and N2 in N such that for all n ≥ N2, |xn − `2| < ε
2 . Now,

|`1 − `2| = |`1 − xn + xn − `2| ≤ |`1 − xn|+ |xn − `2| by the triangle inequality,
and if n is such that n ≥ max{N1, N2} one has |`1 − `2| < ε

2 + ε
2 = ε. We just

showed that for every ε > 0, |`1 − `2| < ε and by Lemma 1 we can conclude
that `1 = `2.

Hint 2. Argue by contradiction using the triangle inequality.

Proof 2. Assume by contradiction that (xn)∞n=1 converges to `1 and `2 with
`1 6= `2. Without loss of generality assume that `1 > `2. Let ε = `1−`2

2 > 0.
Then, by the definition of convergence, there exist N1 ∈ N such that for all
n ≥ N1, |xn − `1| < ε, and N2 in N such that for all n ≥ N2, |xn − `2| < ε.
Now, `1 − `2 = |`1 − `2| = |`1 − xn + xn − `2| ≤ |`1 − xn| + |xn − `2| by the
triangle inequality, and if n ≥ max{N1, N2} one has `1 − `2 < ε + ε = `1 − `2;
a contradiction.

Example 1. 1. Let c ∈ R and consider the sequence defined by xn = c for all
n ∈ N. Show that limn→∞ xn = c.

2. Consider the sequence defined by xn = (−1)n for all n ∈ N. Show that
(xn)∞n=1 is not convergent.

3. Consider the sequence defined by xn = 1
n for all n ∈ N. Show that

limn→∞ xn = 0.

Solutions. 1. Let ε > 0. Since for all n ∈ N, |xn − c| = 0 < ε the conclusion
follows.

2. Argue by contradiction that limn→∞ xn = ` for some ` ∈ R. For ε = there
exists N ∈ N such that for all n ≥ N , |xn−`| = |(−1)n−`| < 1, and hence
max{|1 − `|, | − 1 − `|} < 1. It follows from the triangle inequality that
2 = |1 + 1| = |1− `+ `+ 1| ≤ |1− `|+ |1 + `| < 1 + 1 = 2; a contradiction.

3. It follows from the Archimedean Principle that for every ε > 0 there exists
N ∈ N such that 0 < 1

ε < N . For n ≥ N , | 1n − 0| = 1
n ≤

1
N < ε and

limn→∞
1
n = 0.

Example 2. Consider the Fibonacci sequence recursively defined by

fn =


1 if n = 1

1 if n = 2

fn−1 + fn−2 if n ≥ 3.

Is the sequence (fn)∞n=1 convergent?
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3.1.2 The Monotone Convergence Theorem

in this section we will discover a sufficient condition that guarantees that a
sequence is convergent. Our first result links the convergence of the sequence
with its boundedness.

Definition 25: Boundedness

• A sequence of real numbers (xn)∞n=1 is bounded above if there exists
M ∈ R such that for all n ∈ N, xn ≤M .

• A sequence of real numbers (xn)∞n=1 is bounded below if there exists
m ∈ R such that for all n ∈ N, xn ≥ m.

• A sequence of real numbers (xn)∞n=1 is bounded if there exist
m,M ∈ R such that for all n ∈ N, m ≤ xn ≤M .

Proposition 23: Convergence implies boundedness

Every convergent sequence is bounded.

Proof. Assume that (xn)∞n=1 converges to `. Then for ε = 1 there exists N ∈ N
such that for all n ≥ N , |xn−`| ≤ 1, and by the triangle inequality |xn| ≤ 1+|`|.
Let M := max{|x1|, |x2|, . . . , |xN−1|, 1 + |`|}, then for all n ∈ N, |xn| ≤ M and
(xn)∞n=1 is bounded.

We will prove the Monotone Convergence Theorem which relates the con-
vergence of a sequence with its monotonicity.

Definition 26: Monotonicity for sequences

• A sequence (xn)∞n=1 is increasing if xm ≤ xn whenever m ≤ n.
Formally, (xn)∞n=1 is increasing ⇐⇒ ∀m,n ∈ N[m ≤ n =⇒
xm ≤ xn].

• A sequence (xn)∞n=1 is decreasing if xm ≥ xn whenever m ≤ n.
Formally, (xn)∞n=1 is decreasing ⇐⇒ ∀m,n ∈ N[m ≤ n =⇒
xm ≥ xn].

• A sequence (xn)∞n=1 is monotone if it is either increasing or de-
creasing.

Theorem 12: Monotone Convergence Theorem (increasing ver-
sion)

Let (xn)∞n=1 be a sequence of real numbers. If (xn)∞n=1 is increasing and
bounded above then (xn)∞n=1 is convergent.

Hint. Use the approximation property of suprema to show that (xn)∞n=1 con-
verges to sup{xn : n ∈ N}.
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Proof. Assume that (xn)∞n=1 is bounded above and increasing. By the Least
Upper Bound Property s := sup{xn : n ∈ N} is finite. We will show that (xn)∞n=1

converges to s. Let ε > 0, then by the approximation property for suprema there
exists n0 ∈ N such that s− ε < xn0 ≤ s, and thus 0 ≤ s− xn0 < ε. For n ≥ n0,
since (xn)∞n=1 is increasing, xn ≥ xn0 and |xn − s| = s − xn ≤ s − xn0 < ε.
We just proved that for every ε > 0 there is n0 ∈ N such that for all n ≥ n0,
|xn − s| < ε and hence limn→∞ xn = s.

Theorem 13: Monotone Convergence Theorem (decreasing ver-
sion)

Let (xn)∞n=1 be a sequence of real numbers. If (xn)∞n=1 is decreasing and
bounded below then (xn)∞n=1 is convergent.

Proof. If we consider the sequence (yn)∞n=1 = (−xn)∞n=1, then (yn)∞n=1 is increas-
ing and bounded above. By the Monotone Convergence Theorem in increasing
version (yn)∞n=1 is convergent, and in turn (xn)∞n=1 is convergent (prove it if you
are not convinced or glimpse at Proposition 24!).

By combining Proposition 22, Theorem 12, and Theorem 13 one gets the
following corollary.

Corollary 2: Monotone Convergence Theorem

Let (xn)∞n=1 be a monotone sequence. Then, (xn)∞n=1 is convergent if
and only if (xn)∞n=1 is bounded.

Example 3. Is the sequence (2−n)∞n=1 convergent? If yes what is its limit?

3.2 Manipulations of limits

The results in this section tell us how the operation of taking the limit behaves
with respect to the usual algebraic operations (arithmetic of limits) and the
order relation (comparison theorems). We will use repeatedly these elementary
but crucial properties.
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Proposition 24: Arithmetic of limits

Let (xn)∞n=1 and (yn)∞n=1 be convergent sequences, then

1. the sequence (xn + yn)∞n=1 is convergent and

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

2. if λ ∈ R, the sequence (λxn)∞n=1 is convergent and

lim
n→∞

(λxn) = λ lim
n→∞

xn,

3. the sequence (xn · yn)∞n=1 is convergent and

lim
n→∞

(xn · yn) = lim
n→∞

xn · lim
n→∞

yn,

4. if xn 6= 0 for all n ≥ 1 and if limn→∞ xn 6= 0, then the sequence
( 1
xn

)∞n=1 is well defined and convergent, and

lim
n→∞

1

xn
=

1

lim
n→∞

xn
,

5. if yn 6= 0 for all n ≥ 1 and if limn→∞ yn 6= 0, then the sequence
(xn

yn
)∞n=1 is well defined and convergent, and

lim
n→∞

xn
yn

=
lim
n→∞

xn

lim
n→∞

yn

Proof. Assume that limn→∞ xn = `1 <∞ and limn→∞ yn = `2 <∞.

1. Let ε > 0, then there exist N1, N2 ∈ N such that for all n ≥ N1, |xn−`1| <
ε
2 and for all n ≥ N2, |yn− `2| < ε

2 . If follows from the triangle inequality
that |xn + yn − (`1 + `2)| = |xn − `1 + yn − `2| ≤ |xn − `1|+ |yn − `2|, and
hence for n ≥ max{N1, N2}, |xn + yn − (`1 + `2) ≤ ε

2 + ε
2 = ε.

2. If λ = 0 the equality clearly holds. Otherwise, let ε > 0, then ε
|λ| > 0 and

there exists N1 ∈ N such that for all n ≥ N1, |xn − `1| < ε
|λ| and simply

remark that |λxn − λ| = |λ||xn − `1| < |λ| ε|λ| = ε.

3. If follows from the triangle inequality that |xn ·yn−(`1 ·`2)| = |(xn−`1)yn+
`1(yn − `2)| ≤ |xn − `1||yn| + |yn − `2||`1|. Since (yn)∞n=1 is convergent,
and thus bounded, there exists M > 0 such that for all n ∈ N, |yn| ≤M .
Let ε > 0. If |`1| > 0, then there exist N1, N2 ∈ N such that for all
n ≥ N1, |xn − `1| < ε

2M and for all n ≥ N2, |yn − `2| < ε
2|`1| , and hence

for n ≥ max{N1, N2}, |xn · yn − (`1 · `2)| < ε
2MM + ε

2|`1| |`1| = ε. If

|`1| = 0 then for n ≥ max{N1, N2}, |xn · yn| < ε
2MM < ε, and the proof

is complete.
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4. Assume limn→∞ xn = `1 6= 0, then for ε = |`1|
2 > 0 there exists N1 ∈ N

such that for all n ≥ N1, |xn − `1| < |`1|
2 . It follows from the reverse

triangle inequality that |xn| > |`1|
2 > 0 for n ≥ N1. Also for ε > 0

there exists N2 ∈ N such that for all n ≥ N2, |xn − `1| < ε|`1|2
2 and for

n ≥ max{N1, N2}, | 1xn
− 1

`1
| = | `1−xn

xn`1
| < 2

|`1| |
xn−`1
`1
| < ε.

5. Since xn

yn
= xn

1
yn

the result follows by combining (3) and (4).

We will show that taking limits, whenever they exist is a “monotone opera-
tion”.

Theorem 14: Comparison Theorem I

Let (xn)∞n=1 and (yn)∞n=1 be two convergent sequences. If there exists
n0 ∈ N such that for all n ≥ n0, xn ≤ yn then limn→∞ xn ≤ limn→∞ yn.

Hint. You could either argue by contradiction or show that ∀ε > 0, limn→∞ xn <
limn→∞ yn + ε.

Proof. Let `1 = limn→∞ xn and `2 = limn→∞ yn. Assume by contradiction
that `1 > `2. If ε = `1−`2

2 > 0 there exists N1 ∈ N such that for all n ≥ N1,
|xn − `1| < ε and N2 ∈ N such that for every n ≥ N2, |yn − `2| < ε. Then, if
n ≥ max{N1, N2}, `1+`2

2 = `1 − ε < xn and yn < ε + `2 = `1+`2
2 , and hence

yn <
`1+`2

2 < xn which is impossible if n ≥ n0.

Since if xn < yn implies that xn ≤ yn we obtain the following corollary.

Corollary 3: Comparison Theorem II

Let (xn)∞n=1 and (yn)∞n=1 be two convergent sequences. If there exist
n0 ∈ N such that for all n ≥ n0, xn < yn then limn→∞ xn ≤ limn→∞ yn.

Remark 13

The inequality in the conclusion of the Comparison Theorem II cannot
be strict. Indeed, simply consider xn = 1

n and yn = 2
n .

Theorem 15: Squeeze Theorem

Let (xn)∞n=1, (yn)∞n=1, (zn)∞n=1 be sequences of real numbers such that

• xn ≤ yn ≤ zn, for all n ≥ n0 for some n0 ∈ N,

• (xn)∞n=1 and (zn)∞n=1 are convergent and

lim
n→∞

xn = lim
n→∞

zn = `,

then, (yn)∞n=1 is convergent and limn→∞ yn = `.
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Remark 14

We cannot use the comparison theorem twice to prove the squeeze theo-
rem, since we do not know a priori that the middle sequence converges.

Proof. Let ε > 0, then there existN1, N2 ∈ N such that for all n ≥ max{N1, N2},
|xn − `| < ε and |zn − `| < ε. Thus, if n ≥ max{N1, N2, n0}, `− ε < xn ≤ yn ≤
zn < ` + ε, and −ε < zn − ` < ε, which shows that (yn)∞n=1 is convergent to
`.

3.3 Extraction of subsequences

Definition 27: Subsequences

A subsequence of a sequence (xn)∞n=1 is a sequence (yn)∞n=1 such that for
all k ∈ N, yk = xnk

for some natural numbers n1 < n2 < · · · < nk < · · · .

The indices of a subsequence have the following useful property.

Lemma 5

Let (nk)∞k=1 be a strictly increasing sequence of natural numbers. Then
for all k ∈ N, nk ≥ k.

Hint. You use an induction.

Proof. Assume that (nk)∞k=1 is a strictly increasing sequence of natural numbers.
It is clear that n1 ≥ 1 and assume that nk ≥ k. Then, nk+1 > nk ≥ k and
nk+1 ≥ k + 1 since nk+1 is a natural number.

Proposition 25

If a sequence converges to ` then all its subsequences are also convergent
and they all converge to the same limit `.

Hint. You could use the previous lemma.

Proof. Assume that (xn)∞n=1 converges to `, and let (xnk
)∞k=1 be a subsequence

of (xn)∞n=1. Let ε > 0, then there exists N ∈ N such that for all n ≥ N ,
|xn− `| < ε. If k ≥ N , then by Lemma 5 nk ≥ N and |xnk

− `| < ε which shows
that (xnk

)∞k=1 converges to `.

Remark 15

A sequence can have converging subsequences without being itself con-
vergent. Think about an example.
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Exercise 1. Give a new proof of the fact that the sequence ((−1)n)∞n=1 is not
convergent.

The proof of the following proposition is left as an exercise.

Proposition 26

If a sequence is bounded then all its subsequences are also bounded

3.3.1 Bolzano-Weierstrass Theorem

To prove Bolzano-Weirstrass Theorem we need a preliminary lemma.

Lemma 6: Monotone subsequence lemma

Every sequence of real numbers has a monotone subsequence.

The lemma can be proved using the notion of peak point

Definition 28: Peak point

Let (xn)∞n=1 be a sequence. A peak point of the sequence is a term xp of
the sequence such that for all n ≥ p, xn < xp.

Hint. Consider the following three cases: the sequence has infinitely many peak
points, or finitely many peak points, or no peak points.

Proof of the monotone subsequence lemma. Assume first that (xn)∞n=1 has no
peak points. Let k1 = 1. Since xk1 is not a peak point there exists k2 > k1 such
that xk2 ≥ xk1 . But xk2 is not a peak point either and there exists k3 > k2 > k1
such that xk3 ≥ xk2 ≥ xk1 . If we continue this process indefinitely we can
construct recursively a subsequence (xkn)∞n=1 that is increasing. If (xn)∞n=1

has finitely many peak points let xp the largest of those peak points. Let
k1 = p + 1, then xk1 is not a peak point and hence there exists k2 > k1 such
that xk2 ≥ xk1 . Since xk2 is not a peak point either there exists k3 > k2 > k1
such that xk3 ≥ xk2 ≥ xk1 , and we can construct recursively a subsequence
(xkn)∞n=1 that is increasing. Now, assume that a sequence (xn)∞n=1 has infinitely
many peak points then there exist p1 < p2 < · · · < pk < · · · such that for all
m ≤ n, xpm > xpn and the subsequence (xpk)∞k=1 is strictly decreasing. In all
three cases, we were able to show the existence of a monotone subsequence.

Theorem 16: Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subsequence.

Hint. Use the monotone subsequence lemma and the Monotone Convergence
Theorem.
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Proof. Assume that (xn)∞n=1 is bounded. Then by the monotone subsequence
lemma there is a subsequence that is monotone. But this subsequence is also
clearly bounded and by the Monotone Convergence Theorem the subsequence
is convergent.

3.3.2 Limit supremum and limit infimum

The concept of limit supremum and limit infimum (also called limit superior and
limit inferior) is extremely useful and provides interesting information about
sequences. The definition of these notions require some justification. In this
section, we study these notions in the context of bounded sequences. We start
with a crucial lemma.

Lemma 7

Let (xn)∞n=1 be a bounded sequence of real numbers. For all n ∈ N, let
sn := sup{xk : k ≥ n}. Then the sequence (sn)∞n=1 is convergent.

Hint. Use the Monotone Convergent Theorem.

Proof. Let n ∈ N. Since {xk : k ≥ n} ⊃ {xk : k ≥ n + 1}, sn = sup{xk : k ≥
n} ≥ sup{xk : k ≥ n + 1} = sn+1, and (sn)∞n=1 is decreasing. Since (xn)∞n=1

is bounded, (sn)∞n=1 is also bounded. By the Monotone Convergence Theorem
(sn)∞n=1 is convergent.

Lemma 7 provides a sound justification that the following definition is mean-
ingful.

Definition 29: Limit supremum

Let (xn)∞n=1 be a bounded sequence of real numbers. The number
lim
n→∞

(sup
k≥n

xk) is called the limit supremum of the sequence (xn)∞n=1 and

denoted lim supn→∞ xn (or limn→∞xn).

Example 4. Find lim supn→∞ xn if xn = (−1)n, for n ∈ N.

Hint. Exploit the definitions!

Solution. The sequence (xn)∞n=1 is clearly upper bounded by 1 and for all n ∈ N,
the non-empty set Xn := {xk : k ≥ n} has a supremum denoted sn ≤ 1. Note
that sn = 1 otherwise it will contradict the fact that sn is an upper bound for
(xn)∞n=1. Therefore, limn→∞(supk≥n xk) = limn→∞ sn = 1.

Theorem 17

Let (xn)∞n=1 be a bounded sequence of real numbers. Then, there exists
a subsequence of (xn)∞n=1 that converges to lim supn→∞ xn.

Hint. Construct the subsequence recursively using the approximation property
for suprema and conclude with the Squeeze Theorem.
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Proof. For all n ∈ N denote yn = sup{xk : k ≥ n}. The sequence (yn)∞n=1 is
decreasing (see the proof of Lemma 7) and limn→∞ yn = s by definition of
the limit supremum. If we can find a subsequence (xnk

)∞k=1 so that s − 1
k <

xnk
< s + 1

k . then the conclusion follows from the Squeeze Theorem. We
will construct this subsequence recursively. To do this rigorously we will prove
by induction that for all k ∈ N the following statement P (k) is true: there
exist n1 < n2 < · · · < nk and xn1

, . . . , xnk
elements of the sequence such that

s− 1
k < xnk

< s+ 1
k .

For k = 1, since (yn)∞n=1 converges to s there exists N ∈ N such that
s ≤ yN < s + 1 (here we use that yn ≥ s for all n ∈ N). However s − 1 < s ≤
yN and by the approximation property for suprema there exists xn1 such that
s− 1 < xn1

< yN < s+ 1 (here we use that yN = sup{xn : n ≥ N}), and P (1)
is true.

Assume now that the statement P (k) is true, then we have natural numbers
n1 < n2 < · · · < nk and real numbers xn1 , . . . , xnk

such that s− 1
k < xnk

< s+ 1
k .

Since (yn)∞n=1 converges to s there exists N ∈ N, that can be chosen such that
N > nk, and so that s ≤ yN < s+ 1

k+1 . However s− 1
k+1 < s ≤ yN and by the

approximation property for suprema there exists xnk+1
for some nk+1 > nk such

that s− 1
k+1 < xnk+1

< yN < s+ 1
k+1 (here we use that yN = sup{xn : n ≥ N}

and N > nk), and P (k + 1) is true. We conclude by invoking the Principle of
Mathematical Induction.

Using similar arguments we can define the notion of limit infimum.

Definition 30: Limit infimum

Let (xn)∞n=1 be a bounded sequence of real numbers. The number
lim
n→∞

( inf
k≥n

xk) is called the limit infimum of the sequence (xn)∞n=1 and

denoted lim infn→∞ xn (or limn→∞xn).

Example 5. Find lim infn→∞ xn if xn = (−1)n, for n ∈ N.

Hint. Exploit the definitions!

Solution. The sequence (xn)∞n=1 is clearly lower bounded by −1 and for all
n ∈ N, the non-empty set Xn := {xk : k ≥ n} has a infimum denoted tn > −1.
Note that tn = −1 otherwise it will contradict the fact that tn is a lower bound
for (xn)∞n=1. Therefore, limn→∞(infk≥n xk) = limn→∞ tn = −1.

As for the limit supremum, the limit infimum is the limit of a convergent
subsequence.

Theorem 18

Let (xn)∞n=1 be a bounded sequence of real numbers. Then, there exists
a subsequence of (xn)∞n=1 that converges to lim infn→∞ xn.

Hint. Construct the subsequence recursively using the approximation property
for infima and conclude with the Squeeze Theorem.



Chapter 4

Introduction to Metric
Topology

General Topology is a branch of Mathematics whose goal is to understand prop-
erties of spaces that are invariant under continuous transformations. The theory
deals with purely set-theoretic concepts and is usually called point-set topology.
In the metric space setting (R equipped with its absolute value will be our
prototypical example of a metric space) the topology of the space can be conve-
niently studied using sequences of elements. This chapter can be seen as a light
introduction to general topology in the metric space framework.

4.1 Completeness

A central notion in topology of metric spaces is the notion of completeness. We
shall study it for the set of real numbers equipped with its absolute value. To
notion of completeness relies on the notion of Cauchy sequences.

4.1.1 Cauchy sequences

Definition 31: Cauchy sequences

A Cauchy sequence of real numbers is a sequence of real numbers (xn)∞n=1

such that for all ε > 0 there exists N ∈ N so that for all n ≥ N and all
k ≥ N , |xn − xk| < ε.

The notion of Cauchy sequence is a weakening of the notion of converging
sequence as shown in the next proposition.

Proposition 27

Every convergent sequence is a Cauchy sequence.

Hint. It follows from the Triangle Inequality and the definitions.

39



40 CHAPTER 4. INTRODUCTION TO METRIC TOPOLOGY

Proof. Assume that a sequence (xn)∞n=1 converges to `. Let ε > 0 then there
exists N ∈ N such that for all n ≥ N , |xn − `| < ε. Therefore, if n, k ≥ N
|xn − xk| ≤ |xn − `|+ |xk − `| < 2ε, which shows that (xn)∞n=1 is Cauchy.

So far when showing that a sequence was convergent we usually had to guess
beforehand what would the potential limit be. For sequences of real numbers
we will prove the remarkable fact that every Cauchy sequence is convergent.
This is extremely useful since in order to check whether or not a sequence is
convergent we only need to check whether the sequence is Cauchy, and this does
not require guessing the eventual limit! We need a few more facts about Cauchy
sequences before proving our main theorem.

Proposition 28

A Cauchy sequence is bounded.

Hint. Use an argument similar to the proof of boundedness of convergent se-
quence.

Unlike arbitrary sequences, a Cauchy sequence cannot have converging sub-
sequences without being itself convergent.

Proposition 29

If a Cauchy sequence (xn)∞n=1 has a convergent subsequence then (xn)∞n=1

is convergent.

Hint. It follows from the triangle inequality.

Proof. Assume that (xnk
)∞k=1 is a convergent subsequence of (xn)∞n=1 and denote

` its limit. Let ε > 0, then there exists K ∈ N such that for all k ≥ K,
|xnk

− `| < ε. Since (xn)∞n=1 is Cauchy there exists N ∈ N such that for all
n,m ≥ N , |xn − xm| < ε. If k ≥ max{K,N}, then nk ≥ N by Lemma 2 and
|xk − `| ≤ |xk − xnk

|+ |xnk
− `| < 2ε.

Theorem 19: Cauchy Completeness of (R, | · |)

Every Cauchy sequence of real numbers is convergent.

Hint. Use Proposition 28, Bolzano-Weierstrass Theorem, and Proposition 29.

Proof. Every Cauchy sequence is bounded, and hence by Bolzano-Weierstrass
Theorem it has a convergent subsequence, therefore the original sequence is
convergent.
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Combining Proposition 27 and Theorem 19 one obtains the following corol-
lary.

Corollary 4

Let (xn)∞n=1 be a sequence of real numbers. Then, (xn)∞n=1 is convergent
if and only if (xn)∞n=1 is Cauchy.

4.2 Divergence to ±∞

Definition 32: Divergence to +∞

A sequence of real numbers (xn)∞n=1 diverges to +∞ if for all M ∈ R
there exists N ∈ N such that for all n ≥ N , xn ≥M .

Example 6. The sequence (xn)∞n=1 where xn = n diverges to +∞.

Definition 33: Divergence to −∞

A sequence of real numbers (xn)∞n=1 diverges to −∞ if for all m ∈ R
there exists N ∈ N such that for all n ≥ N , xn ≤ m.

Example 7. The sequence (xn)∞n=1 where xn = −n diverges to −∞.

The following proposition can be proven using an argument similar to the
proof of Proposition 25 and we leave the details to the reader.

Proposition 30

If a sequence (xn)∞n=1 diverges to +∞ (resp. −∞) then every subse-
quence of (xn)∞n=1 also diverges to +∞ (resp. −∞).

Analogues of the comparison theorem are valid in this context and we simply
state those results and leave the proofs as exercises.

Proposition 31

Let (xn)∞n=1 and (yn)∞n=1 be sequences. If there exist n0 ∈ N such that for
all n ≥ n0, xn ≤ yn and if limn→∞ xn = +∞, then limn→∞ yn = +∞.

Proposition 32

Let (xn)∞n=1 and (yn)∞n=1 be sequences. If there exist n0 ∈ N such that for
all n ≥ n0, xn ≤ yn and if limn→∞ yn = −∞, then limn→∞ xn = −∞.

4.3 Sequential Heine-Borel theorem

The topological Heine-Borel theorem states that a subset of a Euclidean space is
compact if and only if it is bounded and closed. The set of real numbers equipped
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with the absolute value is an example of an Euclidean space (of dimension 1) and
the notion of boundedness is a property of the absolute value. Compactness is a
topological notion, which can be defined in purely set-theoretic terms, and that
expresses the fact of being “small”. Closedness is also a topological notion, which
can be defined in purely set-theoretic terms as well, and which has to do with
a set containing its “boundary”. In the presence of a “metric” (generated here
by the absolute value) one can define analogous notions in terms of sequences.
It can be shown that in the context of metric spaces the set-theoretic notions
coincide with their sequential analogues. Our goal in this section is to prove the
Sequential Heine-Borel Theorem for subsets of the real numbers. This theorem
will be needed crucially in the sequel. We first define what is a sequentially
closed set.

Definition 34: Sequential closedness

A non-empty set X ⊆ R is sequentially closed if the limit of every con-
vergent sequence of elements of X belongs to X. i.e. if (xn)∞n=1 is a
sequence in X such that limn→∞ xn = ` then ` ∈ X.

It is relatively easy to show that sequential closedness is implied the stronger
notion of sequential compactness.

Definition 35: Sequential compactness

A non-empty set X ⊆ R is sequentially compact if every sequence in X
has a subsequence that converges in X, i.e. for all sequence (xn)∞n=1 of
elements in X there exists (xnk

)∞k=1 so that limk→∞ xnk
∈ X.

Proposition 33: Sequential compactness implies sequential
closedness

Let X be a non-empty subset of R. If X is sequentially compact then X
is sequentially closed.

Hint. Simply use the relevant definitions and Proposition 25.

Proof. Assume that X is sequentially compact. Let (xn)∞n=1 be a sequence in X
that is convergent to ` ∈ R (not necessarily in X). By sequential compactness
(xn)∞n=1 has a subsequence that is convergent in X. By Proposition 25 the limit
of the subsequence is also ` and thus ` ∈ X, and we can conclude that X is
sequentially closed.

We now show that sequential closedness and boundedness imply sequential
compactness.

Proposition 34: Boundedness and sequential closedness imply
sequential compactness

Let X be a non-empty subset of R. If X is bounded and sequentially
closed then X is sequentially compact.
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Hint. Use Bolzano-Weierstrass Theorem and the relevant definitions.

Proof. Assume that X is bounded and sequentially closed. Let (xn)∞n=1 be a
sequence in X. Since X is bounded (xn)∞n=1 is also bounded and by Bolzano-
Weierstrass Theorem (xn)∞n=1 has a subsequence that is convergent. The con-
clusion follows since by sequential closedness the limit is necessarily in X.

To establish the link between sequential compactness and boundedness, we
will need the following lemmas.

Lemma 8

Every non-empty subset X ⊂ R that is not bounded above admits a
sequence (xn)∞n=1 diverging to +∞.

Proof. Assume that X ⊂ R is not bounded above, then for every n ∈ N there
exists xn ∈ X such that xn > n. It follows from Proposition 33 that (xn)∞n=1

diverges to +∞.

If X ⊂ R is not bounded below we can argue similarly and appeal to Propo-
sition 34 instead of Proposition 33.

Lemma 9

Every non-empty subset X ⊂ R that is not bounded below admits a
sequence (xn)∞n=1 diverging to −∞.

Proposition 35: Sequential compactness implies boundedness

Let X be a non-empty subset of R. If X is sequentially compact then X
is bounded.

Hint. Prove the contrapositive.

Proof. Assume that X is not bounded. Then either X is not bounded above,
and thus Lemma 8 tells us that there exists a sequence (xn)∞n=1 that diverges to
+∞. Therefore, every subsequence of (xn)∞n=1 is not convergent by Proposition
25, and X cannot be sequentially compact. Otherwise, X is not bounded below
and we argue similarly.

We now have all the ingredients to prove the Sequential Heine-Borel Theorem
for subsets of real numbers.

Theorem 20: Sequential Heine-Borel Theorem

Let X be a non-empty subset of R. Then, X is sequentially compact if
and only if X is bounded and sequentially closed.

Proof. Assume that X ⊂ R is sequential compact. Then by Proposition 33
X is sequentially closed and by Proposition 35 X is bounded. Assume now
that X ⊂ R is bounded and sequential closed, then by Proposition 34 X is
sequentially compact.
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Recall that [a, b] := {x ∈ R : a ≤ x ≤ b}. The following proposition will be
used crucially in the sequel.

Proposition 36

Let a ≤ b two real numbers, then [a, b] is sequentially compact.

Hint. Boundedness is clear. It remains to show sequential closedness.



Chapter 5

Continuity

We recall the definitions of the various intervals.

Definition 36: Intervals

Let a < b two real numbers. We define the following intervals:

• (a, b) := {x ∈ R : a < x < b}

• [a, b] := {x ∈ R : a ≤ x ≤ b}

• (a, b] := {x ∈ R : a < x ≤ b}

• [a, b) := {x ∈ R : a ≤ x < b}

• (−∞, b) := {x ∈ R : x < b}

• (−∞, b] := {x ∈ R : x ≤ b}

• (a,∞) := {x ∈ R : a < x}

• [a,∞) := {x ∈ R : a ≤ x}

5.1 Definition and basic properties

The notion of continuity of a function is based on the notion of limit. There
are many variants of the notion of limit of a function. To define continuity of a
function defined at an interior point of an interval of the form (a, b) we need to
define what is a finite limit at a finite point.

Definition 37: Two-sided limit of a function

Let x0 ∈ (a, b) and f : (a, b) \ {x0} → R. We say that f has a limit ` ∈ R
at x0 if for every ε > 0 there exists δ := δ(ε) > 0 such that if |x−x0| < δ
and x 6= x0, then |f(x)− `| < ε.

45
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Remark 16

Using only logic symbols the definition of a two-sided limit is:

∀ε > 0 ∃δ > 0 ∀x [[x ∈ (a, b)]∧[x 6= x0]∧[|x−x0| < δ]] =⇒ |f(x)−`| < ε

Proposition 37: Uniqueness of the limit at a point

Let x0 ∈ (a, b) and f : (a, b) \ {x0} → R. If f has a limit at x0 then this
limit is unique.

Proof. Assume by contradiction that f has two limits `1 6= `2 at x0. Without
loss of generality assume that `1 > `2. By definition, for ε = `1−`2

2 > 0 there
exist δ1 > 0 such that if |x − x0| < δ1 and x 6= x0, then |f(x) − `1| < ε,
and δ2 > 0 so that if |x − x0| < δ2 and x 6= x0, then |f(x) − `2| < ε. Then,
`1 − `2 = |`1 − `2| ≤ |`1 − f(x)|+ |f(x)− `2| < ε+ ε = `1 − `2 whenever x 6= x0
and |x− x0| < min{δ1, δ2}; a contradiction.

If f has a limit ` at x0, we write limx→x0
f(x) = `.

Example 8. Show that limx→2 x
2 = 4.

The following proposition is very useful. It allows us to use all the results
that we have proven for sequences to study limits of functions.

Proposition 38: Sequential characterization of limits

Let ` ∈ R, x0 ∈ (a, b), and f : (a, b) \ {x0} → R. Then, limx→x0
f(x) = `

if and only if for every sequence (zn)∞n=1 of elements in (a, b)\{x0} which
converges to x0 one has limn→∞ f(zn) = `.

Proof. Assume that limx→x0 f(x) = `. Let ε > 0, then there exists δ > 0 such
that if |x− x0| < δ and x 6= x0, then |f(x)− `| < ε. Let (zn)∞n=1 be a sequence
of elements in (a, b) \ {x0} which converges to x0. Then, there exists N ∈ N
such that for all n ≥ N , |zn − x0| < δ, and since zn 6= x0 by assumption one
has that |f(zn)− `| < ε. Therefore, (f(zn))∞n=1 converges to `.

To prove the other implication we will prove the contrapositive. Assume
that ` is not the limit of f at x0, then there exists ε0 > 0 such that for every
n ∈ N there exists zn ∈ (a, b) \ {x0} so that |zn − x0| < 1

n and |f(zn)− `| ≥ ε0.
By the Squeeze Theorem (zn)∞n=1 is a sequence of elements in (a, b)\{x0} which
converges to x0 but (f(zn))∞n=1 does not converge to ` since |f(zn)− `| ≥ ε0 >
0.
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Proposition 39: Limit arithmetic for functions

et x0 ∈ (a, b) and f, g : (a, b) \ {x0} → R. Let λ ∈ R. If f and g have
limits at x0 then,

1. f + g has a limit at x0 and limx→x0
(f + g)(x) = limx→x0

f(x) +
limx→x0 g(x),

2. λ · f has a limit and limx→x0(λ · f)(x) = λ limx→x0 f(x)

3. f · g has a limit at x0 and limx→x0
(f · g)(x) = limx→x0

f(x) ·
limx→x0

g(x).

4. If f 6= 0 on (a, b)\{x0} and limx→x0 f(x) 6= 0 then 1
f is well defined

on (a, b) \ {x0}, has a limit at x0, and

lim
x→x0

( 1

f

)
(x) =

1

lim
x→x0

f(x)
.

5. If g 6= 0 on (a, b)\{x0} and limx→x0
g(x) 6= 0 then f

g is well defined

on (a, b) \ {x0}, has a limit at x0, and

lim
x→x0

(f
g

)
(x) =

lim
x→x0

g(x)

lim
x→x0

g(x)
.

Proof. It follows from the sequential characterization of limits and the analogue
results for sequences.

1.

2.

3.

4. Let (zn)∞n=1 be a sequence such that for all n ∈ N, zn ∈ (a, b), zn 6= x0
and limn→∞ zn = x0. By the sequential characterization of limits the se-
quence (yn)∞n=1 = (f(zn))∞n=1 converges to limx→x0

f(x) 6= 0. By Propo-
sition 18, it follows that limn→∞

1
yn

= 1
limn→∞ yn

, i.e. limn→∞
1

f(zn)
=

1
limn→∞ f(zn)

= 1
limx→x0

f(x) . Since (zn)∞n=1 was fixed but arbitrary, by the

sequential characterization of limits we can conclude that the function 1
f

has a limit and limx→x0

1
f(x) = 1

lim
x→x0

f(x)
.

5.
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Theorem 21: Comparison Theorem for functions I

Let x0 ∈ (a, b) and f, g : (a, b) \ {x0} → R.
If

1. there exists 0 < δ0 < min{b−x0, x0−a} such that f(x) ≤ g(x) for
all x ∈ (x0 − δ0, x0 + δ0) \ {x0}.

2. f and g have limits at x0

then,
lim
x→x0

f(x) ≤ lim
x→x0

g(x).

Proof. Let `1 = limx→x0
f(x) and `2 = limx→x0

g(x). Assume by contradiction
that `1 > `2. Let ε = `1−`2

2 > 0, then there exist δ1 > 0 such that for all x ∈
(x0−δ1, x0+δ1), |f(x)−`1| < ε and δ2 > 0 such that for all x ∈ (x0−δ2, x0+δ2),
|f(x) − `2| < ε. If δ = min{δ0, δ1, δ2} > 0, and if x ∈ (x0 − δ, x0 + δ) then
`1−ε < f(x) and g(x) < ε+`2, and hence g(x) < ε+`2 = `1+`2

2 = `1−ε < f(x);
a contradiction.

Remark 17

We could also have given a proof that follows from the sequential char-
acterization of limits and the comparison theorem for sequences.

Corollary 5: Comparison Theorem for functions II

Let x0 ∈ (a, b) and f, g : (a, b) \ {x0} → R.
If

1. f(x) < g(x) for all x ∈ (a, b) \ {x0}.

2. f and g have limits at x0

then,
lim
x→x0

f(x) ≤ lim
x→x0

g(x).

Remark 18

The inequality in the conclusion of the Comparison Theorem II cannot
be strict. Indeed, simply consider f(x) = 1

x and g(x) = 2
x .
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Theorem 22: Squeeze Theorem for functions

Let x0 ∈ (a, b) and f, g, h : (a, b) \ {x0} → R.
If

1. f(x) ≤ g(x) ≤ h(x) for all x ∈ (a, b) \ {x0},

2. f and h have limits at x0 and limx→x0 f(x) = limx→x0 h(x),

then,
g has a limit at x0 and limx→x0

g(x) = limx→x0
f(x) = limx→x0

h(x).

Proof. It follows from the sequential characterization of limits and the squeeze
theorem for sequences.

Definition 38: Local Continuity

Let x0 ∈ (a, b) and f : (a, b) → R. We say that f is continuous at x0 if
for every ε > 0 there exists δ := δ(ε) > 0 such that if |x− x0| < δ, then
|f(x)− f(x0)| < ε.

The following lemma follows easily form the definitions.

Lemma 10

Let x0 ∈ (a, b) and f : (a, b) → R. Then, f is continuous at x0 if and
only if f has a limit at x0 and limx→x0

f(x) = f(x0).

An immediate consequence of Lemma 10 and the sequential characterization
of limits is a sequential characterization of continuity at a point.

Proposition 40: Sequential characterization of local continuity

Let x0 ∈ (a, b) and f : (a, b) → R. Then, f is continuous at x0 if
and only if for every sequence (zn)∞n=1 which converges to x0 one has
limn→∞ f(zn) = f(x0).

Proof. Assume that f is continuous at x0. Then by Lemma 10, limx→x0
f(x) =

f(x0). If (zn)∞n=1 is a sequence in (a, b) that converges to x0, without loss of
generality one can assume that zn 6= x0, and by the sequential characterization
of limit limn→∞ f(zn) = f(x0).

For the other implication, assume that for every sequence (zn)∞n=1 which
converges to x0 one has limn→∞ f(zn) = f(x0). By sequential characterization
of limit, f has a limit at x0 and limx→x0

f(x) = f(x0) and it follows from
Lemma 10 that f is continuous at x0.

The following propositions can be proven using Proposition 40 and Lemma
10, and the proofs are left to the reader.
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Proposition 41: Continuity and algebraic operations

Let x0 ∈ (a, b) and assume that f, g : (a, b) → R are continuous at x0.
Let λ ∈ R, then,

1. f + g is continuous at x0,

2. λ · f is continuous at x0,

3. f · g is continuous at x0.

4. If f 6= 0 on (a, b) then 1
f is well defined on (a, b) and continuous at

x0.

5. If If g 6= 0 on (a, b) then f
g is well defined on (a, b) and continuous

at x0.

Proposition 42: Continuity and composition

1. Let x0 ∈ R and assume that f : (a, b)\{x0} → (c, d) with x0 ∈ (a, b)
and g : (c, d) → R. If f has a limit at x0 and limx→x0

f(x) := ` ∈
(c, d) and if g is continuous at ` then g ◦ f has a limit at x0 and
limx→x0 g ◦ f(x) := g(limx→x0 f(x)).

2. Let x0 ∈ R and assume that f : (a, b)→ (c, d) with x0 ∈ (a, b) and
g : (c, d) → R. If f is continuous at x0 and if g is continuous at
f(x0) then g ◦ f is continuous at x0.

5.2 The Intermediate Value Theorem

Continuity is a local property but we can easily define what it means for a
function to be continuous globally, e.g. on an interval of the form (a, b).

Definition 39: Global Continuity on an open bounded interval

Let f : (a, b)→ R. We say that f is continuous on (a, b) if f is continuous
at every point x0 ∈ (a, b).

In the sequel we will also consider function on closed interval of the form
[a, b] and we need to define rigorously what it means to be continuous at the
endpoint. For this purpose we need to define one-sided limits.

Definition 40: Left-sided limits

Let f : (a, b) → R. We say that f has a left-sided limit ` ∈ R at b if for
every ε > 0 there exists δ := δ(ε) > 0 such that if b − δ < x < b, then
|f(x)− `| < ε. In this case we write limx→a− f(x) = `.
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Definition 41: Right-sided limits

Let f : (a, b)→ R. We say that f has a right-sided limit ` ∈ R at a if for
every ε > 0 there exists δ := δ(ε) > 0 such that if a < x < a + δ, then
|f(x)− `| < ε. In this case we write limx→a+ f(x) = `.

Lemma 11

Let f : (a, b)→ R, x0 ∈ (a, b) and ` ∈ R. Then,

limx→x0 f(x) = ` if and only if limx→x+
0
f(x) = limx→x−0

f(x) = `.

Proof. cf homework.

Definition 42: Global Continuity on a closed bounded interval

Let f : [a, b]→ R. We say that f is continuous on [a, b] if f is continuous
on (a, b), limx→a+ f(x) = f(a) and limx→b− f(x) = f(b).

The Intermediate Value Theorem espresses the idea that the graph of a
continuous function is a continuous curve without gaps, holes or jumps.

Theorem 23: Intermediate Value Theorem

Assume that f : [a, b] → R is continuous such that f(a) < f(b) (resp.
f(b) < f(a)). Let y0 ∈ R such that f(a) < y0 < f(b) (resp. f(b) < y0 <
f(a)), then there exists x0 ∈ (a, b) such that f(x0) = y0.

Hint: Use the Least Upper Bound Property.

We will give two proofs in the case f(a) < y0 < f(b), the other case being
completely similar. We first give a proof using sequences, the approximation
property for suprema, the Squeeze Theorem for sequences, the comparison theo-
rem for sequences, and the sequential characterization of continuity. Both proofs
start with an argument using the Least Upper Bound Property and only the
second part of the proofs differ.

Proof using sequences. Consider the set X = {x ∈ [a, b] : f(x) < y0}. X is non-
empty since a ∈ X and upper bounded (actually bounded) by definition. By the
Least Upper Bound Property s = sup(X) exists. First observe that s 6= b and
that s 6= a as well. Indeed, let ε = y0−f(a) > 0, then by right-continuity of f at
a there exists δ > 0 such that whenever a < x < a+ δ one has |f(x)−f(a)| < ε,
and hence f(x) < f(a) + ε = y0. This implies that s > a, otherwise assuming
s = a, there would be a point, say z = a + δ

2 , such that z ∈ X but z > s, a
contradiction. Similarly, let ε = f(b)− y0 > 0, then by left-continuity of f at b
there exists δ > 0 such that whenever b− δ < x < b one has |f(x)− f(b)| < ε,
and hence f(x) > f(b) − ε = y0. This implies that s < b, otherwise assuming
s = b, there would be a point, say z = b − δ

2 , such that z ∈ X but z > s, a
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contradiction. So s ∈ (a, b), and it remains to prove that f(s) = y0 and thus we
can take x0 = s.

By the approximation property of suprema there exists (zn)∞n=1 a sequence
in X such that limn→∞ zn = s. By by continuity of f at s and sequential char-
acterization of continuity, limn→∞ f(zn) = f(s), but for all n ∈ N, f(zn) < y0
and it follows from the comparison theorem for sequences that f(s) ≤ y0. Since
s < b, for every n ∈ N there exists zn ∈ [a, b] such that s < zn < s + 1

n
(simply take zn =). Since zn > s, zn /∈ X and for all n ∈ N, f(zn) ≥ y0.
By the Squeeze Theorem limn→∞ zn = s, and by continuity of f at s, sequen-
tial characterization of continuity, and the comparison theorem for sequences,
limn→∞ f(zn) = f(s) ≥ y0. Therefore, f(s) = y0 and the proof is complete.

We now give a proof that does not use sequences.

Proof not using sequences. Consider the set X = {x ∈ [a, b) : f(x) < y0}. X is
non-empty since a ∈ X and upper bounded (actually bounded) by definition.
By the Least Upper Bound Property s = sup(X) exists. First observe that
s 6= b by definition and that s 6= b as well. Indeed, let ε = y0−f(a) > 0, then by
right-continuity of f at a there exists δ > 0 such that whenever a < x < a + δ
one has |f(x) − f(a)| < ε, and hence f(x) < f(a) + ε = y0. This implies that
s > a, otherwise assuming s = a, there would be a point, say z = a + δ

2 , such
that z ∈ X but z > s, a contradiction. Similarly, let ε = f(b) − y0 > 0, then
by left-continuity of f at b there exists δ > 0 such that whenever b− δ < x < b
one has |f(x) − f(b)| < ε, and hence f(x) > f(b) − ε = y0. This implies that
s < b, otherwise assuming s = b, there would be a point, say z = b − δ

2 , such
that z ∈ X but z > s, a contradiction. So s ∈ (a, b), and it remains to prove
that f(s) = y0 and thus we can take x0 = s.

Assume by contradiction that f(s) > y0. Let ε = f(s) − y0 > 0. By
continuity of f at s there is δ > 0 such that if |x− s| < δ then |f(x)− f(s)| < ε.
Thus, for all x ∈ (s−δ, s+δ), one has f(x) > f(s)−ε = f(s)− (f(s)−y0) = y0.
Since s is the supremum of X and δ > 0, by the approximation property for
suprema there exists xδ ∈ X such that s − δ < xδ ≤ s, and hence there exists
xδ ∈ (s− δ, s] such that f(xδ) < y0 and f(xδ) > y0; contradiction.
Assume by contradiction that f(s) < y0. Let ε = y0 − f(s) > 0. By continuity
of f at s there is δ > 0 such that if |x − s| < δ then |f(x) − f(s)| < ε. Thus,
for all x ∈ (s − δ, s + δ), one has f(x) < f(s) + ε = f(s) − (y0 − f(s)) = y0.
But if x ∈ (s, s + δ) then x > s and f(x) < y0 which contradicts the fact that
s is the supremum of X. We proved that f(s) ≤ y0 and f(s) ≥ y0 and thus
f(s) = y0.

Remark 19

We could have given a proof of the Intermediate Value Theorem by
considering the set Y = {x ∈ [a, b] : f(x) > y0} and using the greatest
upper bound property.

Remark 20

The point x0, whose existence is guarranted in the Intermediate Value
Theorem, does not have to be unique.
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The converse of the Intermediate Value Theorem is not true in general.
Indeed, the function defined by f(x) = sin( 1

x ) if x 6= 0 and f(0) = 0 is not
continuous (prove it!) but satisfies the conclusion of the Intermediate Value
Theorem. However for monotone function the converse holds.

Definition 43: Monotonicity for functions

A function f : R→ R is monotone if it is either increasing (i.e. if x ≤ y
then f(x) ≤ f(y)) or decreasing (i.e. if x ≤ y then f(x) ≥ f(y)).

Theorem 24: Converse of the Intermediate Value Theorem for
monotone functions

Let f : [a, b] → R be a monotone function such that f(a) < f(b) (resp.
f(b) < f(b)). If whenever f(a) < y0 < f(b) (resp. f(b) < y0 < f(a))
there exists x0 ∈ (a, b) such that f(x0) = y0, then f is continuous on
[a, b].

5.3 The Extreme Value Theorem

Definition 44: Boundedness for functions

Let X be a non-empty subset of R. A function f : X → R is said to be
bounded on X if and only if there exists M ≥ 0 such that for all x ∈ X,
|f(x)| ≤M .

Lemma 12

If a function f : X → R is not bounded, then there exists a sequence
(zn)∞n=1 in X such that |f(zn)| > n for all n ≥ 1.

Proof. It follows simply by negating what it means for f to be bounded. If f
is unbounded then for all M > 0 there exists xM ∈ X such that |f(xM )| > M ,
and in particular for all n ≥ 1 there exists xn ∈ X such that |f(xn)| > n.

Theorem 25: Extreme Value Theorem

Let f : [a, b] → R be continuous. Then f is bounded and moreover
there exist xi, xs ∈ [a, b] such that f(xi) = infx∈[a,b] f(x) and f(xs) =
supx∈[a,b] f(x).

Hint: Use the sequential characterization of continuity and sequential compact-
ness to show that f is bounded. Then, use the Least Upper Bound Property,
the Squeeze Theorem, and the approximation property for suprema and infima
to show that the infimum and the supremum are attained.
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Proof. We first prove that f is bounded. Assume by contradiction that f is not
bounded. Then there exists a sequence (zn)∞n=1 in [a, b] such that |f(zn)| > n
(why?). Since [a, b] is sequentially compact, there is a subsequence (yn)∞n=1 of
(zn)∞n=1 such that limn→∞ yn = ` ∈ [a, b]. By continuity of f , limn→∞ f(yn) =
f(`) and (f(yn))∞n=1 is convergent; a contradiction.

Since f is bounded by the Greatest Lower Bound Property (resp. the Least
Upper Bound Property) m := infx∈[a,b] f(x) (resp. M := supx∈[a,b] f(x)) exists.
It remains to show that these two extrema are attained. We start with the
infimum.

By the approximation property for infima, for every n ∈ N there exists zn ∈
[a, b] such that m ≤ f(zn) < m+ 1

n . By the Squeeze Theorem, limn→∞ f(zn) =
m and by sequential compactness of [a, b], there is a subsequence (yn)∞n=1 of
(zn)∞n=1 that converges to `m ∈ [a, b]. By continuity of f , m = limn→∞ f(zn) =
limn→∞ f(yn) = f(`m), and we conclude by setting xi = `m.

As for the supremum, by the approximation property for suprema, for every
n ∈ N there exists zn ∈ [a, b] such that M − 1

n < f(zn) ≤ M . By the Squeeze
Theorem, limn→∞ f(zn) = M and by sequential compactness of [a, b], there is
a subsequence (yn)∞n=1 of (zn)∞n=1 that converges to `M ∈ [a, b]. By continuity
of f , M = limn→∞ f(zn) = limn→∞ f(yn) = f(`M ), and we conclude by setting
xs = `M .

5.4 Uniform Continuity

Some properties of sequences are preserved by taking the image of the sequence
by a continuous function. For instance, if a sequence is bounded, say in [a, b],
then the sequence obtained by taking the images of the terms by a continuous
function on [a, b] is also bounded. However continuity is not strong enough
to preserve certain properties of sequences. Here is an example. Consider the
sequence ( 1

n )∞n=1 and the function f(x) = 1
x which is continuous on (0, 1), then

( 1
n )∞n=1 is a Cauchy sequence but (f( 1

n ))∞n=1 = (n)∞n=1 is not Cauchy. We will
study a very useful notion which is stronger than continuity.

Definition 45: Uniform Continuity

Let I be a subset of R and f : I → R. We say that f is uniformly
continuous on I if for every ε > 0 there exists δ := δ(ε) > 0 such that if
x, y ∈ I and |x− y| < δ, then |f(x)− f(y)| < ε.

The fact that uniform continuity is stronger than continuity follows clearly
form the definitions.

Proposition 43: Uniform continuity implies continuity

Let f : I → R. If f is uniformly continuous on I then f is continuous on
I.

Proof. Assume that f is uniformly continuous and let x0 ∈ I and ε > 0. Since
f is uniformly continuous, there exists δ := δ(ε) > 0 such that if x, y ∈ I and
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|x − y| < δ, then |f(x) − f(y)| < ε, and by taking y = x0, one has that for all
x ∈ I if |x− x0| < δ, then |f(x)− f(x0)| < ε and the proof is complete.

Remark 1. Observe that to show that a function is not uniformly continuous
on I it is sufficient to show that there exists ε > 0 such that for all n ≥ 1 there
exist sequence (xn)∞n=1 and (yn)∞n=1 in I such that limn→∞ |xn − yn| = 0 and
for all n ≥ 1, |f(xn)− f(yn)| ≥ ε.

Example 9. 1. Show that x 7→ 1
x is uniformly continuous on (1, 2).

2. Show that x 7→ 1
x is not uniformly continuous on (0, 1).

The next proposition says that Cauchy sequences are preserved by uniformly
continuous functions.

Proposition 44: Preservation of Cauchy sequences by uniformly
continuous functions

Let f : (a, b) → R and (xn)∞n=1 a Cauchy sequence of element in (a, b).
Then, (f(xn))∞n=1 is a Cauchy sequence.

Proof. Let (xn)∞n=1 be a Cauchy sequence of element in (a, b) and ε > 0. By
uniform continuity of f , there exists δ > 0 such that for all x, y ∈ I, if |x−y| < δ
then |f(x) − f(y)| < ε. Since (xn)∞n=1 is Cauchy there exists N ∈ N such that
for all n,m ≥ N , |xn − xm| < δ and thus |f(xn)− f(xm)| < ε.

A continuous function on a sequentially compact interval [a, b] has a remark-
able property since it is automatically uniformly continuous.

Theorem 26: Continuity on compact intervals implies uniform
continuity

Let f be a real-valued continuous function on a closed interval [a, b].
Then, f is uniformly continuous on [a, b].

Proof. Assume by contradiction that f is continuous but not uniformly con-
tinuous on [a, b]. Then, there exists ε0 > 0 such that for all n ∈ N, there is
xn, yn ∈ [a, b] with |xn − yn| < 1

n and |f(xn)− f(yn)| ≥ ε0. By sequential com-
pactness of [a, b] there is a subsequence (xnk

)∞k=1 of (xn)∞n=1 that converges to
some `1 ∈ [a, b]. Consider the subsequence (ynk

)∞k=1 of (yn)∞n=1, then by sequen-
tial compactness again, the sequence (ynk

)∞k=1 has a subsequence (ymk
)∞k=1 that

converges to some `2 ∈ [a, b]. Note that the subsequence (xmk
)∞k=1 of (xnk

)∞k=1

still converges to `1. By the Squeeze Theorem the sequence (xn − yn)∞n=1 con-
verges to 0 and hence all its subsequences, in particular limk→∞(xmk

− ymk
) =

0. Therefore, `1 − `2 = 0 and `1 = `2. By continuity of f the sequence
(f(xmk

)− f(ymk
))∞k=1 converges to f(`1)− f(`2) = 0. This is impossible since

for all n ∈ N, |f(xn)− f(yn)| ≥ ε0 > 0.
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Theorem 27: Continuous extendability

Let f : (a, b) → R. Then, f is uniformly continuous if and only if there
is a continuous function g : [a, b] → R which extends f , i.e. g satisfies
g(x) = f(x) for all x ∈ (a, b).

Proof. Assume that there is a continuous function g : [a, b] → R which extends
f . Then g is uniformly continuous on [a, b] and thus on (a, b) and f being
the restriction of g on (a, b) it is also uniformly continuous on (a, b). Assume
now that f is uniformly continuous on (a, b). Define g : (a, b) → R by g(x) =
f(x). The function g is clearly continuous on (a, b). It remains to show that
limx→a+ f(x) and limx→b− f(x) exist and are finite and set g(a) = limx→a+ f(x)
and g(b) = limx→b− f(x) to complete the proof. Let (zn)∞n=1 be a sequence
in (a, b) that is convergent to a. Then (zn)∞n=1 is Cauchy and by the previous
exercise (f(zn))∞n=1 is also Cauchy. Since every Cauchy sequence of real numbers
is convergent (f(zn))∞n=1 converges to some real number `z. At this point we
still need to justify that the limit does not depend on the sequence. Let (zn)∞n=1

and (yn)∞n=1 be sequences in (a, b) that converge to a and such that (f(zn))∞n=1

converges to some real number `z and (f(yn))∞n=1 converges to some real number
`y. Let ε > 0, and note that |`z−`y| ≤ |`z−f(zn)|+|f(zn)−f(yn)|+|f(yn)−`y|.
But there exists N1 ∈ N such that for all n ≥ N1, |`z− f(zn)| < ε

3 , N2 ∈ N such
that for all n ≥ N2, |`y − f(yn)| < ε

3 . There is also N3 ∈ N such that for all
n ≥ N3, |f(zn) − f(yn)| < ε

3 . Indeed, since f is uniformly continuous on (a, b)
there exists δ > 0 such that if |x − y| < δ then |f(x) − f(y)| < ε

3 . Let K1 ≥ 1

such that for all n ≥ K1, |xn − a| < δ
2 and K2 ≥ 1 such that |yn − a| < δ

2
then for n ≥ max{K1,K2} |xn − yn| < δ and thus |f(xn) − f(yn)| < ε

3 . So
if N3 = max{K1,K2} then for all n ≥ N3, |f(xn) − f(yn)| < ε

3 . Therefore, if
n ≥ max{N1, N2, N3}, |`z − `y| < ε

3 + ε
3 + ε

3 = ε. We just proved that for all
ε > 0, |`z − `y| < ε which implies that `z = `y. By sequential characterization
of limits, limx→a+ f(x) exists and is finite and we set g(a) = limx→a+ f(x). The
case of b is identical.

5.5 Continuity of inverse functions

Proposition 45: Continuity and injectivity implies strict mono-
tonicity

Let I be an interval and let f : I → R. If f is continuous and injective
on I, then either f is strictly increasing or strictly decreasing on I.

Proof. Assume that f is continuous and injective on I. Assume by contradiction
that f is neither strictly increasing nor strictly decreasing then there exist x1 <
x2 < x3 in I such that f(x1) ≤ f(x2) and f(x3) ≤ f(x2) (or f(x1) ≥ f(x2)
and f(x3) ≥ f(x2)) (why?). Since the proof for the latter case is similar to
the proof of the former case we only treat the case where f(x1) ≤ f(x2) and
f(x3) ≤ f(x2). Since f is injective f(x1) < f(x2) and f(x3) < f(x2). Let α
such that f(x1) < α < f(x2) and f(x3) < α < f(x2) (why such an α exists?).
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Since f is continuous on [x1, x2], the IVT implies that there exists c ∈ (x1, x2)
such that f(c) = α. Similarly, since f is continuous on [x2, x3], the IVT implies
that there exists d ∈ (x2, x3) such that f(d) = α and thus f(c) = f(d) for some
x1 < c < x2 < d < x3 which contradicts the injectivity of f . Therefore f is
either strictly increasing or strictly decreasing.

Theorem 28: Continuity of inverse functions on compact inter-
vals

Let f : [a, b]→ R be continuous and injective on [a, b], then f([a, b]) is a
closed interval and the inverse of f onto its image, f−1 : f([a, b])→ [a, b],
is continuous.

Proof. Note f is either strictly increasing or strictly decreasing by the previous
proposition. We will assume that f is strictly increasing as the proof that f is
strictly decreasing will follow by similar arguments or by considering g = −f .
Since f is strictly increasing, we obtain f(a) < f(b). Since f is continuous,
we obtain by the Intermediate Value Theorem that f([a, b]) = [f(a), f(b)]. We
claim that f−1 is strictly increasing. To see this, suppose y1, y2 ∈ f([a, b]) are
such that y1 < y2. Choose x1, x2 ∈ [a, b] such that f(x1) = y1 and f(x2) = y2.
Since f(x1) < f(x2), it must be the case that x1 < x2 as f was strictly increas-
ing. Hence f−1(y1) = f−1(f(x1)) = x1 < x2 = f−1(f(x2)) = f−1(y2). Hence
f−1 is strictly increasing. Therefore, f−1 : [f(a), f(b)] → [a, b] is a strictly in-
creasing function such that f−1([f(a), f(b)]) = [a, b]. Therefore f−1 is continu-
ous by the converse of the Intermediate Value Theorem for monotone functions
as f−1 satisfies the conclusions of the Intermediate Value Theorem.
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Chapter 6

Differentiation

6.1 Definition and basic properties

Definition 46: Local differentiability

Let f : (a, b) → R and x0 ∈ (a, b). We say that f is differentiable at x0
if limx→x0

f(x)−f(x0)
x−x0

exists and is finite.

If f is differentiable at x0 we write f
′
(x0) the limit limx→x0

f(x)−f(x0)
x−x0

, and

if f is differentiable at every point x0 ∈ (a, b) the function x ∈ (a, b) 7→ f
′
(x) is

called the derivative of f and is denoted f
′
.

Remark 21

It is often convenient to write the limit above as follows:

lim
x→x0

f(x)− f(x0)

x− x0
= lim
h→0

f(x0 + h)− f(x0)

h
.

Example 10. Let α ∈ R. Where is the function x 7→ α differentiable? Compute
the derivative wherever the function is differentiable.

Example 11. Where is the function x 7→ |x| differentiable? Compute the deriva-
tive wherever the function is differentiable.

Example 12. Where is the function x 7→
√
x differentiable? Compute the deriva-

tive wherever the function is differentiable.

We will now prove the simple but useful Carathéodory’s Theorem.

Theorem 29: Carathéodory’s Theorem

Let x0 ∈ (a, b) and f : (a, b) → R. Then, f is differentiable at x0 if and
only if there exists a function ϕ defined on (a, b) such that ϕ is continuous
at x0 and f(x) = f(x0) + ϕ(x)(x− x0). Furthermore, f

′
(x0) = ϕ(x0).

Proof. First suppose that there is a function ϕ : (a, b) → R such that ϕ is
continuous at x0 and f(x) = f(x0) + ϕ(x)(x − x0). Note that for x 6= x0,

59
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f(x)−f(x0)
x−x0

= ϕ(x)(x−x0)
x−x0

= ϕ(x). Therefore limx→x0

f(x)−f(x0)
x−x0

exists by con-

tinuity of ϕ and f
′
(x0) = limx→x0

f(x)−f(x0)
x−x0

= limx→x0
ϕ(x) = ϕ(x0). Con-

versely, suppose that f is differentiable at x0. Define ϕ : (a, b)→ R via ϕ(x) ={
f
′
(x0) if x = x0

f(x)−f(x0)
x−x0

if x 6= x0,
for all x ∈ (a, b). Clearly f(x) = f(x0) + ϕ(x)(x− x0)

for all x ∈ (a, b). Furthermore, since limx→x0 ϕ(x) = limx→x0

f(x)−f(x0)
x−x0

=

f
′
(x0) = ϕ(x0), ϕ is continuous at x0 as desired.

Proposition 46: Differentiability implies continuity

Let x0 ∈ (a, b) and f : (a, b) → R. If f is differentiable at x0 then f is
continuous at x0.

Proof. Suppose that f is differentiable at x0. By Carathéodory’s Theorem,
there exists a function ϕ defined on (a, b) such that ϕ is continuous at x0 and
f(x) = f(x0)+ϕ(x)(x−x0). Therefore, limx→x0 f(x) = f(x0)+ϕ(x0)0 = f(x0)
by continuity of ϕ at x0. and the conclusion follows.

Definition 47: Local extrema

Let I be an interval and let f : I → R. We say that f has a local
maximum at c ∈ I if there exists an open interval (a, b) ⊂ I such that
c ∈ (a, b) and f(x) ≤ f(c) for all x ∈ (a, b), and a local minimum at
c ∈ I if f(x) ≥ f(c) for all x ∈ (a, b). If f has a local maximum or a
local minimum at c we simply say that f has a local extremum at c.

Proposition 47: Local maximum and derivatives

Let I be an interval and f : I → R.
If

1. f has a local maximum at c ∈ I

2. f is differentiable at c,

then f
′
(c) = 0.

Proof. Let c ∈ I be such that f
′
(c) exists and such that f has a local maximum

at c. Since f has a local maximum at c, there exists an open interval (a, b) ⊂ I
such that c ∈ (a, b) and f(x) ≤ f(c) for all x ∈ (a, b). If x ∈ (a, b) and

x > c, then f(x)−f(c)
x−c ≤ 0. Therefore as (a, b) is an open interval containing c,

limx→c+
f(x)−f(c)

x−c ≤ 0. Similarly, if x ∈ (a, b) and x < c, then f(x)−f(c)
x−c ≥ 0.

Therefore as (a, b) is an open interval containing c, limx→c−
f(x)−f(c)

x−c ≥ 0. Since

f
′
(c) exists

lim
x→c−

f(x)− f(c)

x− c
= lim
x→c+

f(x)− f(c)

x− c
= f

′
(c).

Hence the above inequalities show 0 ≤ f ′(c) ≤ 0 and thus f
′
(c) = 0.
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Proposition 48: Local minimun and derivatives

Let I be an interval and f : I → R.
If

1. f has a local minimum at c ∈ I

2. f is differentiable at c,

then f
′
(c) = 0.

Proof. Let c ∈ I be such that f
′
(c) exists and such that f has a local minimum

at c. Since f has a local minimum at c, there exits an open interval (a, b) ⊂ I
such that c ∈ (a, b) and f(x) ≥ f(c) for all x ∈ (a, b). If x ∈ (a, b) and

x > c, then f(x)−f(c)
x−c ≥ 0. Therefore as (a, b) is an open interval containing c,

limx→c+
f(x)−f(c)

x−c ≥ 0. Similarly, if x ∈ (a, b) and x < c, then f(x)−f(c)
x−c ≤ 0.

Therefore as (a, b) is an open interval containing c, limx→c−
f(x)−f(c)

x−c ≤ 0. Since

f
′
(c) exists

lim
x→c−

f(x)− f(c)

x− c
= lim
x→c+

f(x)− f(c)

x− c
= f

′
(c).

Hence the above inequalities show 0 ≤ f ′(c) ≤ 0 and thus f
′
(c) = 0.

Combining the last two propositions we obtain Fermat’s Theorem.

Corollary 6: Fermat’s Theorem

Let I be an interval and f : I → R. If f has a local extremum at c ∈ I
and if f is differentiable at c, then f

′
(c) = 0.

Definition 48: Global extrema

Let I be an interval and let f : I → R. It is said that f has a global
maximum at c ∈ I if f(x) ≤ f(c) for all x ∈ I, and a global minimum at
c ∈ I if f(x) ≥ f(c) for all x ∈ I. If f has a global maximum or a global
minimum at c we simply say that f has a global extremum at c.

6.2 Rules of differentiation

In this section we present classical and fundamental rules of differentiation.

6.2.1 Basic Rules
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Proposition 49: Addition and multiplication by a scalar

Let λ ∈ R, x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0. Then,

1. f + g is differentiable at x0 and (f + g)
′
(x0) = f

′
(x0) + g

′
(x0),

2. λf is differentiable at x0 and (λf)
′
(x0) = λf

′
(x0).

Proof. 1. Assume that f and g are differentiable at x0. If h 6= 0, then

(f + g)(x0 + h)− (f + g)(x0)

h
=
f(x0 + h) + g(x0 + h)− (f(x0) + g(x0))

h

=
f(x0 + h)− f(x0) + g(x0 + h)− g(x0))

h

=
f(x0 + h)− f(x0)

h
+
g(x0 + h)− g(x0))

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0) and limh→0

g(x0+h)−g(x0)
h = g

′
(x0) by

assumption. Therefore, (f+g)(x0+h)−(f+g)(x0)
h has a limit when h tends to

0 and (f + g) is differentiable at x0. Moreover,

(f + g)
′
(x0) = lim

h→0

(f + g)(x0 + h)− (f + g)(x0)

h

= lim
h→0

f(x0 + h)− f(x0)

h
+ lim
h→0

g(x0 + h)− g(x0)

h

= f
′
(x0) + g

′
(x0).

2. Assume that f is differentiable at x0. If h 6= 0, then

(λ · f)(x0 + h)− (λ · f)(x0)

h
=
λf(x0 + h)− λf(x0)

h

= λ
f(x0 + h)− f(x0)

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0) by assumption. Therefore, (λ·f)(x0+h)−(λ·f)(x0)

h
has a limit when h tends to 0 and (λ · f) is differentiable at x0. Moreover,

(λ · f)
′
(x0) = lim

h→0

(λ · f)(x0 + h)− (λ · f)(x0)

h

= lim
h→0

λ
f(x0 + h)− f(x0)

h

= λf
′
(x0).
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6.2.2 Product Rule

Proposition 50: Product rule

Let x0 ∈ (a, b) and f, g : (a, b) → R differentiable at x0. Then, f · g is
differentiable at x0 and (f · g)

′
(x0) = f

′
(x0)g(x0) + f(x0)g

′
(x0).

Proof. Assume that f and g are differentiable at x0. If h 6= 0, then

(f · g)(x0 + h)− (f · g)(x0)

h
=
f(x0 + h)g(x0 + h)− (f(x0)g(x0))

h

=
(f(x0 + h)− f(x0))g(x0 + h) + f(x0)(g(x0 + h)− g(x0))

h

=
f(x0 + h)− f(x0)

h
g(x0 + h) + f(x0)

g(x0 + h)− g(x0)

h
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0), limh→0

g(x0+h)−g(x0)
h = g

′
(x0) and limh→0 g(x0+

h) = g(x0) by assumption. Therefore, (f ·g)(x0+h)−(f ·g)(x0)
h has a limit when h

tends to 0 and (f · g) is differentiable at x0. Moreover,

(f · g)
′
(x0) = lim

h→0

(f · g)(x0 + h)− (f · g)(x0)

h

= lim
h→0

[
f(x0 + h)− f(x0)

h
g(x0 + h)] + f(x0) lim

h→0

g(x0 + h)− g(x0)

h

= f
′
(x0)g(x0) + f(x0)g

′
(x0).

6.2.3 Quotient Rule

Proposition 51: Quotient rule

Let x0 ∈ (a, b) and f, g : (a, b)→ R differentiable at x0.

1. If f(x0) 6= 0, then 1
f is well defined around x0 and differentiable at

x0 and
(
1
f

)′
(x0) = − f

′
(x0)

(f(x0))2
.

2. If g(x0) 6= 0, then f
g is well defined around x0 and differentiable at

x0 and
(
f
g

)′
(x0) = f

′
(x0)g(x0)−f(x0)g

′
(x0)

(g(x0))2
.
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Proof. 1. Assume that f is differentiable at x0. If h 6= 0, since f is continuous
and f(x0) 6= 0 we can assume that if h is small enough that f(x0 +h) 6= 0
and then

(
1
f

)
(x0 + h)−

(
1
f

)
(x0)

h
=

1
f(x0+h)

− 1
f(x0)

h

=
1

h

f(x0)− f(x0 + h)

f(x0 + h)f(x0)

= −f(x0 + h)− f(x0)

h

1

f(x0 + h)f(x0)
.

But limh→0
f(x0+h)−f(x0)

h = f
′
(x0) and limh→0 f(x0 + h) = f(x0) follow

from the assumptions. Therefore,

(
1
f

)
(x0+h)−

(
1
f

)
(x0)

h has a limit when h
tends to 0 and 1

f is differentiable at x0. Moreover,

( 1

f

)′
(x0) = lim

h→0

(
1
f

)
(x0 + h)−

(
1
f

)
(x0)

h

= lim
h→0
−f(x0 + h)− f(x0)

h

1

f(x0 + h)f(x0)

= − f
′
(x0)(

f(x0)
)2 .

2. Assume that f and g are differentiable at x0 and that g(x0) 6= 0. Remark
that f

g = f · 1g and by the product rule and (1) f
g is differentiable at x0.

Moreover, (f
g

)′
(x0) =

(
f · 1

g

)′
(x0)

= f
′
(x0)

(1

g

)
(x0) + f(x0)

(1

g

)′
(x0)

= f
′
(x0)

1

g(x0)
− f(x0)

g
′
(x0)(

g(x0)
)2

=
f
′
(x0)g(x0)− f(x0)g

′
(x0)(

g(x0)
)2 .

6.2.4 Chain Rule
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Proposition 52: Chain rule

Let x0 ∈ (a, b), f : (a, b)→ R such that f(x0) ∈ (c, d) and g : (c, d)→ R.
If f differentiable at x0 and g is differentiable at f(x0) then, g ◦ f is
differentiable at x0 and (g ◦ f)

′
(x0) = g

′
(f(x0)) · f ′(x0).

Proof. Since f is differentiable at x0 and g is differentiable at f(x0), by Caratheodory’s
Theorem there exist ϕ and ψ such that ϕ is continuous at x0, f(x) = f(x0) +
ϕ(x)(x − x0) for all x ∈ (a, b), f

′
(x0) = ϕ(x0) and ψ is continuous at f(x0),

g(x) = g(f(x0))+ψ(x)(x−f(x0)) for all x ∈ (c, d), g
′
(f(x0)) = ψ(f(x0)). There-

fore, g(f(x))−g(f(x0)) = ψ(f(x0))(f(x)−f(x0)) = ψ(f(x0))(ϕ(x)(x−x0)), and
g(f(x))−g(f(x0))

x−x0
= ψ(f(x0))ϕ(x) if x 6= x0. Since g is continuous at f(x0) and f

is continuous at x0 it follows that g ◦ f is differentiable at x0 and (g ◦ f)
′
(x0) =

limx→x0

g(f(x))−g(f(x0))
x−x0

= limx→x0
ψ(f(x0))ϕ(x) = g

′
(f(x0)) · f ′(x0)

6.3 The Mean Value Theorem and its applica-
tions

6.3.1 Rolle’s Theorem

Theorem 30: Rolle’s Theorem

Let f : [a, b]→ R. If,

(i) f is continuous on [a, b],

(ii) f is differentiable on (a, b),

(iii) f(a) = f(b),

then there exists c ∈ (a, b) such that f
′
(c) = 0.

Proof. By the EVT, f has a finite maximum M and a finite miminum m on
[a, b]. The proof will be divided into three cases.

Case 1 If M = m, then f is constant on (a, b) and f
′
(x) = 0 for all x ∈ (a, b).

Case 2 Suppose that M 6= m. Since f(a) = f(b), f must assume one of the
values M or m at some point c ∈ (a, b).

Case 2.a Consider the case where f(c) = M . Since M is the maximum of f
on [a, b] we have f(c+ h)− f(c) ≤ 0 for all h which satisfy c+ h ∈ (a, b).

In the case h > 0 this implies f
′
(c) = limh→0+

f(c+h)−f(c)
h ≤ 0, and in the

case h < 0 this implies f
′
(c) = limh→0−

f(c+h)−f(c)
h ≥ 0. It follows that

f
′
(c) = 0.
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Case 2.b Finally, consider the case where f(c) = m. Since m is the minimum
of f on [a, b] we have f(c+h)−f(c) ≥ 0 for all h which satisfy c+h ∈ (a, b).

In the case h > 0 this implies f
′
(c) = limh→0+

f(c+h)−f(c)
h ≥ 0, and in the

case h < 0 this implies f
′
(c) = limh→0−

f(c+h)−f(c)
h ≤ 0. It follows that

f
′
(c) = 0.

We shall use Rolle’s Theorem to obtain two important and very useful re-
sults: the Mean Value Theorem and Cauchy’s Mean Value Theorem.

6.3.2 The Mean Value Theorem

The Mean Value Theorem has a geometric meaning when we look at the slopes
of tangents to the graph of the function.

Theorem 31: Mean Value Theorem

Let f : [a, b]→ R. If,

(i) f is continuous on [a, b],

(ii) f is differentiable on (a, b),

then there exists c ∈ (a, b) such that f
′
(c) = f(b)−f(a)

b−a .

Proof. Let h(x) = f(x)(b− a)− x(f(b)− f(a)). By (i) and (ii), h is continuous
on [a, b] and differentiable on (a, b), with h

′
(x) = f

′
(x)(b − a) − (f(b) − f(a)).

Since h(a) = f(a)b − af(b) = h(b) it follows from Rolle’s Theorem that there
exists c ∈ (a, b) such that h

′
(c) = f

′
(c)(b− a)− (f(b)− f(a)) = 0, i.e. f

′
(c) =

f(b)−f(a)
b−a .

6.3.3 Cauchy’s Mean Value Theorem

We will need a strengthening of the Mean Value Theorem to prove L’Hôpital’s
rules.

Theorem 32: Cauchy’s Mean Value Theorem

Let f, g : [a, b]→ R. If,

(i) f and g are continuous on [a, b],

(ii) f is differentiable on (a, b),

(iii) g is differentiable on (a, b) with g
′
(x) 6= 0 for every x ∈ (a, b),

then there exists c ∈ (a, b) such that f
′
(c)

g′ (c)
= f(b)−f(a)

g(b)−g(a) .

Proof. Observe first that g(b) 6= g(a). Otherwise, by Rolle’s Theorem there
would exist c ∈ (a, b) such that g′(c) = 0; contradiction with (iii). Let h(x) =
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f(x)(g(b)− g(a))− g(x)(f(b)− f(a)). By (i) and (ii), h is continuous on [a, b]
and differentiable on (a, b), with h

′
(x) = f

′
(x)(g(b)−g(a))−g′(x)(f(b)−f(a)).

Since h(a) = f(a)g(b) − g(a)f(b) = h(b) it follows from Rolle’s Theorem that
there exists c ∈ (a, b) such that h

′
(c) = f

′
(c)(g(b)−g(a))−g′(c)(f(b)−f(a)) = 0,

i.e. f
′
(c)

g′ (c)
= f(b)−f(a)

g(b)−g(a) .

6.3.4 Applications

6.3.4.1 L’Hôpital’s Rules

There are many variations of L’Hôpital’s rule and we shall present a proof a one
of them and simply state a few others.

Theorem 33: L’Hôpital Rule (two-sided finite limits)

Let x0 ∈ (a, b) and f, g : (a, b) \ {x0} → R. If,

(i) f is differentiable on (a, b) \ {x0},

(ii) g is differentiable on (a, b) \ {x0} with g
′
(x) 6= 0 for every x ∈

(a, b) \ {x0},

(iii) lim
x→x0

f(x) = lim
x→x0

g(x) = 0

(iv) there exists ` ∈ R such that lim
x→x0

f
′
(x)

g′(x)
= `

then lim
x→x0

f(x)

g(x)
= `.

Hint. First, show using the Mean Value Theorem that there is at most one point

in (x0, b) where g vanishes. Then show that limx→x+
0

f(x)
g(x) = ` using Cauchy’s

Mean Value Theorem. Adjust the arguments to prove that limx→x−0
f(x)
g(x) = `

and conclude.

Proof. We prove that both right-sided and left-sided limits exist and are the
same.

Left-sided limit First, we show using the Mean Value Theorem that there is
at most one point in (a, x0) where g vanishes. Indeed, if x1 < x2 are
in (a, x0) then g is continuous on [x1, x2] and differentiable on (x1, x2).

Hence, by the MVT there exists c ∈ (x1, x2) such that g
′
(c) = g(x2)−g(x1)

x2−x1
.

By assumption, g
′
(c) 6= 0 and thus g(x1) 6= g(x2). As this hold for all

x1 < x2 in (a, x0), g is injective on (a, x0) and there is at most one point,

say γ1 ∈ (a, x0), where g vanishes. Assume now that lim
x→x0

f
′
(x)

g′(x)
= `

and let ε > 0. Then there exists δ1 > 0 such that for all x such that

x0 > x > x0 − δ1 > γ1 > a we have | f
′
(x)

g′ (x)
− `| < ε. Fix x such that

x0 > x > x0 − δ1 and let x0 > y > x. Since f and g are continuous on
[x, y], differentiable on (x, y) and g

′
(t) 6= 0 for all t ∈ (x, y), Cauchy’s MVT
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implies that there exists c ∈ (x, y) such that f
′
(c)

g′ (c)
= f(y)−f(x)

g(y)−g(x) . Hence, as

c ∈ (x, y) ⊆ (x0 − δ1, x0), we obtain that | f
′
(c)

g′ (c)
− `| = | f(y)−f(x)g(y)−g(x) − `| < ε.

Since the above inequality holds for any y such that x0 > y > x >
x0 − δ1, by taking the limit when y tends to x0 from the left, we obtain
f(x)
g(x) = limy→x+

0

f(y)−f(x)
g(y)−g(x) , indeed limx→x−0

f(x) = limx→x−0
g(x) = 0 by

assumption and since x ∈ (γ1, x0) one has g(x) 6= 0. Therefore, if x0−δ1 <
x < x0 one has | f(x)g(x) − `| ≤ ε. Finally, since x was fixed but arbitrary in

(x0− δ1, x0) we have proven that for all ε > 0 there exists δ > 0 such that

for all x ∈ (x0 − δ1, x0), | f(x)g(x) − `| ≤ ε and hence limx→x−0
f(x)
g(x) = `.

Right-sided limit First, we show using the Mean Value Theorem that there
is at most one point in (x0, b) where g vanishes. Indeed, if x1 < x2 are in
(x0, b) then g is continuous on [x1, x2] and differentiable on (x1, x2). Hence,

by the MVT there exists c ∈ (x1, x2) such that g
′
(c) = g(x2)−g(x1)

x2−x1
. By

assumption, g
′
(c) 6= 0 and thus g(x1) 6= g(x2). As this hold for all x1 < x2

in (x0, b), g is injective on (x0, b) and there is at most one point, say

γ2 ∈ (x0, b), where g vanishes. Assume now that lim
x→x0

f
′
(x)

g′(x)
= ` and let

ε > 0. Then there exists δ2 > 0 such that for all x0 < x < x0+δ2 < γ2 < b

such that | f
′
(x)

g′ (x)
− `| < ε. Fix x such that x0 < x < x0 + δ2 and let

x0 < y < x. Since f and g are continuous on [y, x], differentiable on (y, x)
and g

′
(t) 6= 0 for all t ∈ (y, x), Cauchy’s MVT implies that there exists

c ∈ (y, x) such that f
′
(c)

g′ (c)
= f(x)−f(y)

g(x)−g(y) . Hence, as c ∈ (y, x) ⊆ (x0, x0 + δ2),

we obtain that | f
′
(c)

g′ (c)
− `| = | f(x)−f(y)g(x)−g(y) − `| < ε. Since the above inequality

holds for any y such that x0 < y < x < x0 + δ, by taking the limit when

y tends to x0 from the right, we obtain f(x)
g(x) = limy→x+

0

f(x)−f(y)
g(x)−g(y) , indeed

since x ∈ (x0, γ) g(x) 6= 0, and limx→x+
0
f(x) = limx→x+

0
g(x) = 0 by

assumption. Therefore, if x0 < x < x0 + δ2 one has | f(x)g(x) − `| ≤ ε. Finally,

since x was fixed but arbitrary in (x0, x0 + δ2) we have proven that for all

ε > 0 there exists δ > 0 such that for all x ∈ (x0, x0 + δ2), | f(x)g(x) − `| ≤ ε

and hence limx→x+
0

f(x)
g(x) = `.

Since f
g has a right-sided limit and a left-sided limit at x0, and both limits are

equal to ` it follows that f
g has a limit at x0 which is `.

With similar proofs we can show various versions of L’Hôpital’ rule. We
state without proofs the most useful ones. The next rule is for right-sided limit
and if we write b− instead of a+ we get the left-sided version.
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Theorem 34: L’Hôpital Rule (one-sided finite limits)

Let f, g : (a, b)→ R. If,

(i) f is differentiable on (a, b),

(ii) g is differentiable on (a, b) with g
′
(x) 6= 0 for every x ∈ (a, b),

(iii) lim
x→a+

f(x) = lim
x→a+

g(x) = 0

(iv) there exists ` ∈ R such that lim
x→a+

f
′
(x)

g′(x)
= `

then lim
x→a+

f(x)

g(x)
= `.

The next version is about two-sided infinite limits.

Theorem 35: L’Hôpital Rule (two-sided infinite limits)

Let x0 ∈ (a, b) and f, g : (a, b) \ {x0} → R. If,

(i) f is differentiable on (a, b) \ {x0},

(ii) g is differentiable on (a, b) \ {x0} with g
′
(x) 6= 0 for every x ∈

(a, b) \ {x0},

(iii) lim
x→x0

f(x) = lim
x→x0

g(x) = ±∞

(iv) there exists ` ∈ R such that lim
x→x0

f
′
(x)

g′(x)
= ±∞

then lim
x→x0

f(x)

g(x)
= ±∞.

6.3.4.2 Taylor’s Theorem

Theorem 36: Taylor’s Theorem

Let x0 ∈ (a, b) and f : (a, b) → R. If f is n + 1 times differentiable on
(a, b) and if x ∈ (a, b)\{x0}, then there exists cx ∈ (a, b)\{x0} such that

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(cx)

(n+ 1)!
(x− x0)n+1.

Proof. Consider the functions g(t) = f(x) − f(t) −
∑n
k=1

f(k)(t)
k! (x − t)k and

h(t) = g(t)− ( x−t
x−x0

)n+1g(x0) and apply Rolle’s Theorem.
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6.4 Monotone Functions and Derivatives

6.4.1 Various tests

Proposition 53: Increasing function test

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If
f
′
(x) ≥ 0 for all x ∈ (a, b), then f is increasing on [a, b]. If f

′
(x) > 0 for

all x ∈ (a, b), then f is strictly increasing on [a, b].

Proof. Let x1 < x2 in [a, b] then f is continuous on [x1, x2] and differentiable

on (x1, x2). By the MVT there exists c ∈ (x1, x2) such that f
′
(c) = f(x2)−f(x1)

x2−x1
.

But f
′
(c) ≥ 0 and thus f(x2)− f(x1) ≥ 0. Therefore for every x1 < x2 in [a, b]

one has f(x1) ≤ f(x2) and f is increasing. In the case where f
′
(c) > 0, then for

every x1 < x2 in [a, b] one has f(x1) < f(x2) and f is strictly increasing.

Proposition 54: Decreasing function test

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If
f
′
(x) ≤ 0 for all x ∈ (a, b), then f is decreasing on [a, b]. If f

′
(x) < 0 for

all x ∈ (a, b), then f is strictly decreasing on [a, b].

Proof. Let x1 < x2 in [a, b] then f is continuous on [x1, x2] and differentiable

on (x1, x2). By the MVT there exists c ∈ (x1, x2) such that f
′
(c) = f(x2)−f(x1)

x2−x1
.

But f
′
(c) ≤ 0 and thus f(x2)− f(x1) ≤ 0. Therefore for every x1 < x2 in [a, b]

one has f(x1) ≥ f(x2) and f is decreasing. In the case where f
′
(c) < 0, then for

every x1 < x2 in [a, b] one has f(x1) > f(x2) and f is strictly decreasing.

Proposition 55: First Derivative Test (existence of local min-
ima)

Let f : (a, b) → R be continuous on (a, b). Suppose c ∈ (a, b) has the
property that there exists δ > 0 such that

1. f
′
(x) exists and f

′
(x) ≤ 0 for all x ∈ (c− δ, c) ⊆ (a, b), and

2. f
′
(x) exists and f

′
(x) ≥ 0 for all x ∈ (c, c+ δ) ⊆ (a, b).

Then f has a local minimum at c.

Proof. Assume that f satisfies the above assumptions and let x ∈ (c, c + δ).
Since f is continuous on [c, x] and differentiable on (c, x), the MVT implies that

there exists d ∈ (c, x) such that f
′
(d) = f(x)−f(c)

x−c . Since d ∈ (c, c+δ), f
′
(d) ≥ 0.

Hence the above equation implies f(x) ≥ f(c) for all x ∈ (c, c + δ). Similarly,
let x ∈ (c − δ, c). Since f is continuous on [x, c] and differentiable on (x, c),
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the MVT implies that there exists d ∈ (x, c) such that f
′
(d) = f(c)−f(x)

c−x . Since

d ∈ (c − δ, c), f ′(d) ≤ 0. Hence the above equation implies f(x) ≥ f(c) for all
x ∈ (c− δ, c). Therefore, f has a local minimum at c.

Proposition 56: First Derivative Test (existence of local max-
ima)

Let f : (a, b) → R be continuous on (a, b). Suppose c ∈ (a, b) has the
property that there exists δ > 0 such that

1. f
′
(x) exists and f

′
(x) ≥ 0 for all x ∈ (c− δ, c) ⊆ (a, b), and

2. f
′
(x) exists and f

′
(x) ≤ 0 for all x ∈ (c, c+ δ) ⊆ (a, b).

Then f has a local maximum at c.

Proof. Assume that f satisfies the above assumptions and let x ∈ (c, c + δ).
Since f is continuous on [c, x] and differentiable on (c, x), the MVT implies that

there exists d ∈ (c, x) such that f
′
(d) = f(x)−f(c)

x−c . Since d ∈ (c, c+δ), f
′
(d) ≤ 0.

Hence the above equation implies f(x) ≤ f(c) for all x ∈ (c, c + δ). Similarly,
let x ∈ (c − δ, c). Since f is continuous on [x, c] and differentiable on (x, c),

the MVT implies that there exists d ∈ (x, c) such that f
′
(d) = f(c)−f(x)

c−x . Since

d ∈ (c − δ, c), f ′(d) ≥ 0. Hence the above equation implies f(x) ≤ f(c) for all
x ∈ (c− δ, c). Therefore, f has a local maximum at c.

6.4.2 Differentiablity of inverse functions

In this section we study the differentiability of the inverse (whenever it exists)
of a differentiable function.

Theorem 37: Inverse Function Theorem

Let f : [a, b]→ R be continuous and injective on [a, b]. Let g : f([a, b])→
[a, b] be the inverse of f onto its image. If x0 ∈ (a, b) and f is differ-
entiable at x0 with f

′
(x0) 6= 0, then g is differentiable at f(x0) and

g
′
(f(x0)) = 1

f ′ (x0)
.

Hint: Use the sequential characterization limit and the fact the g is continuous.
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Chapter 7

Integration

7.1 Definition of the Riemann Integral

7.1.1 Riemann Sums

We define upper and lower Riemann sums which are based on the notion of
partition.

Definition 49: Partition

A partition of a closed interval [a, b] is a finite list of real numbers (tk)nk=0,
where n ≥ 1, such that a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

Example 13. The partition (tk)nk=0 of [a, b] where tk = a + k b−an is called the
regular partition.

Definition 50: Lower Riemann sum

Let P = (tk)nk=0 be a partition of [a, b] and let f : [a, b]→ R be bounded.
The lower Riemann sum of f associated to P , denoted L(f, P ), is

L(f, P ) =

n∑
k=1

mk(tk − tk−1)

where, for all k ∈ {1, . . . , n}, mk = inf{f(x) : x ∈ [tk−1, tk]}.

Definition 51: Upper Riemann sum

Let P = (tk)nk=0 be a partition of [a, b] and let f : [a, b]→ R be bounded.
The upper Riemann sum of f associated to P , denoted L(f, P ), is

U(f, P ) =

n∑
k=1

Mk(tk − tk−1)

where, for all k ∈ {1, . . . , n}, Mk = sup{f(x) : x ∈ [tk−1, tk]}.

73
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Definition 52

Let P and Q be partitions of [a, b]. It is said that Q is a refinement of
P if P ⊆ Q

Lemma 13

Let P and Q be partitions of [a, b] and let f : [a, b] → R be bounded. If
Q is a refinement of P , then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
Therefore,

sup{L(f, P ) : P a partition of [a, b]} ≤ inf{U(f, P ) : P a partition of [a, b]}.

7.1.2 Riemann integrable functions

Definition 53

Let f : [a, b] → R be bounded. We say that f is Riemann integrable on
[a, b] if

sup{L(f, P ) : P a partition of [a.b]} = inf{U(f, P ) : P a partition of [a, b]}.

If f is Riemann integrable on [a, b] the Riemann integral of f from a to

b, denoted
∫ b
a
f(x)dx, is defined as

∫ b

a

f(x)dx = sup{L(f, P ) : P a partition of [a, b]}

= inf{U(f, P ) : P a partition of [a, b]}.

Example 14. Show that the function f : [a, b]→ R defined by f(x) = 2x for all

x ∈ [a, b] is Riemann integrable and that
∫ b
a
f(x)dx = 2(b− a).

The definition of the Riemann integral suggests that we need to look at all
the partitions, and this might be possible for very elementary functions as in
the example above but in general it is often intractable (try for the function
f(x) = x2 on [0, 1]). The following characterization of Riemann integrability
says that if we fix a given precision we only need to exhibit a partition such that
the upper Riemann sum and the lower Riemann sum for this specific partition
are almost equal up to this precision.

Proposition 57

Let f : [a, b]→ R be bounded. Then f is Riemann integrable on [a, b] if
and only if for every ε > 0 there exists a partition P of [a, b] such that

0 ≤ U(f, P )− L(f, P ) < ε.
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To show that f is Riemann integrable it follows from Proposition 57, that it is
sufficient to find a sequence of partition (Pn)∞n=1 such that limn→∞(U(f, Pn)−
L(f, Pn)) = 0. This is in general a much easier task than looking at all the
partitions (try again the example f(x) = x2 on [0, 1] with the regular partitions).

Definition 54: Riemann sum

Let P = (tk)nk=0 be a partition of [a, b] and let f : [a, b]→ R be bounded.
For a finite sequence (xk)nk=1 such that xk ∈ [tk − 1, tk] we define the
Riemann sum, denoted R(f, P, (xk)nk=1), by

R(f, P, (xk)nk=1) =

n∑
k=1

f(xk)(tk − tk−1)

7.2 Basic properties of the Riemann integral

7.2.1 Riemann integrability criteria

Theorem 38

Let f : [a, b] → R. If f is bounded and increasing on [a, b], then f is
Riemann integrable on [a, b].

Proof. Consider a partition, to be specified later, P = (tk)Nk=0 of [a, b]. Since f
is increasing inf{f(x) : tk−1 6 x 6 tk} ≥ f(tk−1) and sup{f(x) : tk−1 6 x 6
tk} ≤ f(tk). Since,

L(f, P ) =

N∑
k=1

mk(tk − tk−1)

where, for all k ∈ {1, . . . , N}, mk = inf{f(x) : x ∈ [tk−1, tk]}, we have

L(f, P ) ≥
N∑
k=1

f(tk−1)(tk − tk−1).

Similarly,

U(f, P ) =

N∑
k=1

Mk(tk − tk−1)

where, for all k ∈ {1, . . . , N}, Mk = sup{f(x) : x ∈ [tk−1, tk]}, and

U(f, P ) ≤
N∑
k=1

f(tk)(tk − tk−1).
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Therefore,

0 ≤ U(f, P )− L(f, P ) ≤
N∑
k=1

f(tk)(tk − tk−1)−
N∑
k=1

f(tk−1)(tk − tk−1)

=

N∑
k=1

(f(tk)− f(tk−1))(tk − tk−1)

Let ε > 0 and let N ≥ 1 such that b−a
N (f(b) − f(a)) < ε. If P = (tk)Nk=0 was

chosen to be the regular partition of [a, b] where tk = a+ k b−aN , one has

0 ≤ U(f, P )− L(f, P ) ≤
N∑
k=1

(f(tk)− f(tk−1))(
b− a
N

)

=
b− a
N

N∑
k=1

(f(tk)− f(tk−1))

=
b− a
N

(f(b)− f(a)) < ε.

By Proposition 57 we conclude that f is Riemann integrable on [a, b].

A similar proof gives the following theorem.

Theorem 39

Let f : [a, b] → R. If f is bounded and decreasing on [a, b], then f is
Riemann integrable on [a, b].

Theorem 40

Let f : [a, b] → R. If f is continuous, then f is Riemann integrable on
[a, b].

Proof. Since f is continuous on [a, b], it is uniformly continuous on [a, b]. Hence,
there exists δ > 0, that for all x, y ∈ [a, b] with |x−y| < δ, one has |f(x)−f(y)| <
ε. By the Archimedean Property, there exists N ∈ N, such that (b− a)/N < δ,
and consider the regular partition Preg = (tk)Nk=0 of [a, b] where tk = a+ k b−aN .
Let 1 6 k 6 N . By the Extreme Value Theorem, there exist xk, yk ∈ [tk−1, tk],
so that f(xk) = inf{f(x) : tk−1 6 x 6 tk} and f(yk) = sup{f(x) : tk−1 6
x 6 tk}. As xk, yk ∈ [tk−1, tk], we have |xk − yk| ≤ b−a

N < δ and therefore
|f(xk)− f(yk)| < ε. Since,

L(f, Preg) =

N∑
k=1

mk(tk − tk−1)

where, for all k ∈ {1, . . . , N}, mk = inf{f(x) : x ∈ [tk−1, tk]}, we have

L(f, Preg) =

N∑
k=1

mk
b− a
N

=
b− a
N

N∑
k=1

f(xk).
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Similarly,

U(f, Preg) =

N∑
k=1

Mk(tk − tk−1)

where, for all k ∈ {1, . . . , N}, Mk = sup{f(x) : x ∈ [tk−1, tk]}, and

U(f, Preg) =

N∑
k=1

Mk
b− a
N

=
b− a
N

N∑
k=1

f(yk).

Therefore,

0 ≤ U(f, Preg)− L(f, Preg) =
b− a
N

N∑
k=1

f(yk)− b− a
N

N∑
k=1

f(xk)

=
b− a
N

N∑
k=1

(f(yk)− f(xk))

≤ b− a
N

N∑
k=1

|f(yk)− f(xk)|

<
b− a
N

N∑
k=1

ε = (b− a)ε.

By Proposition 57 we conclude that f is Riemann integrable on [a, b].

7.2.2 Algebraic and order properties

Proposition 58: Linearity

Let f, g : [a, b]→ R be Riemann integrable and λ ∈ R. Then,

1. the function (λ · f) is Riemann integrable and∫ b

a

(λ · f)(x)dx = λ

∫ b

a

f(x)dx.

2. the function (f + g) is Riemann integrable and∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

Proposition 59: Chasles’ relation

Let f : [a, b] → R be Riemann integrable and c ∈ [a, b]. Then, f is
Riemann integrable on [a, c] and on [c, b], and∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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Proposition 60: Preservation of the order relation

Let f, g : [a, b]→ R be Riemann integrable.

1. If f ≤ g on [a, b] then
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx.

2. If there exist m,M ∈ R such that for all x ∈ [a, b], m ≤ f(x) ≤M
then m(b− a) ≤

∫ b
a
f(x)dx ≤M(b− a).

Proposition 61: Triangle Inequality

Let f : [a, b] → R be Riemann integrable. Then, the function |f | is
Riemann integrable on [a, b] and∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

Proposition 62: Integrability of products

Let f, g : [a, b]→ R be Riemann integrable. Then, the function (f · g) is
Riemann integrable on [a, b].

7.2.3 Integration by parts

Theorem 41: Integration by part

Let f, g be real valued functions on [a, b] such that:

1. f and g are differentiable on [a, b],

2. f ′ and g′ are Riemann integrable on [a, b].

Then,

(7.1)

∫ b

a

f ′(x)g(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x)dx.

7.3 The Fundamental Theorem of Calculus

We start with a discussion of the notion of antiderivative.
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Definition 55: Antiderivative

Let f : (a, b) → R. A function F : (a, b) → R is said to be an anti-
derivative of f on (a, b), if F is differentiable on (a, b) with F

′
(x) = f(x)

for all x ∈ (a, b).

Lemma 14

Let f : (a, b) → R. If f is differentiable on (a, b) with f
′
(x) = 0 for all

x ∈ (a, b), then there exists α ∈ R such that f(x) = α for all x ∈ (a, b).

Proof. Assume that f : (a, b) → R is differentiable on (a, b) with f
′
(x) = 0 for

all x ∈ (a, b). Let x1 < x2 in (a, b). Since f is continuous on [x1, x2] and
differentiable on (x1, x2), by the MVT, there exists x0 ∈ (x1, x2) such that
f(x2)−f(x1)

x2−x1
= f

′
(x0) = 0 and thus f(x1) = f(x2). Pick c ∈ (a, b) and let

x ∈ (a, b), x 6= c then either x > c or x < c. In either case the above argument
shows that f(x) = f(c). If we set α = f(c) then it follows that for all x ∈ (a, b),
f(x) = α.

Proposition 63

Let f, g : (a, b) → R. If f and g are differentiable on (a, b) with f
′
(x) =

g
′
(x) for all x ∈ (a, b), then there exists C ∈ R such that f(x) = g(x)+C

for all x ∈ (a, b).

Proof. Assume that f, g : (a, b) → R are differentiable on (a, b) with f
′
(x) =

g
′
(x) for all x ∈ (a, b). Let x1 < x2 in (a, b). If h = f − g then h is continuous

on [x1, x2] and differentiable on (x1, x2). Therefore, by the MVT, there exists

x0 ∈ (x1, x2) such that h(x2)−h(x1)
x2−x1

= h
′
(x0) = 0 and thus h(x1) = h(x2). Pick

c ∈ (a, b) and let x ∈ (a, b), x 6= c then either x > c or x < c. In either case the
above argument shows that h(x) = h(c). If we set α = h(c) then it follows that
for all x ∈ (a, b), f(x) = g(x) + α.

Thus Proposition 63 implies that if F is an antiderivative of f , then the
function G defined via G : x 7→ F (x) +C, for some fixed constant C ∈ R, is also
an antiderivative of f .

The First Fundamental Theorem of Calculus states that every continuous
function admits an antiderivative (and thus infinitely many).
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Theorem 42: First Fundamental Theorem of Calculus (exis-
tence of derivatives for continuous functions)

Let f : [a, b]→ R be continuous on [a, b].
Then,

1. for all x ∈ [a, b] F (x) =
∫ x
a
f(t)dt is well-defined,

2. the function F : [a, b] → R is Lipschitz on [a, b], in particular F is
uniformly continuous on [a, b], and F is differentiable on (a, b) with
F
′
(x) = f(x) for all x ∈ (a, b).

Proof. Since f is continuous on [a, b], f is continuous on every interval of the
form [a, x] where a 6 x 6 b and thus Riemann integrable on [a, x] and

∫ x
a
f(t)dt

is a finite real number. For any x ∈ [a, b], let F (x) =
∫ x
a
f(t)dt, then F is a

well-defined function on [a, b]. For any x, y ∈ [a, b], say x < y one has

|F (x)− F (y)| =
∣∣∣∣∫ x

a

f(t)dt−
∫ y

a

f(t)dt

∣∣∣∣
=

∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣
6
∫ y

x

|f(t)|dt

6
∫ y

x

sup{|f(z)| : z ∈ [a, b]}dt

6 sup{|f(z)| : z ∈ [a, b]}|x− y|.

Therefore, F is M -Lipschitz with M = sup{|f(z)| : z ∈ [a, b]}.
Let x0 ∈ (a, b) and ε > 0. By continuity of f at x0, there exists δ > 0 such

that for all x ∈ (x0 − δ, x0 + δ) if |x− x0| < δ then |f(x)− f(x0)| < ε. Assume
that 0 < h < δ then∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x0+h

a

f(t)dt− 1

h

∫ x0

a

f(t)dt− f(x0)

∣∣∣∣∣
=

∣∣∣∣∣ 1h
∫ x0+h

x0

f(t)dt− f(x0)

∣∣∣∣∣
=

∣∣∣∣∣ 1h
∫ x0+h

x0

(f(t)− f(x0))dt

∣∣∣∣∣
6

1

h

∫ x0+h

x0

|f(t)− f(x0)|dt

<
1

h

∫ x0+h

x0

εdt =
h

h
ε = ε.

Therefore, limx→x+
0

F (x0+h)−F (x0)
h = f(x0).
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If we assume now that −δ < h < 0 then∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x0+h

a

f(t)dt− 1

h

∫ x0

a

f(t)dt− f(x0)

∣∣∣∣∣
=

∣∣∣∣ 1h
∫ x0

x0+h

f(t)dt− f(x0)

∣∣∣∣
=

∣∣∣∣ 1h
∫ x0

x0+h

(f(t)− f(x0))dt

∣∣∣∣
6

1

|h|

∫ x0

x0+h

|f(t)− f(x0)|dt

<
1

|h|

∫ x0

x0+h

εdt =
−h
|h|

ε = ε.

Therefore, limx→x−0
F (x0+h)−F (x0)

h = f(x0). Finally, we can conclude that

limx→x0

F (x0+h)−F (x0)
h = f(x0) and thus F is differentiable at x0, and fur-

thermore F ′(x0) = f(x0).

Remark 2. If f : [a, b]→ R is Riemann integrable on [a, b], then for all x ∈ [a, b]
F (x) =

∫ x
a
f(t)dt is well-defined as well but the conclusion in (2) might not

be true anymore. It can be shown that Thomae’s function fT is Riemann
integrable on [a, b] and that for all x ∈ [a, b], F (x) =

∫ x
a
fT (t)dt = 0 (and

F is Lipschitz, uniformly continuous, and differentiable on [a, b]). However it
follows from Darboux’s Theorem that Thomae’s function does not admit an
antiderivative.

The Second Fundamental Theorem of Calculus is a very convenient tool to
estimate the integral of a continuous function in terms of its antiderivatives. We
can thus avoid the cumbersome and often intractable use of Riemann sums to
compute integrals.

Theorem 43: Second Fundamental Theorem of Calculus (com-
putation of the integral by means of an antideriva-
tive)

Let f : [a, b] → R be Riemann integrable on [a, b] and assume that f
admits an antiderivative F on (a, b) such that F is continuous on [a, b].

Then,
∫ b
a
f(x)dx = F (b)− F (a).

Proof. Let ε > 0, then there exists a partition P = (tk)Nk=0 of [a, b] such that

L(f, P ) 6
∫ b
a
f(x)dx 6 U(f, P ) < L(f, P ) + ε. Indeed, since f is Riemann

integrable on [a, b] one has∫ b

a

f(x)dx = sup{L(f, P ) : P a partition of [a, b]}

= inf{U(f, P ) : P a partition of [a, b]}.
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By the approximation property of infima and suprema and the definition of the
integral there exist partitions PL and PU such that∫ b

a

f(x)dx− ε

2
< L(f, PL) 6

∫ b

a

f(x)dx

and ∫ b

a

f(x)dx 6 U(f, PU ) <

∫ b

a

f(x)dx+
ε

2
.

Let P be the refinement of PL and PU , then it follows from Lemma 13 that∫ b

a

f(x)dx− ε

2
< L(f, P ) 6

∫ b

a

f(x)dx

and ∫ b

a

f(x)dx 6 U(f, P ) <

∫ b

a

f(x)dx+
ε

2
.

Therefore, U(f, P ) < L(f, P ) + ε. For any k ∈ {1, 2, . . . , N} by the MVT
there exists ck ∈ (tk−1, tk) such that F (tk) − F (tk−1) = F ′(ck)(tk − tk−1) =

f(ck)(tk− tk−1). Summing over k we get F (b)−F (a) =
∑N
k=1 f(ck)(tk− tk−1).

Observe that L(f, P ) 6
∑N
k=1 f(ck)(tk − tk−1) 6 U(f, P ), and hence L(f, P ) 6

F (b)−F (a) < L(f, P ) + ε. Finally, one obtains that −ε <
∫ b
a
f(x)dx− (F (b)−

F (a)) < −ε and thus
∣∣∣∫ ba f(x)dx− (F (b)− F (a))

∣∣∣ < ε, for ε > 0 fixed but

arbitrary. Therefore,
∫ b
a
f(x)dx = F (b)− F (a).
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