A Resolvent Example
by
Francis J. Narcowich
November, 2014

Problem. Let \(k(x, y) = xy^2 \), \(Ku(x) = \int_0^1 k(x, y)u(y)dy \), and \(Lu = u - \lambda Ku \). Assume that \(L \) has closed range.

1. Determine the values of \(\lambda \) for which \(Lu = f \) has a solution for all \(f \).
 Solve \(Lu = f \) for these values of \(\lambda \).

2. For the remaining values of \(\lambda \), find a condition on \(f \) the guarantees a solution to \(Lu = f \). When \(f \) satisfies this condition, solve \(Lu = f \).

Solution. (1) Because \(R(L) \) is closed, the Fredholm alternative applies. We begin by finding \(N(L^*) \). First, we have that \(L^* = I - \lambda K^* \), where \(K^* w = \int_0^1 k(y, x)w(y)dy = \int_0^1 yx^2w(y)dy \). We want to find all \(w \) for which \(L^* w = w - \bar{\lambda} \int_0^1 x^2yw(y)dy = 0 \). Note that \(w = \bar{\lambda}x^2 \int_0^1 yw(y)dy \), so \(w = Cx^2 \).

Putting this back into the equation for \(w \) yields \(Cx^2 = \bar{\lambda}Cx^2 \int_0^1 y^2dy = C(\bar{\lambda}/4)x^2 \). Thus, \(C = (\bar{\lambda}/4)C \). If \(\bar{\lambda}/4 \neq 1 \), then \(C = 0 \) and \(N(L^*) = \{0\} \). Thus, if \(\bar{\lambda}/4 \neq 1 \) - i.e., \(\lambda \neq 4 \), \(Lu = f \) has a solution for all \(f \in L^2[0,1] \).

To find \(u \), note that \(u - \lambda x \int_0^1 y^2u(y)dy = f \), and so we only need to find \(\int_0^1 y^2u(y)dy \). The trick for doing this is to multiply \(Lu = f \) by \(x^2 \) and then integrate. Doing this results in \(\int_0^1 y^2u(y)dy - \frac{\lambda}{4} \int_0^1 y^2u(y)dy = \int_0^1 y^2f(y)dy \).

From this we get \(\int_0^1 y^2u(y)dy = \frac{1}{1-\lambda/4} \int_0^1 y^2f(y)dy \). Finally, we arrive at

\[
 u(x) = f(x) + \frac{4\lambda}{4-\lambda} x \int_0^1 y^2f(y)dy = f(x) + \frac{4\lambda}{4-\lambda} Kf(x).
\]

In operator form,

\[
(I - \lambda K)^{-1} = I + \frac{4\lambda}{4-\lambda} K.
\]

The operator \((I - \lambda K)^{-1}\) is called the resolvent of \(K \).

(2) When \(\lambda = 4 \), \(N(L^*) = \text{span}\{x^2\} \). By the Fredholm alternative, \(Lu = f \) has a solution if and only if \(\int_0^1 x^2f(x)dx = 0 \). To solve \(u - 4x \int_0^1 y^2u(y)dy = f \) for \(u \), we first note that \(\int_0^1 y^2u(y)dy \) is not determined, because \(\int_0^1 y^2u(y)dy - \frac{4}{4} \int_0^1 y^2u(y)dy = \int_0^1 y^2f(y)dy = 0 \). This really just says that have consistency. The constant \(C = \int_0^1 y^2u(y)dy \) is thus arbitrary, and \(u(x) = f(x) + Cx \).