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Let H be a separable Hilbert space, and let B(H) and C(H) denote the
bounded linear operators on H and the compact operators on H, respec-
tively.

1 The Resolvent Set and the Spectrum of an Operator

For n×n matrices, the spectrum is just the set of eigenvalues. The spectrum
of a linear operator L is defined indirectly, as the complement of another set,
the resolvent set. It is necessary to do this because on an infinite dimensional
space the operator L may not have eigenvalues in the usual sense.

Definition 1.1. Let L ∈ B(H). The resolvent set of L is ρ(L) := {λ ∈
C : (L − λI)−1 ∈ B(H)}1. The operator RL(λ) := (L − λI)−1 is called the
resolvent of L. The spectrum of L, σ(L), is defined as the complement of
the resolvent set: σ(L) := ρ(L){.

This agrees with the definition of the spectrum in the matrix case, where
the resolvent set comprises all complex numbers that are not eigenvalues.
In terms of its spectrum, we will see that a compact operator behaves like
a matrix, in the sense that its spectrum is the union of all of its eigenvalues
and 0. We begin with the eigenspaces of a compact operator.

We start with two lemmas that we will need in the sequel. The first
holds for all self-adjoint operators, including unbounded ones.

Lemma 1.2. Let L = L∗ be in B(H). Then the eigenvalues of L are real
and the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. The proof is identical to the one given in the matrix case, and so we
will skip it.

The second lemma, which we proved earlier, is used throughout this
section. In particular, it is used in the three propositions following it.

Lemma 1.3. Let {φn}∞n=1 be an o.n. set in H and let K ∈ C(H). Then,
limn→∞Kφn = 0.

1 (L−λI)−1 may exist as an unbounded operator, but, for λ to be in the resolvent set,
this inverse must be bounded.
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Proof. See Lemma 2.4, Compact Sets and Compact Operators.

Proposition 1.4. If K ∈ C(H), then σ(K) consists only of eigenvalues of
K, together with 0.

Proof. We will assume that K = K∗. The result is true for all compact
operators, but the proof for the general case requires more work2. Suppose
that λ ∈ σ(K), λ 6= 0. By definition, K − λI is not boundedly invertible.
This can happen either because there is a vector u ∈ H, u 6= 0, such that
Ku = λu, or the range of K − λI is not all of H, or both. If the former
holds, then λ is an eigenvalue of K and we are done. So, we will suppose that
the range of K − λI is not all of H. Because K is compact, the Fredholm
alternative applies to the operator3 L = K −λI. Thus, H = N(L∗)⊕R(L).
Since, by assumption, R(L) 6= H, there is a least one w ∈ N(L∗), w 6= 0; that
is, L∗w = K∗w − λ̄w = 0. But K∗ = K and thus Kw = λ̄w, which means
that λ̄ is an eigenvalue of K. However, all of the eigenvalues of K = K∗ are
real. Thus λ̄ = λ, and hence λ is itself an eigenvalue.

We now turn to showing that 0 is in σ(K). Suppose not. Then, 0 ∈ ρ(K)
andK−1 ∈ B(H). Let {φn}∞n=1 be an o.n. set and let ψn = Kφn. Then, since
φn = K−1ψn, we have that ‖φn‖ = 1 ≤ ‖K−1‖‖ψn‖. But, by Lemma 1.3,
we have that limn→∞ ‖Kφn‖ = limn→∞ ‖ψn‖ = 0, which is a contradiction.
Thus, 0 is in σ(K).

Proposition 1.5. Let K ∈ C(H). If λ 6= 0 is an eigenvalue of K, with
corresponding eigenspace Eλ, then Eλ is finite dimensional.

Proof. Because Eλ = N(K − λI), the eigenspace is closed. We may there-
fore choose an o.n basis {φn}Nn=1 for Eλ, using the Gram-Schmidt process if
necessary. Suppose that N = ∞. Then we have that Kφn = λφn. Since
the φn’s are o.n., this implies that ‖Kφn‖ = |λ| 6= 0. But, by Lemma 1.3,
we have that limn→∞ ‖Kφn‖ = 0. This contradiction implies that N is
finite.

Proposition 1.6. Let K ∈ C(H) be self-adjoint. Then 0 is the only possible
accumulation point of the eigenvalues of K

Proof. Suppose not. Then we may choose a sequence of (distinct) eigen-
values {λn}∞n=1 such that limn→∞ λn = λ 6= 0. Let φn be an eigenvector
corresponding to λn, with ‖φn‖ = 1. Because the eigenvalues are distinct,

2See T. Kato, Perturbation Theory for Linear Operators, Theorem 6.26, p. 185.
3The notation used earlier was L = I−λK. Because of the definitions of the spectrum

and resolvent, this is inconvenient here.

2

http://www.math.tamu.edu/~fnarc/m641/m641_notes/compact_ops.pdf


the set {φn}∞n=1 is orthonormal. As above, this implies two things: First,
since ‖Kφn‖ = |λn|, limn→∞ ‖Kφn‖ = limn→∞ |λn| = |λ|. Second, by
Lemma 1.3, limn→∞Kφn = 0. Combining the two yields λ = 0, which is a
contradiction.

We remark that the previous proposition is true for any compact oper-
ator, not just ones that are self adjoint.

2 Spectral Theory for Self-Adjoint Compact Operators

In this section we will prove that the self-adjoint compact operators have
properties very similar to self-adjoint matrices. Essentially, the difference
comes in there being an infinite o.n. basis of for H composed of eigenvectors
of the operator. This has application to eigenvalue problems associated with
differential equations.

Lemma 2.1. Let L = L∗ be in B(H). Then ‖L‖ = sup‖u‖=1 |〈Lu, u〉|.

Proof. See problem 7(c), assignment 10.

Lemma 2.2. Let K 6= 0 ∈ C(H) be self-adjoint. Then, either ‖K‖ or −‖K‖
or possibly both, are eigenvalues.

Proof. By Lemma 2.1, ‖K‖ = sup‖u‖=1 |〈Ku, u〉|. Thus we can choose a
sequence {un}∞n=1, ‖un‖ = 1, such that ‖K‖ = limn→∞ |〈Kun, un〉|. Taking
away absolute values, we see that the sequence 〈Kun, un〉 will converge to
‖K‖, or −‖K‖, or may have subsequences that converge to either of these.
We will assume that 〈Kun, un〉 converges to ‖K‖. If not, reverse the sign of
K. Next, note that

‖Kun − ‖K‖un‖2 = ‖Kun‖2 − 2‖K‖〈Kun, un〉+ ‖K‖2

≤ ‖K‖2 − 2‖K‖〈Kun, un〉+ ‖K‖2

≤ 2‖K‖
(
‖K‖ − 〈Kun, un〉

) (2.1)

Because ‖K‖ = limn→∞〈Kun, un〉, we have limn→∞
∥∥Kun − ‖K‖un ∥∥ = 0.

Note that his does not mean that the sequence {un} is convergent, only that
Kun−‖K‖un converges to 0. In fact, this result applies for any self-adjoint
operator L∗ = L ∈ B(H), not just self-adjoint compact operators.

We will now make use of K being compact. Since the sequence {un} is
bounded, we can extract a subsequence {unk} of {un} for which {Kunk} is
convergent. Let w := limk→∞Kunk . Because limn→∞(Kun − ‖K‖un) = 0,
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it follows that the same is true for a subsequence – i.e. limk→∞(Kunk −
‖K‖unk) = 0. Consequently, we have that ‖K‖ limk→∞ unk = w, and
limk→∞ unk = w/‖K‖. In addition, ‖unk‖ = 1 implies that

1 = lim
k→∞

‖unk‖ = ‖ lim
k→∞

unk‖ = ‖w‖/‖K‖,

so ‖w‖ = ‖K‖. Finally, Kunk − ‖K‖unk → 0 implies that K(w/‖K‖) =
w/‖K‖. If we set u = w/‖K‖, then Ku = ‖K‖u, with ‖u‖ = 1. Thus ‖K‖
is an eigenvalue of K, with u 6= 0 being an eigenvector.

We can obtain all of the eigenvalues in the same way as we did above.
In showing this, we will simplify the notation in the discussion by assuming
that the operator K = K∗ satisfies 〈Kv, v〉 ≥ 0 for all v ∈ H. An operator
with this property is said to be nonnegative. This really doesn’t change the
argument we will now give. We will begin with the idea of an invariant
subspace:

Definition 2.3. We say that a subspace U of a Hilbert space H is invariant
under an operator L ∈ B(H) if and only if for all v ∈ U , Lv is in U .

Invariance will enable us to put a self-adjoint operator in “diagonal”
form. To see what we mean, let K∗ = K ∈ C(H). Label the first n positive
eigenvalues in decreasing order, ‖K‖ = λ1 > λ2 > · · · > λn > 0, and let
Mn be the span of all of the eigenvectors corresponding to λ1, . . . , λn and
let M⊥n be its orthogonal complement in H. Then we have the result below.

Lemma 2.4. Both Mn and M⊥n are invariant under K.

Proof. Any v ∈ Mn is a linear combination of eigenvectors of K; i.e., v =∑n
j=1 αjuj , where Kuj = λjuj . Hence,

Kv =

n∑
j=1

αjKuj =

n∑
j=1

αjλjuj ∈Mn,

so Mn is invariant under K. To see that M⊥n is also invariant we must
show that if w ∈ M⊥n , then Kw ∈ M⊥n . Let v ∈ Mn and w ∈ M⊥n , so the
invariance of Mn implies that Kv ∈Mn and, hence, 〈Kv,w〉 = 0. However,
since K = K∗,

0 = 〈Kv,w〉 = 〈v,K∗w〉 = 〈v,Kw〉,

which gives us that 〈v,Kw〉 = 0 and also that 〈Kw, v〉 = 0. It follows that
Kw ∈M⊥n and so M⊥n is invariant under K.
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Lemma 2.5. Let K 6= 0 ∈ C(H) be self-adjoint and nonnegative. If K has
n positive eigenvalues ‖K‖ = λ1 > λ2 > · · · > λn > 0, then

λn+1 = sup{〈Ku, u〉 : u ∈M⊥n , ‖u‖ = 1} < λn, (2.2)

where Mn is the span of all of the eigenvectors for λ1 through λn.

Proof. The subspace Mn is invariant under K, and so is its orthogonal
complement M⊥n . We now define Kn+1 be the restriction of K to M⊥n :
For all w ∈ M⊥n , Kn+1w := Kw. It is easy to see that K being compact
on H implies that Kn+1 is compact on M⊥n . By Lemma 2.2, with Kn+1

replacing K and and M⊥n replacing H, we have that

‖Kn+1‖ = sup{〈Kn+1w,w〉 : w ∈M⊥n , ‖u‖ = 1}

is an eigenvalue of Kn+1, with w 6= 0 being a corresponding eigenvector;
that is, Kn+1w = ‖Kn+1‖w. However, since Kn+1 is the restriction of K to
M⊥n , we see that Kn+1w = Kw = ‖Kn+1‖w. Consequently, ‖Kn+1‖ is an
eigenvalue of K as well. Let λn+1 := ‖Kn+1‖. We leave it as an exercise to
show that λn+1 < λn.

Proposition 2.6. From among eigenvectors of K corresponding to the
nonzero eigenvalues of K, one may select an orthonormal basis for R(K).
Moreover, if R(K) is dense in H, then that set forms an orthonormal basis
for H.

Proof. Let g = Ku ∈ R(K). For each λk 6= 0, let {φk,j : j = 1, . . . ,dim Eλk}
be an orthonormal basis for Eλk . The basis we want comprises the union of
all orthonormal bases for each λk 6= 0. Let

gn :=
n∑
k=1

dim Eλk∑
j=1

〈g, φk,j〉φk,j =
n∑
k=1

dim Eλk∑
j=1

〈Ku, φk,j〉φk,j

Note that 〈Ku, φk,j〉 = λk〈u, φk,j〉. Since Kφk,j = λkφk,j , we may write gn
as

gn =

n∑
k=1

dim Eλk∑
j=1

〈u, φk,j〉Kφk,j = K

( n∑
k=1

dim Eλk∑
j=1

〈u, φk,j〉φk,j
)

Let un =
∑n

k=1

∑dim Eλk
j=1 〈u, φk,j〉φk,j , so gn = Kun and, in addition, g−gn =

K(u − un). Since 〈un, φk,j〉 − 〈u, φk,j〉 = 0 for k = 1, . . . , n, we have that
u − un is orthogonal to Mn, the span of the eigenvectors corresponding to
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λ1, λ2, . . . , λn, so u− un ∈M⊥n . Thus, g − gn = K(u− un) = Kn+1(u− un)
and, consequently, ‖g−gn‖ ≤ ‖Kn+1‖‖u−un‖ = |λn+1|‖u−un‖. Of course,
we also have that

‖u− un‖2 = ‖u‖2 −
n∑
k=1

dim Eλk∑
j=1

|〈u, φk,j〉|2 ≤ ‖u‖2,

which implies that
‖g − gn‖ ≤ |λn+1|‖u‖. (2.3)

There are two possibilities. The first is that there are only a finite number
n of nonzero eigenvalues, and λn+1 = 0. This gives g = gn. The second is
that there are infinitely many nonzero eigenvalues λ1 > λ2 · · · > λn > · · · >
0. Since λn is a decreasing sequence bounded below, the limit limn→∞ λn
exists. Moreover, this limit is 0 because the only limit point of the nonzero
eigenvalues is 0. Finally, this and ‖g − gn‖ ≤ |λn+1|‖u‖ imply that

g = lim
n→∞

gn =

∞∑
k=1

dim Eλk∑
j=1

〈g, φk,j〉φk,j ,

from which the completeness of the basis for R(K) follows immediately.
If we also have that R(K) is dense in H – i.e., R(K) = H –, then, since

every vector in R(K) can be expressed in terms of the basis, it follows from
the theory in the notes on Orthonormal Sets that the set is an orthonormal
basis for H.

We remark that (2.3) actually provides an estimate on the error made
in approximating g by gn.

Theorem 2.7 (Spectral Theorem). Let K 6= 0 ∈ C(H) be self-adjoint.
Then, from among the eigenvectors of K, including those for λ = 0, we may
select an orthonormal basis for H.

Proof. After proving the Fredholm alternative – Theorem 3.1 in the notes on
Several Important Theorems –, we mentioned that the closure of the range
of K satisfies R(K) = N(K∗)⊥. Since K = K∗ and N(K) is closed, we have
that H = R(K)⊕N(K). The basis constructed in Proposition 2.6 for R(K)
is also an orthonormal basis for R(K). (Why?) Since N(K) = Eλ=0, we
may contruct an orthornormal basis for it. Combining the two bases gives
us an orthonormal basis for H composed of eigenvectors of K.

Previous: closed range theorem
Next: example problems for distributions
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