Final Examination

Instructions: Show all work in your bluebook. No calculators that can graph or do linear algebra are allowed.

1. (8 pts.) Determine whether or not the set \(\{1 + x, 1 - x, x + x^2, x^2 - x^3\} \) is linearly independent. Is it a basis for \(P_3 \)?

2. (5 pts.) Given that \(S \) is the set of all polynomials \(p \in P_3 \) such that \(p'(0) - p'(1) = 0 \), determine whether or not \(S \) is a subspace of \(P_3 \).

3. (7 pts.) Let \((u, v, w) = f(x, y) = (xy, 3x - 2y, x^2y) \) and also let \((s, t) = g(u, v, w) = (uw, v^2 + w^2) \). Use the chain rule to find the affine approximation to \(g \circ f(x, y) \) at \(x = y = 1 \).

4. Let \(L : P_2 \to P_2 \) be given by \(L[p] := (1 - t^2)p'' + (1 - 3t)p' + 8p \)

 (a) (4 pts.) Show that \(L \) is linear.

 (b) (7 pts.) Find the matrix of \(L \) relative to the basis \(E = \{1, t, t^2\} \).

 (c) (7 pts.) Find a basis for the null space (kernel) of \(L \). Is \(L \) one-to-one? onto?

5. Consider the bases for \(P_2 \) defined by

 \[E = \{1, t, t^2\} \quad \text{and} \quad B = \{t - t^2, t + t^2, 1 + t\} \, . \]

 (a) (6 pts.) Find the change of basis matrix \(C \) that takes coördinates relative to \(B \) into ones relative to \(E \).

 (b) (6 pts.) Find the change of basis matrix \(C \) that takes coördinates relative to \(E \) into ones relative to \(B \).

 (c) (5 pts.) For the linear transformation \(L \) in problem 4, write out the form of the matrix for \(L \) relative to \(B \), given your answer to 4b.

6. (5 pts.) Find the eigenvalues and eigenvectors for the matrix

 \[B = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \, . \]
7. **(10 pts.)** Use the Gram-Schmidt process to find an orthonormal basis for the span of the vectors below.

\[
\begin{align*}
v_1 &= \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} & v_2 &= \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} & v_3 &= \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}
\end{align*}
\]

![Fig. 1: The Surface S](image)

8. **(15 pts.)** The surface \(S \) in figure 1 is given parameterically by

\[
x(r, \theta) = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} + (4 - r^2) \mathbf{k}, \quad 0 \leq r \leq 2, \quad 0 \leq \theta \leq \pi/4.
\]

Let \(\mathbf{G}(\mathbf{x}) = (2z - y) \mathbf{i} + (x + 3z) \mathbf{j} + (2x + 3y) \mathbf{k} \). Use Stokes’s Theorem to find the line integral

\[
\Psi = \oint_C \mathbf{G}(\mathbf{x}) \cdot d\mathbf{x},
\]

where \(C \) is the boundary of \(S \) traversed from \(A \rightarrow B \rightarrow C \rightarrow A \).

9. Let \(\Sigma \) be the surface of the sphere with center \((0, 0, 0)\) and radius 2, and let \(\mathbf{n} \) be the outward drawn normal to \(\Sigma \).

 (a) **(5 pts.)** Let \(\mathbf{F} = xy^2 \mathbf{i} + yz^2 \mathbf{j} + zx^2 \mathbf{k} \), and let \(\mathbf{n} \) be the unit normal to \(\Sigma \). Set up, but do not evaluate, an iterated double integral that gives the surface integral

 \[
 \Phi = \iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS.
 \]

 (b) **(10 pts.)** Use Gauss’s Theorem to convert \(\Phi \) into a volume integral, and then evaluate the volume integral.