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Abstract

The long-standing problem of minimal projections is addressed from a computational point

of view. Techniques to determine bounds on the projection constants of univariate polynomial

spaces are presented. The upper bound, produced by a linear program, and the lower bound,

produced by a semidefinite program exploiting the method of moments, are often close enough to

deduce the projection constant with reasonable accuracy. The implementation of these programs

makes it possible to find the projection constant of several three-dimensional spaces with five

digits of accuracy, as well as the projection constants of the spaces of cubic, quartic, and quintic

polynomials with four digits of accuracy. Beliefs about uniqueness and shape-preservation of

minimal projections are contested along the way.

Key words and phrases: Minimal projection, projection constant, linear programming, semidefinite

programming, method of moments.
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1 Introduction

The problem of minimal projections has attracted the attention of approximation theorists for

about half a century. The survey of Cheney and Price [3] still provides a fine account on the topic.

The fact that the Fourier projection is uniquely minimal from C(T) onto the space of trigonometric

polynomials of degree at most d, derived from Berman–Marcinkiewicz formula, undoubtedly stands

as a highlight of the subject, see [12, 4]. But when the focus is put on algebraic rather than

trigonometric polynomials, the situation becomes dramatically more complicated. Besides the

trivial cases of degree d = 0 and d = 1, only the case d = 2 has been resolved, albeit at the cost of

considerable efforts deployed by Chalmers and Metcalf [2]. In fact, traditional analyses may have
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Union Horizon 2020 research and innovation program (grant agreement 666981 TAMING).
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Determining the projection constants of univariate polynomial spaces

reached their limitation for the problem of minimal projections. The present article is our way of

advocating a change of philosophy to promote the integration in classical Approximation Theory of

modern optimization methods, in particular methods based on moments and positive polynomials,

see [11]. Such techniques have already been used for minimal projections [8] and also in the context

of constrained approximation [9].

Before presenting the results and insights generated by our approach, let us formalize the problem

of interest precisely. Throughout the article, we consider an M -dimensional subspace U of the space

C[−1, 1] of continuous functions defined on the interval [−1, 1]. Typically, the space U consists of

algebraic polynomials. A projection P from C[−1, 1] onto U is just a linear map from C[−1, 1]

onto U that reproduces U , i.e., that satisfies P (u) = u for all u ∈ U . A minimal projection from

C[−1, 1] onto U is a projection P from C[−1, 1] onto U with minimal norm

(1) ‖P‖∞→∞ = max
‖f‖∞≤1

‖P (f)‖∞ = max
x∈[−1,1]

max
‖f‖∞≤1

|P (f)(x)|.

The projection constant λ(U) of U (relative to C[−1, 1]) is the value of the minimum, i.e.,

(2) λ(U) := min
P
‖P‖∞→∞ s.to P being a projection from C[−1, 1] onto U .

Fixing a basis (u1, . . . , uM ) for U , any projection P from C[−1, 1] onto U can be represented by

some linear functionals η1, . . . , ηM on C[−1, 1] as

(3) P (f) =
M∑
m=1

ηm(f)um, with ηm(um′) = δm,m′ , m,m′ ∈ J1:MK.

Moreover, any bounded linear functional η on C[−1, 1] can be represented by some signed Borel

measure µ on [−1, 1] as

(4) η(f) =

∫ 1

−1
fdµ.

It follows easily that the projection constant of U can also be written as

(5) λ(U) = inf
µ1,...,µM

max
x∈[−1,1]

∫ 1

−1
d

∣∣∣∣∣
M∑
m=1

um(x)µm

∣∣∣∣∣ s.to

∫ 1

−1
um′dµm = δm,m′ , m,m

′ ∈ J1:MK,

where the infimum (in fact, minimum) is taken over all signed Borel measures µ1, . . . , µM on

[−1, 1]. There is of course a difficulty originating from the infinite-dimensionality of the optimization

variables µ1, . . . , µM , so the optimization program (5) cannot (a priori) be performed exactly.

Our strategy consists in producing computable upper bounds (see Section 2) and lower bounds (see

Section 3) that are sufficiently close to determine the value of the projection constant with, say,

four or five digits of accuracy (corresponding here to three or four digits after the decimal point).

The computational burden can be lighten by exploiting some symmetry properties of minimal

projections (see Section 4). Implementing our strategy enables us, for instance, to:
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• retrieve numerically the result of [2] for quadratic polynomials, namely

(6) λ(P2) ≈ 1.2201,

and allude1 to the nonuniqueness of minimal projections onto the quadratics;

• determine with five digits of accuracy the projection constants of several other three-dimensional

polynomial spaces, and note in passing that

(7) λ(span{1, x2, x3}) = 1;

• determine with four digits of accuracy the projection constants of the spaces of cubic, quatric,

and quintic polynomials, namely

λ(P3) ≈ 1.365,(8)

λ(P4) ≈ 1.459,(9)

λ(P5) ≈ 1.538,(10)

and hint2 that minimal projections onto Pd do not in general preserve d-convexity, thus

disproving a conjecture from [13];

• provide state-of-the-art upper and lower bounds for the projection constants of the spaces of

polynomials of degree at most d until d = 12.

All of our results can be reproduced by downloading the matlab code available on the authors’

webpages. The packages CVX and Chebfun are required to execute the code.

2 Computable upper bound

We present in this section a discretization of the problem (5) that leads to a computable upper

bound for the projection constant λ(U) of a polynomial subspace U of C[−1, 1]. This involves in fact

two discretizations: one for the signed Borel measures µ1, . . . , µM and one for the interval [−1, 1].

We start by discretizing the measures.

Proposition 1. Given a basis (u1, . . . , uM ) for a subspace U of C[−1, 1], if v1, . . . , vK are distinct

points in [−1, 1], then

(11) λ(U) ≤ min
A∈RM×K

max
x∈[−1,1]

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(x)

∣∣∣∣∣ s.to
K∑
k=1

Am,kum′(vk) = δm,m′ , m,m
′ ∈ J1:MK.

1We are not being more assertive here because, strictly speaking, our computed minimal projection is not an exact

minimal projection.
2Same reservation as in footnote 1.
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Proof. We obtain an upper bound for λ(U) whenever the minimization in (5) is carried over a

subset of all signed Borel measures µ1, . . . , µM . In particular, we choose here the subset of all

linear combinations of Dirac measures at v1, . . . , vK , i.e., measures of the form

(12) µm =
K∑
k=1

Am,kδvk , m ∈ J1:MK.

Under this restriction, the duality constraints in (5) read, for all m,m′ ∈ J1:MK,

(13) δm,m′ =

∫ 1

−1
um′d

(
K∑
k=1

Am,kδvk

)
=

K∑
k=1

Am,k

∫ 1

−1
um′dδvk =

K∑
k=1

Am,kum′(vk),

while the integral appearing in the objective function becomes, for a fixed x ∈ [−1, 1],∫ 1

−1

∣∣∣∣∣
M∑
m=1

um(x)d

(
K∑
k=1

Am,kδvk

)∣∣∣∣∣ =

∫ 1

−1

∣∣∣∣∣
K∑
k=1

(
M∑
m=1

Am,kum(x)

)
dδvk

∣∣∣∣∣(14)

=

∫ 1

−1

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(x)

∣∣∣∣∣ dδvk =
K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(x)

∣∣∣∣∣ .
Taking the expressions (13) and (14) into account yields the upper bound (11).

Proposition 1 is not directly exploitable due to the presence of the maximum over the interval

[−1, 1]. We can replace it by a maximum over a discretized grid, as long as we are able to bound the

maximum over [−1, 1] by the maximum over this grid. For polynomials, the comparison between

the discrete and continuous max-norms is a well-studied topic, especially for equispaced points

(see e.g. [7, 5, 14]). But equispaced points are not the most suitable, since the two norms are

comparable when the number of points scales quadratically with the degree. In contrast, for zeros

of Chebyshev polynomials, the number of points only needs to scale linearly with the degree. Here

is a quantitative version of this assertion, which can be found in [7].

Lemma 2. Let w1 > · · · > wL ∈ [−1, 1] be the Chebyshev zeros given by w` = cos(θ`), where

θ` = π(`− 1/2)/L. For any algebraic polynomial p of degree at most d, one has

(15) max
x∈[−1,1]

|p(x)| ≤ cos

(
π

2

d

L

)−1
max
`∈J1:LK

|p(w`)|.

We are now in a position to derive the awaited computable upper bound for the projection constant.

Proposition 3. Given a basis (u1, . . . , uM ) for a subspace U of C[−1, 1] consisting of polynomials

of degree at most d, let v1, . . . , vK be distinct points in [−1, 1]. With w1 > · · · > wL denoting the

Chebyshev zeros w` = cos(π(`− 1/2)/L) and with ρ = cos ((πd)/(2L))−1 ≥ 1, one has

(16) λ(U) ≤ ρ× min
A∈RM×K

max
`∈J1:LK

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(w`)

∣∣∣∣∣ s.to
K∑
k=1

Am,kum′(vk) = δm,m′ , m,m
′∈ J1:MK.
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Proof. According to Proposition 1, it suffices to show that, for any A ∈ RM×K ,

(17) max
x∈[−1,1]

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(x)

∣∣∣∣∣ ≤ ρ max
`∈J1:LK

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(w`)

∣∣∣∣∣ .
For a fixed x ∈ [−1, 1], we can find signs ε1, . . . , εK ∈ {±1} such that

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(x)

∣∣∣∣∣ =

∣∣∣∣∣
K∑
k=1

εk

M∑
m=1

Am,kum(x)

∣∣∣∣∣ ≤ ρ max
`∈J1:LK

∣∣∣∣∣
K∑
k=1

εk

M∑
m=1

Am,kum(w`)

∣∣∣∣∣(18)

≤ ρ max
`∈J1:LK

K∑
k=1

∣∣∣∣∣
M∑
m=1

Am,kum(w`)

∣∣∣∣∣ ,
where Lemma 2 was used for the first inequality in (18). Taking the maximum over x ∈ [−1, 1]

yields the desired inequality (17).

We close this section by highlighting how the upper bound from Proposition 3 is effectively

computed by solving a linear program. For this purpose, we introduce the collocation matrices

V ∈ RK×M and W ∈ RL×M of the basis (u1, . . . , uM ) at the points v1, . . . , vK (usually chosen as

equispaced points in [−1, 1]) and at the Chebyshev zeros w1, . . . , wL. These matrices are defined

by

(19) Vk,m = um(vk) and W`,m = um(w`), k ∈ J1:KK, ` ∈ J1:LK, m ∈ J1:MK.

With this notation, the objective function and the constraints in (16) read, respectively,

(20) max
`∈J1:LK

K∑
k=1

|(WA)`,k| and (AV )m,m′ = δm,m′ , m,m′ ∈ J1:MK.

Then, introducing slack variables through B ∈ RL×K (such that |(WA)`,k| ≤ B`,k for all `, k) and

c ∈ R (such that
∑K

k=1B`,k ≤ c for all `), we arrive at the following linear optimization problem,

written in an easily implementable form.'

&

$

%

Upper bound for the projection constant

Inputs: basis for a space U of polynomials of degree ≤ d, parameters K and L.

(21) λ(U) ≤ cos

(
π

2

d

L

)−1
× min
A∈RM×K

B∈RL×K

c∈R

c s.to


AV = IM ,

−B ≤WA ≤ B,
B1 ≤ c1,

where the matrices V and W are defined in (19).
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3 Computable lower bound

We present in this section a computable lower bound for the projection constant of a polynomial

subspace U of C[−1, 1]. It again involves a discretization of the problem (5), followed by an

application of the moment method. This method, based on classical moment problems (see e.g. [16]),

characterizes a measure by its sequence of moments, typically via a semidefinite condition. The

discrete Hamburger moment problem, for instance, states that, for a sequence (yk)k≥0 of real

numbers, there exists a nonnegative measure µ on R such that

(22)

∫ ∞
−∞

xkdµ(x) = yk, k ≥ 0,

if and only if an infinite Hankel matrix is positive semidefinite, precisely

(23) Hank∞(y) :=



y0 y1 y2 y3 · · ·

y1 y2 y3
...

y2 y3
...

y3
...

...


� 0.

We could directly use this characterization to substitute the measures µ1, . . . , µM by their sequences

y1, . . . , yM of moments as optimization variables, but we would need to add extra semidefinite

conditions ensuring that the measures µ1, . . . , µM are localized on [−1, 1]. Instead, we prefer to

rely on the discrete trigonometric moment problem, which states3 that, for a sequence (yk)k≥0 of

real numbers, there exists a nonnegative measure µ on [0, π] such that

(24)

∫ π

0
cos(kθ)dµ(θ) = yk, k ≥ 0,

if and only if an infinite Toeplitz matix is positive semidefinite, precisely

(25) Toep∞(y) :=



y0 y1 y2 y3 · · ·
y1 y0 y1 y2

y1 y1 y0 y1
. . .

y3 y2 y1
. . .

. . .
...

. . .
. . .

. . .


� 0.

There are two reasons explaining our preference: firstly, localization conditions are not necessary;

secondly, the Toeplitz structure is numerically more favorable than the Hankel structure.

3The classical statement, found e.g. in [16, Theorem 11.3], concerns sequences of complex numbers indexed by

n ∈ Z and obtained as
∫
|z|=1

z−ndµ(z) for some Radon measure on the unit circle. We omit the verification that it

implies the statement being made here.
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Now, in order to invoke the discrete trigonometric moment problem, we first have to transform the

expression of the projection constant given in (5). This is done below.

Lemma 4. Given a basis (u1, . . . , uM ) for a subspace U of C[−1, 1], if the functions û1, . . . , ûM are

defined on [0, π] by ûm(θ) = um(cos(θ)), then

(26) λ(U) = inf
µ1,...,µM

max
θ∈[0,π]

∫ π

0
d

∣∣∣∣∣
M∑
m=1

ûm(θ)µm

∣∣∣∣∣ s.to

∫ π

0
ûm′dµm = δm,m′ , m,m

′ ∈ J1:MK,

where the infimum is taken over all signed Borel measures µ1, . . . , µM on [0, π].

Proof. Let us consider the subspace Û of C[0, π] defined by Û = {u ◦ cos, u ∈ U}, for which

(û1, . . . , ûM ) is a basis. We readily verify that, if P is a projection from C[−1, 1] onto U , then

(27) Q : g ∈ C[0, π] 7→ P (g ◦ arccos) ◦ cos ∈ Û

defines a projection from C[0, π] onto Û satisfying ‖Q‖∞→∞ = ‖P‖∞→∞. Conversely, we also see

that if Q is a projection from C[0, π] onto Û , then

(28) P : f ∈ C[−1, 1] 7→ Q(f ◦ cos) ◦ arccos ∈ U

defines a projection from C[−1, 1] onto U satisfying ‖P‖∞→∞ = ‖Q‖∞→∞. This implies that

the projection constant of U (relative to C[−1, 1]) equals the projection constant of Û (relative to

C[0, π]), i.e.,

(29) λ(U) = λ(Û) = min
Q
‖Q‖∞→∞ s.to Q being a projection from C[0, π] onto Û .

The derivation of (26) from (29) is similar to the derivation of (5) from (2).

Lemma 4 clearly yields a lower bound for the projection constant if we replace the maximum over

the interval [0, π] by the maximum over a discretization grid θ1, . . . , θL of [0, π], i.e., we have

(30) λ(U) ≥ inf
µ1,...,µM

max
`∈J1:LK

∫ π

0
d

∣∣∣∣∣
M∑
m=1

ûm(θ`)µm

∣∣∣∣∣ s.to

∫ π

0
ûm′dµm = δm,m′ , m,m

′ ∈ J1:MK,

where the infimum is taken over all signed Borel measures µ1, . . . , µM on [0, π]. Our next step

consists in recasting the latter minimization problem so as to involve only (nonnegative) Borel

measures instead of signed Borel measures. Although the following observation may seem obvious,
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we make an extra effort to verify it fully.

Lemma 5. Given a basis (u1, . . . , uM ) for a subspace U of C[−1, 1], let û1, . . . , ûM still denote the

functions u1 ◦ cos, . . . , uM ◦ cos. If θ1, . . . , θL ∈ [0, π], then

λ(U) ≥ inf
µ±1 ,...,µ

±
M

ν±1 ,...,ν
±
L

max
`∈J1:LK

∫ π

0

(
dν+` + dν−`

)
s.to

∫ π

0
ûm′(dµ

+
m − dµ−m) = δm,m′ , m,m

′ ∈ J1:MK,(31)

M∑
m=1

ûm(θ`)(µ
+
m − µ−m) = ν+` − ν

−
` , ` ∈ J1:LK,

where the infimum is taken over all (nonnegative) Borel measures µ±1 , . . . , µ
±
M , ν

±
1 , . . . , ν

±
L on [0, π].

Proof. Let α be the value of the infimum in (30) and let β be the value of the infimum in (31). To

prove that α ≤ β, we consider miminizers µ±1 , . . . , µ
±
M , ν

±
1 , . . . , ν

±
L for the problem (31). By virtue

of the first constraint in (31), the measures µ+m−µ−m, m ∈ J1:MK, are feasible for the problem (30),

so that, using the second constraint in (31),

α ≤ max
`∈J1:LK

∫ π

0
d

∣∣∣∣∣
M∑
m=1

ûm(θ`)(µ
+
m − µ−m)

∣∣∣∣∣ = max
`∈J1:LK

∫ π

0
d|ν+` − ν

−
` |(32)

≤ max
`∈J1:LK

∫ π

0
(dν+` + dν−` ) = β.

To prove that β ≤ α, we consider minimizers µ1 . . . , µM for the problem (30). Then we write the

Jordan decomposition of each µm, m ∈ J1 :MK, as µm = µ+m − µ−m for some (nonnegative) Borel

measures µ±m satisfying µ+m ⊥ µ−m. For each ` ∈ J1 :LK, we also write the Jordan decomposition

of ν` :=
∑M

m=1 ûm(θ`)µm as ν` = ν+` − ν
−
` for some (nonnegative) Borel measures ν±` satisfying

ν+` ⊥ ν
−
` . In particular, we have

∫ π
0 d|ν`| =

∫ π
0 (dν+` +dν−` ). Then, noticing that the Borel measures

µ±1 , . . . , µ
±
M , ν

±
1 , . . . , ν

±
L are feasible for the problem (31), we obtain

(33) β ≤ max
`∈J1:LK

∫ π

0
(dν+` + dν−` ) = max

`∈J1:LK

∫ π

0
d|ν`| = max

`∈J1:LK

∫ π

0
d

∣∣∣∣∣
M∑
m=1

ûm(θ`)µm

∣∣∣∣∣ = α.

The proof is now complete.

The expression in (31) is still not directly exploitable due to the infinite-dimensionality of the Borel

measures. We resolve this issue by substituting these measures by their sequences of moments

and then by truncating the moment constraints. With fewer constraints, a smaller value for the

minimum is produced. At the same time, since the moments discarded in the constraints do not

occur in the objective function either, they can be removed altogether to create a finite-dimensional

semidefinite program. We make all of this precise in the proof of the following result, which presents

8



S. Foucart, J. B. Lasserre

the awaited computable lower bound. Below, the notation ToepS(y) stands for the S × S Toeplitz

matrix constructed from the first S components of a sequence (yk)k≥0, i.e.,

(34) ToepS(y) =



y0 y1 · · · · · · yS−1

y1 y0 y1
...

... y1
. . .

. . .
...

...
. . .

. . . y1
yS−1 · · · · · · y1 y0


.

Proposition 6. Let U be a subspace of C[−1, 1] consisting of polynomials of degree at most d. Let

(u1, . . . , uM ) be a basis for U , whose elements have the Chebyshev expansions

(35) um =
d∑

k=0

Uk,mTk, m ∈ J1:MK.

For an integer S > d and for points θ1, . . . , θL ∈ [0, π], one has

λ(U) ≥ inf
y±1 ,...,y

±
M

z±1 ,...,z
±
L

max
`∈J1:LK

(z+`,0 + z−`,0) s.to

d∑
k=0

Uk,m′(y
+
m,k − y

−
m,k) = δm,m′ , m,m

′ ∈ J1:MK,(36)

M∑
m=1

um(cos(θ`))(y
+
m − y−m) = z+` − z

−
` , ` ∈ J1:LK,

ToepS(y±m) � 0, m ∈ J1:MK,

ToepS(z±` ) � 0, ` ∈ J1:LK,

where the infimum is taken over all vectors y±1 , . . . , y
±
M , z

±
1 , . . . , z

±
L ∈ RS indexed from 0 to S − 1.

Proof. In the optimization program (31), we substitute the Borel measures µ±1 , . . . , µ
±
M , ν

±
1 , . . . , ν

±
L

by their infinite sequences y±1 , . . . , y
±
M , z

±
1 , . . . , z

±
L of moments, identified as

(37) y±m,k =

∫ π

0
cos(kθ)dµ±m(θ), z±`,k =

∫ π

0
cos(kθ)dν±` (θ), k ≥ 0,

to reach an equivalent optimization program featuring the objective function max`∈J1:LK(z
+
`,0 +z−`,0).

As for the constraints (duality, consistency, moments), the first constraint in (31) becomes the first

constraint in (36) by virtue of∫ π

0
ûm′(θ)(dµ

+
m(θ)− dµ−m(θ)) =

∫ π

0

d∑
k=0

Uk,m′Tk(cos(θ))(dµ+m(θ)− dµ−m(θ))(38)

=

d∑
k=0

Uk,m′

∫ π

0
cos(kθ)(dµ+m(θ)− dµ−m(θ))

=

d∑
k=0

Uk,m′(y
+
m,k − y

−
m,k);
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the second constraint in (31) is clearly equivalent to the second constraint in (36); while the fact that

we are dealing with sequences of moments is reflected by the semidefinite conditions Toep∞(y±m) � 0,

m ∈ J1 :MK, and Toep∞(z±` ) � 0, ` ∈ J1 :LK. We now relax the last two sets of constraints by

simply imposing, for ` ∈ J1:LK,

(39)
M∑
m=1

um(cos(θ`))(y
+
m,k − y

−
m,k) = z+`,k − z

−
`,k, k ∈ J0:S−1K,

as well as, for m ∈ J1:MK and ` ∈ J1:LK,

(40) ToepS(y±m) � 0 and ToepS(z±` ) � 0.

This leads to a smaller minimum value for the optimization program. And since the relaxed program

only involves moments up to order S − 1, we can restrict the minimization to the finite sequences

(y±m,k)
S−1
k=0 , m ∈ J1:MK, and (z±`,k)

S−1
k=0 , ` ∈ J1:LK, hence yielding the computable lower bound stated

in (36).

We close this section by highlighting how the lower bound from Proposition 6 is expressed as a

semidefinite program. For this purpose, besides the matrix U ∈ R(d+1)×M containing the coefficients

of u1, . . . , uM in the Chebyshev system (T0, . . . , Td), as indicated in (35), we also consider the

collocation matrix W ∈ RL×M with entries

(41) W`,m = um(cos(θ`)), ` ∈ J1:LK, m ∈ J1:MK.

By further introducing matrices Y ± ∈ RM×S with rows y±1 , . . . , y
±
M ∈ RS and Z± ∈ RL×S with

rows z±1 , . . . , z
±
L ∈ RS , as well as a slack variable c ∈ R (such that z+`,0 + z−`,0 ≤ c for all `), the

optimization program in (36) takes the easily implementable form below (where some convenient

matlab notation is used).4'

&

$

%

Lower bound for the projection constant

Inputs: basis for a space U of polynomials of degree ≤ d, parameters S > d and L.

(42) λ(U) ≥ min
Y ±∈RM×S

Z±∈RL×S

c∈R

c s.to



(Y +(:, 1:d+ 1)− Y −(:, 1:d+ 1))U = IM ,

W (Y + − Y −) = Z+ − Z−,
ToepS(Y ±(m, :)) � 0, m ∈ J1:MK,
ToepS(Z±(`, :)) � 0, ` ∈ J1:LK,
Z+(:, 1) + Z−(:, 1) ≤ c,

where the matrices U and V are defined in (35) and (41).

4The grid points cos(θ1), . . . , cos(θL) could be added as inputs — by default, we chose them to be Chebyshev

zeros.
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4 Exploiting the symmetry of minimal projections

The programs highlighted in (21) and (42) are computationally demanding for large values of the

parameters K, L, and S, so any property that can reduce their complexity should be exploited.

We shall capitalize on a certain symmetry of minimal projections. To this end, we assume from

now on that the subspace U of C[−1, 1] satisfies

(43) u ∈ U =⇒ u(−·) ∈ U ,

where u(−·) evidently denotes the function x ∈ [−1, 1] 7→ u(−x) ∈ R. Under this assumption, it is

known that there exists a minimal projection P from C[−1, 1] onto U which is symmetric, in the

sense that

(44) P (f(−·)) = (P (f))(−·) for all f ∈ C[−1, 1].

This fact has the following implication whenever assumption (43) holds.5

Proposition 7. Let U be a subspace of C[−1, 1] and let (ue1, . . . , u
e
Me
, uo1, . . . , u

o
Mo

) be a basis for U
arranged in such a way that the uem are even functions and the uom are odd functions. Considering

functions ũe1, . . . , ũ
e
Me
, ũo1, . . . , ũ

o
Mo

defined on [−1, 1] by

(45) ũe/om (t) := ue/om

(
t+ 1

2

)
, t ∈ [−1, 1],

the projection constant of U can be expressed as

λ(U) = inf
µ̃e1,...,µ̃

e
Me

µ̃o1,...,µ̃
o
Mo

max
x∈[0,1]

∫ 1

−1
dmax

{∣∣∣∣∣
Me∑
m=1

uem(x)µ̃em

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(x)µ̃om

∣∣∣∣∣
}

(46)

s.to

∫ 1

−1
ũem′dµ̃

e
m = δm,m′ , m,m

′ ∈ J1:MeK,
∫ 1

−1
ũom′dµ̃

o
m = δm,m′ , m,m

′ ∈ J1:MoK,

where the infimum is taken over all signed Borel measures µ̃e1, . . . , µ̃
e
Me
, µ̃o1, . . . , µ̃

o
Mo

on [−1, 1].

Proof. Let us consider a symmetric projection from C[−1, 1] onto U written as

(47) P (f) =

Me∑
m=1

ηem(f)uem +

Mo∑
m=1

ηom(f)uom, f ∈ C[−1, 1].

The condition (44) is readily seen to be equivalent to the conditions

(48) ηem(f(−·)) = ηem(f), ηom(f(−·)) = −ηom(f), f ∈ C[−1, 1],

5Under assumption (43), one can verify that there exists a basis (u1, . . . , uM ) whose elements are either even

or odd functions (verify, for instance, that U = Ue
⊥
⊕ Uo, where Ue/o := {u ∈ U : u is an even/odd function}, and

concatenate a basis for Ue with a basis for Uo).

11
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which in turn are equivalent, in terms of measures µe1, . . . , µ
e
Me
, µo1, . . . , µ

o
Mo

representing the linear

functionals ηe1, . . . , η
e
Me
, ηo1, . . . , η

o
Mo

, to the conditions

(49) dµem(−·) = dµem, dµom(−·) = −dµom.

Then, the norm of the projection P satisfies

‖P‖∞→∞ = max
x∈[−1,1]

∫ 1

−1
d

∣∣∣∣∣
Me∑
m=1

uem(x)µem +

Mo∑
m=1

uom(x)µom

∣∣∣∣∣(50)

= max
x∈[−1,1]

∫ 1

−1
d

∣∣∣∣∣
Me∑
m=1

uem(x)µem −
Mo∑
m=1

uom(x)µom

∣∣∣∣∣
= max

x∈[−1,1]

∫ 1

−1
dmax

{∣∣∣∣∣
Me∑
m=1

uem(x)dµem

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(x)dµom

∣∣∣∣∣
}
.

The last equality follows from the identity (|a + b| + |a − b|)/2 = max{|a|, |b|}, which is valid (see

[15, page 52, Corollary 1]) in any vector lattice, and hence in the Banach lattice of signed measures

equipped with the total variation norm. Noticing the invariance of the expression (50) under the

change x↔ −x and taking (49) into account, we can further write

‖P‖∞→∞ = max
x∈[0,1]

2

∫ 1

0
dmax

{∣∣∣∣∣
Me∑
m=1

uem(x)µem

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(x)µom

∣∣∣∣∣
}

(51)

= max
x∈[0,1]

∫ 1

−1
dmax

{∣∣∣∣∣
Me∑
m=1

uem(x)µ̃em

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(x)µ̃om

∣∣∣∣∣
}
,

where the measures µ̃
e/o
m simply represent the restrictions to [0, 1] of the measures µ

e/o
m that have

been transposed to [−1, 1], i.e., they are obtained through the identification

(52) dµ̃e/om (t) = 2dµe/om (τ), t ∈ [−1, 1], τ ∈ [0, 1] being linked via t = 2τ − 1, τ =
t+ 1

2
.

Thanks to (49), we can take the µ̃
e/o
m as new optimization variables in the minimization of the norm

of a symmetric projection, whose expression (51) is the objective function in (46). We now just

have to impose the appropriate duality constraints making P a projection onto U . Among them,

the constraints η
e/o
m (u

o/e
m′ ) = 0 are automatically fulfilled, while the constraints η

e/o
m (u

e/o
m′ ) = δm,m′

reduce to

(53) δm,m′ =

∫ 1

−1
u
e/o
m′ dµ

e/o
m = 2

∫ 1

0
u
e/o
m′ (τ)dµe/om (τ) =

∫ 1

−1
ũ
e/o
m′ (t)dµ̃

e/o
m (t).

These are indeed the constraints in (46), so the proposition is proved.

We proceed by highlighting the computable bounds on the projection constant generated by the

reformulation (46). Much of the ingredients for deriving these bounds are similar to the ones

presented in Sections 2 and 3, so we do not expand on details at all.

12
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4.1 Implication for the upper bound

As in Section 2, we first derive an upper bound for the projection constant by minimizing only over

linear combinations

(54) µ̃e/om =

K∑
k=1

A
e/o
m,kδvk .

of Dirac measures at v1, . . . , vK ∈ [−1, 1]. Then we again discretize by replacing the maximum

over [0, 1] by the maximum over a grid w+
1 > · · · > w+

L consisting of positive Chebyshev zeros

w+
` = cos(π(`− 1/2)/(2L)). Thus, we arrive at the computable upper bound

λ(U) ≤ ρ× min
Ae/o∈RMe/o×K

max
`∈J1:LK

K∑
k=1

max

{∣∣∣∣∣
Me∑
m=1

Ae
m,ku

e
m(w+

` )

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

Ao
m,ku

o
m(w+

` )

∣∣∣∣∣
}

(55)

s.to

K∑
k=1

A
e/o
m,kũ

e/o
m′ (vk) = δm,m′ , m,m

′ ∈ J1:Me/oK,

where ρ = cos ((πd)/(4L))−1. To transform the latter into a linear program, we introduce the

collocation matrices V e/o ∈ RK×Me/o and W e/o ∈ RL×Me/o defined by

(56) V
e/o
k,m = ũe/om (vk) and W

e/o
`,m = ue/om (w+

` ), k ∈ J1:KK, ` ∈ J1:LK, m ∈ J1:Me/oK,

as well as slack variables through B ∈ RL×K and c ∈ R. All in all, we obtain the following

implementable form of the upper bound.'

&

$

%

Upper bound for the projection constant — symmetry exploited

Inputs: basis for a symmetric space U of polynomials of degree ≤ d, parameters S > d and L.

(57) λ(U) ≤ cos

(
π

4

d

L

)−1
× min
Ae/o∈RMe/o×K

B∈RL×K

c∈R

c s.to


Ae/oV e/o = IMe/o

,

−B ≤W e/oAe/o ≤ B,
B1 ≤ c1,

where the matrices V e/o and W e/o are defined in (56).

4.2 Implication for the lower bound

As in Section 3, the minimization program (46) is first transformed to make it amenable to the

trigonometric moment problem. The reformulation will involve a maximum over [0, π/2], which is

13
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lower bounded by the maximum over a grid θ+1 , . . . , θ
+
L . With w+

` := cos(θ+` ) ∈ [0, 1], we obtain

λ(U) ≥ inf
µ̃e1,...,µ̃

e
Me

µ̃o1,...,µ̃
o
Mo

max
`∈J1:LK

∫ π

0
dmax

{∣∣∣∣∣
Me∑
m=1

uem(w+
` )µ̃em

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(w+
` )µ̃om

∣∣∣∣∣
}

(58)

s.to

∫ π

0
ũ
e/o
m′ (cos(θ))dµ̃e/om (θ) = δm,m′ , m,m′ ∈ J1:Me/oK,

where the infimum is taken over all signed Borel measures µ̃e1, . . . , µ̃
e
Me
, µ̃o1, . . . , µ̃

o
Mo

on [0, π].

Deviating slightly from the earlier strategy, we now introduce as slack variables some (nonnegative)

Borel measures ν1, . . . , νL satisfying, for each ` ∈ J1 : LK, the constraint

(59) ν` ≥ max

{∣∣∣∣∣
Me∑
m=1

uem(w+
` )µ̃em

∣∣∣∣∣ ,
∣∣∣∣∣
Mo∑
m=1

uom(w+
` )µ̃om

∣∣∣∣∣
}
,

which implies four constraints written in condensed form as

(60) ν` ≥ ±
Me/o∑
m=1

ue/om (w+
` )µ̃e/om .

Writing the Chebyshev expansions of ũe1, . . . , ũ
e
Me
, ũo1, . . . , ũ

o
Mo

as

(61) ũe/om =
d∑

k=0

Ũ
e/o
k,mTk, m ∈ J1:Me/oK,

and substituting the measures µ̃
e/o
m and ν` by their sequences y

e/o
m and z` of moments yields to

λ(U) ≥ inf
y
e/o
1 ,...,y

e/o
Me/o

z1,...,zL

max
`∈J1:LK

z`,0 s.to
d∑

k=0

Ũ
e/o
k,m′y

e/o
m,k = δm,m′ , m,m

′ ∈ J1:Me/oK,(62)

Toep∞(z`) � ±Toep∞

Me/o∑
m=1

ue/om (w+
` )ye/om

 , ` ∈ J1:LK,

where the infinum is taken over all infinite sequences y
e/o
1 , . . . , y

e/o
Me/o

, z1, . . . , zL ∈ RN. The infinite

semidefinite constraints are now truncated to a level S > d, producing a lower bound involving

only the finite sequences of moments (y
e/o
m,k)

S−1
k=0 , m ∈ J1:Me/oK, and (z`,k)

S−1
k=0 , ` ∈ J1:LK. Finally, in

order to state the corresponding semidefinite program in an easily implementable form, we gather

these moments in matrices Y e/o ∈ RMe/o×S and Z ∈ RL×S , and we define collocation matrices

W e/o ∈ RL×Me/o with entries

(63) W
e/o
`,m = ue/om (w+

` ), ` ∈ J1:LK, m ∈ J1:Me/oK.

After introducing one last slack variable c ∈ R, we arrive at the following form of the computable

lower bound (where some convenient matlab notation is again used).6

6In a similar spirit to footnote 4, the grid points w+
1 = cos(θ1), . . . , w+

L = cos(θL) could be added as inputs — by

default, we chose them to be positive Chebyshev zeros.
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'

&

$

%

Lower bound for the projection constant — symmetry exploited

Inputs: basis for a symmetric space U of polynomials of degree ≤ d, parameters S > d and L.

(64) λ(U) ≥ min
Y e/o∈RMe/o×S

Z∈RL×S

c∈R

c s.to


Y e/o(:, 1:d+ 1) Ũ e/o = IMe/o

,

ToepS(Z(`, :)) � ±ToepS(W e/o(`, :)Y e/o), ` ∈ J1:LK,
Z(:, 1) ≤ c,

where the matrices Ũ e/o and W e/o are defined in (61) and (63).

5 Computational results

This section gives an account of the experiments carried out using our method for specific spaces of

univariate polynomials. The experiments can be reproduced by downloading the matlab file tied

to this paper, available on the authors’ webpages. Note that the code relies on CVX [1], a matlab

package for specifying and solving convex programs, and on Chebfun [6] for its convenience to deal

with Chebyshev expansions.

5.1 Validation of the code

In order to certify the correct implementation of the codes computing the upper and lower bounds

(57) and (64), we take as a benchmark the inevitable result [2] of Chalmers and Metcalf, who

managed to determine analytically the projection constant of the space of quadratic polynomials.

They obtained

(65) λ(P2) ≈ 1.220173064217988 . . .

and exhibited a minimal projection given by P (f)(x) =
∑3

m=1 ηm(f)xm−1, where

η1(f) = Af(−1) +Bf(0) +Af(1) +

∫
I1

a1|t|+ b1
(1 + w1|t|)3

f(t)dt+

∫
I2

a2|t|+ b2
(1 + w2|t|)3

f(t)dt,(66)

η2(f) = −Cf(−1) + Cf(1) +

∫
I1

c1t

(1 + w1|t|)3
f(t)dt+

∫
I2

c2t

(1 + w2|t|)3
f(t)dt,(67)

η3(f) = Df(−1)−Bf(0) +Df(1) +

∫
I1

d1|t| − b1
(1 + w1|t|)3

f(t)dt+

∫
I2

d2|t| − b2
(1 + w2|t|)3

f(t)dt,(68)

with I1 = [−s1,2,−s1,1]∪ [s1,1, s1,2], I2 = [−s2,2,−s2,1]∪ [s2,1, s2,2], and with parameters A,B,C,D,

a1, b1, c1, d1, a2, b2, c2, d2, w1, w2, s1,1, s1,2, s2,1, s2,2 determined in the body of [2]. Our code does
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allow us to retrieve the value (65) up to five digits of accuracy.7 Incidentally, our experiment

suggests that minimal projections onto the quadratics are not unique, as illustrated by Figure 1

which superimposes the measures associated to (66)-(67)-(68) and the discretized measures obtained

by solving (57) — we have removed the atomic parts at −1, 0, 1, which were similar. It is worth

noticing, nonetheless, that the supports of all the measures seem to be the same.

-1 0 1

0

1

µ
1

-1 0 1

-3

0

3

µ
2

-1 0 1

-1

0

2

µ
3

Figure 1: The nonatomic parts of measures µ1, µ2, µ3 associated with the linear functionals η1, η2, η3
found in [2] (continuous lines), together with their discrete approximations obtained as solutions

of (57), minus the parts at −1, 0, and 1 (circles, squares, diamonds).

Another way to validate of our code is offered by the three-dimensional space span{1, x2, x3}, i.e.,

the subspace C[−1, 1] spanned by x 7→ 1, x 7→ x2, and x 7→ x3. Indeed, its projection constant is

exactly equal to one. More generally, for any even integer a > 0 and any odd integer b > 0, the

space span{1, xa, xa+b} = span{1− xa, xa(1− xb), xa(1 + xb)} admits a projection of norm one. To

see this, we notice that the interpolating projection at the points −1, 0, and 1, which is given by

(69) P (f)(x) =
1

2
f(−1)xa(1− xb) + f(0)(1− xa) +

1

2
f(1)xa(1 + xb),

satisfies, for all f ∈ C[−1, 1] and x ∈ [−1, 1],

(70) |P (f)(x)| ≤ max{|f(−1)|, |f(0)|, |f(1)|}
(

1

2
xa(1− xb) + 1− xa +

1

2
xa(1 + xb)

)
≤ ‖f‖∞.

Our code confirms the value λ(span{1, x2, x3}) = 1 (not with perfect accuracy, though, which is

why we refrain from supplying numerical values with more than five digits in general).

5.2 Other-three dimensional polynomial spaces

The code distributed with the matlab reproducible can be effortlessly applied to any univariate

polynomial space, so long as it can be executed with parameters large enough for the upper and

7in about five minutes for the upper bound and fifteen minutes for the lower bound, with the capabilities offered

by a laptop computer at the time this article was written.
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lower bounds to match up to the desired accuracy. Five digits of accuracy can typically be achieved

for three-dimensional spaces of moderate degree. The following table summarizes the values of

projection constants obtained for several different spaces.8

V spanned by {1, x, x3} {T0, T2, T3} {U0, U2, U3} {x, x2, x3} {T1, T2, T3} {U1, U2, U3}
λ(V) ≈ 1.4723 ≈ 1.4460 ≈ 1.1522 ≈ 1.3325 ≈ 1.4065 ≈ 1.2354

Table 1: Projection constants of three-dimensional spaces spanned by monomials and Chebyshev

polynomials of the first and second kind.

5.3 Polynomial spaces of higher dimensions

Looking at (57) and (64), we see that the dimension M = Me + Mo is far from being a factor

influencing the computational cost of the optimization programs, so our code can easily be executed

for polynomial spaces of dimension higher than three. For instance, we can deal with the spaces of

cubic, quartic, and quintic polynomials and compute their projection constants with four digits of

accuracy as

(71) λ(P3) ≈ 1.365, λ(P4) ≈ 1.459, λ(P5) ≈ 1.538.

Obtaining the same accuracy necessitates larger parameters K, L, S when the dimension increases.

For degree d > 5, with our modest computational investment, we could locate the projection

constants of the spaces Pd of polynomials of degree at most d in the ranges presented in Table 2

below. The improvement with respect to the ranges found in [10] is particularly noticeable for the

lower bounds (recall that this is where the method of moments came into the picture).

Let us now come to a close by examining the approximate minimal projection onto the cubics

obtained by solving (57). For the measures µ1, µ2, µ3, µ4 associated with the functionals dual to

1, x, x2, x3, we detected atoms at −1 and 1 (but none at 0) and Figure 2 indicates that their

continuous parts seem to possess a common support strictly included in [−1, 1], as was the case for

quadratics. But a disparity with the quadratics now occurs in terms of shape preservation. It was

conjectured in [13], and proved for d = 2, that (one of the) minimal projections onto Pd preserve

d-convexity. This means that if P is a minimal projection from C[−1, 1] onto Pd, then, for any

f ∈ Cd[−1, 1],

(72) f (d) ≥ 0 on [−1, 1]
?

=⇒ (P (f))(d) ≥ 0 on [−1, 1],

or equivalently, writing P (f)(x) =
∑d+1

m=1 ηm(f)xm−1,

(73) f (d) ≥ 0 on [−1, 1]
?

=⇒ ηd+1(f) ≥ 0.

8For the space span{T1, T2, T3}, it was more effective to compute the lower bound using a ‘symmetrization’ of (42)

more direct than (64). Its implementation is also included in the reproducible.
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λ(Pd) known lower bound our lower bound our upper bound known upper bound

d = 3 1.3539 1.35667... 1.35696... 1.3577

d = 4 1.4524 1.45902... 1.45951... 1.4611

d = 5 1.525 1.53817... 1.53895... 1.543

d = 6 1.580 1.60271... 1.60383... 1.613

d = 7 1.624 1.65693... 1.65859... 1.669

d = 8 1.660 1.70483... 1.70731... 1.721

d = 9 1.678 1.74774... 1.75107... 1.775

d = 10 1.696 1.78658... 1.79076... 1.814

d = 11 NA 1.82169... 1.82701... NA

d = 12 NA 1.85380... 1.86216... NA

Table 2: For the spaces Pd of polynomials of degree at most d, lower and upper bounds on the

projection constants obtained by our method compared to the ones stated in [10].

Our computations for d = 3 give some insight that this conjecture should be false. Indeed, if a

minimal projection is approximated by our solution of (57), which has the form

(74) P (f)(x) =
4∑

m=1

(
K∑

k=−K
Am,kfk

)
xm−1, fk := f

(
k

K

)
,

and if the condition f ′′′ ≥ 0 on [−1, 1] is replaced by its discrete version

(75) ∆3(f)k := fk+3 − 3fk+2 + 3fk+1 − fk ≥ 0, k ∈ J−K :K − 3K,

then, setting a = A(4, :) ∈ R2K−1, the question becomes

(76) min
f∈R2K−1

{〈a, f〉 : ∆3(f) ≥ 0}
?
≥ 0.

This question is answered negatively by solving a linear program.

6 Outlook

As a concluding message, we reiterate our belief in the usefulness of modern optimization techniques

for solving problems in Approximation Theory. Purists will argue that ‘solving computationally’ is

not really solving, but benefits are undeniable for building intuition about the problems at hand.

This article demonstrated, for instance, how the method of moments elucidates the problem of

minimal projections onto polynomial spaces and it strongly hinted that minimal projections are

not unique and do not preserve shape. Our technique can be extended in several directions, as long
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Figure 2: The measures µ1, µ2, µ3, µ4 (minus atomic parts at −1 and 1) associated with the linear

functionals dual to 1, x, x2, x3 in the approximate minimal projection obtained by solving (57).

as linear-programming upper bounds and semidefinite-programming lower bounds match up to a

desired accuracy. For example, given subspaces U ⊆ V of C[−1, 1], one could find a linear map P

from C[−1, 1] into V, not U , with minimal norm among those satisfying P (u) = u for all u ∈ U , or

even satisfying P (u) = F (u) for all u ∈ U with some F 6= IdU , and shape-preservation properties

may be added, etc... A particularly interesting situation concerns multivariate polynomial spaces,

for which nothing is known except the results of [17]. Conceptually, the same technique applies,

but one quickly runs into numerical limitations. One could throw in more computational power, of

course, but it seems wiser to refine the method first, possibly with a back-and-forth process between

upper bound and lower bound.
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