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Abstract. We introduce a new iterative algorithm to find sparse solutions of underdetermined
linear systems. The algorithm, a simple combination of the Iterative Hard Thresholding algorithm
and of the Compressive Sampling Matching Pursuit algorithm, is called Hard Thresholding Pursuit.
We study its general convergence, and notice in particular that only a finite number of iterations are
required. We then show that, under a certain condition on the restricted isometry constant of the
matrix of the linear system, the Hard Thresholding Pursuit algorithm indeed finds all s-sparse solu-
tions. This condition, which reads δ3s < 1/

√
3, is heuristically better than the sufficient conditions

currently available for other Compressive Sensing algorithms. It applies to fast versions of the algo-
rithm, too, including the Iterative Hard Thresholding algorithm. Stability with respect to sparsity
defect and robustness with respect to measurement error are also guaranteed under the condition
δ3s < 1/

√
3. We conclude with some numerical experiments to demonstrate the good empirical per-

formance and the low complexity of the Hard Thresholding Pursuit algorithm.
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1. Introduction. In many engineering problems, high-dimensional signals,
modeled by vectors in CN , are observed via low-dimensional measurements, mod-
eled by vectors y ∈ Cm with m � N , and one wishes to reconstruct the signals
from the measurements. Without any prior assumption on the signals, this can-
not be hoped for, but the maturing field of Compressive Sensing has shown the
feasibility of such a program when the signals are sparse. The objective is then
to find suitable measurement matrices A ∈ Cm×N and efficient reconstruction al-
gorithms in order to solve underdetermined systems of linear equations Ax = y
when the solutions have only few nonzero components. To date, measurement
matrices allowing the reconstruction of s-sparse vectors — vectors with at most
s nonzero components — with the minimal number m ≈ c s ln(N/s) of measure-
ments have only been constructed probabilistically. As for the reconstruction pro-
cedure, a very popular strategy consists in solving the following `1-minimization
problem, known as Basis Pursuit,

minimize
z∈CN

‖z‖1 subject to Az = y. (BP)

The goal of this paper is to propose an alternative strategy that combines two
existing iterative algorithms. The new algorithm, called Hard Thresholding Pur-
suit, together with some variants, is formally introduced in Section 2 after a few
intuitive justifications. In Section 3, we analyze the theoretical performance of
the algorithm. In particular, we show that the Hard Thresholding Pursuit algo-
rithm allows stable and robust reconstruction of sparse vectors if the measure-
ment matrix satisfies some restricted isometry conditions that, heuristically, are
the best available so far. Finally, the numerical experiments of Section 4 show
that the algorithm also performs well in practice.
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It was supported by the French National Research Agency (ANR) through the project ECHANGE
(ANR-08-EMER-006).
†Drexel University, Philadelphia
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2. The algorithm’s rationale. In this section, we outline two families of
iterative algorithms for Compressive Sensing. We then combine their premises
to create the new family of Hard Thresholding Pursuit algorithms.

2.1. Iterative Hard Thresholding.. The Iterative Hard Thresholding (IHT)
algorithm was first introduced for sparse recovery problems by Blumensath and
Davies in [2]. Elementary analyses, in particular the one in [11], show the good
theoretical guarantees of this algorithm. It is built on the simple intuitions: that
solving the rectangular system Ax = y amounts to solving the square system
A∗Ax = A∗y; that classical iterative methods suggest to define a sequence (xn)
by the recursion xn+1 = (I − A∗A)xn + A∗y; and that, since sparse vectors are
desired, each step should involve the hard thresholding operator Hs that keeps
s largest (in modulus) components of a vector and sets the other ones to zero (in
case s largest components are not uniquely defined, we select the smallest possi-
ble indices). This is all the more justified by the fact that the restricted isometry
property — see Section 3 — ensures that the matrix A∗A behaves like the iden-
tity when its domain and range are restricted to small support sets. Thus, the
contributions to xn+1 of the terms (I − A∗A)xn and A∗y are roughly xn − xn = 0
and x, so that xn+1 appears as a good approximation to x. This yields the follow-
ing algorithm, whose inputs — like all algorithms below — are the measurement
vector y, the measurement matrix A, and the anticipated sparsity s (the prior
estimation of s is a drawback of such algorithms compared with Basis Pursuit,
but the latter generally requires a prior estimation of the measurement error).
One may also prescribe the number of iterations.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

xn+1 = Hs(x
n +A∗(y −Axn)) (IHT)

until a stopping criterion is met.
One may be slightly more general and consider an algorithm (IHTµ) by allowing
a factor µ 6= 1 in front of A∗(y − Axn) — this was called Gradient Descent with
Sparsification (GDS) in [12].
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

xn+1 = Hs(x
n + µA∗(y −Axn)) (IHTµ)

until a stopping criterion is met.
One may even allow the factor µ to depend on the iteration, hence considering the
Normalized Iterative Hard Thresholding (NIHT) algorithm described as follows.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

xn+1 = Hs(x
n + µnA

∗(y −Axn)) (NIHT)

until a stopping criterion is met.
The original terminology of Normalized Iterative Hard Thresholding used in [4]
corresponds to the specific choice (where the notation zT ∈ CN stands for a vector
equal to a vector z ∈ CN on a set T and to zero outside of T )

µn =
‖
(
A∗(y −Axn)

)
Sn‖22

‖A
((
A∗(y −Axn)

)
Sn

)
‖22
, Sn := supp(xn),

unless, fixing a prescribed 0 < η < 1, one has µn > η‖xn−xn+1‖22/‖A(xn−xn+1)‖22
— the reasons for this will become apparent in (3.2). In this case, the factor µn is
halved until the exception vanishes.
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2.2. Compressive Sensing Matching Pursuit. The Compressive Sam-
pling Matching Pursuit (CoSaMP) algorithm proposed by Needell and Tropp in
[18] and the Subspace Pursuit (SP) algorithm proposed by Dai and Milenkovic
in [8] do not provide better theoretical guarantees than the simple IHT algo-
rithm, but they do offer better empirical performances. These two algorithms,
grouped in a family called Compressive Sensing Matching Pursuit (CSMP) for
convenience here, were devised to enhance the Orthogonal Matching Pursuit
(OMP) algorithm initially proposed in [17]. The basic idea consists in chasing
a good candidate for the support, and then finding the vector with this support
that best fits the measurements. For instance, the CoSaMP algorithm reads as
follows.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Un+1 = supp(xn) ∪
{

indices of 2s largest entries of A∗(y −Axn)
}
, (CoSaMP1)

un+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Un+1

}
, (CoSaMP2)

xn+1 = Hs(u
n+1), (CoSaMP3)

until a stopping criterion is met. The SP algorithm is very similar: s replaces
2s in (CoSaMP1), and the two steps Sn+1 = {indices of s largest entries of un+1}
and xn+1 = argmin{‖y − Az‖2, supp(z) ⊆ Sn+1} replace (CoSaMP3). In a sense,
the common approach in the CSMP family defies intuition, because the candidate
for the support uses the largest components of the vector A∗A(x− xn) ≈ x− xn,
and not of a vector close to x.

2.3. Hard Thresholding Pursuit. Sticking to the basic idea of chasing a
good candidate for the support then finding the vector with this support that best
fits the measurements, but inspired by intuition from the IHT algorithm, it seems
natural to select instead the s largest components of xn +A∗A(x− xn) ≈ x. This
combination of the IHT and CSMP algorithms leads to the Hard Thresholding
Pursuit (HTP) algorithm described as follows.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 =
{

indices of s largest entries of xn +A∗(y −Axn)
}
, (HTP1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Sn+1

}
, (HTP2)

until a stopping criterion is met. A natural criterion here is Sn+1 = Sn, since then
xk = xn for all k ≥ n, although there is no guarantee that this should occur. Step
(HTP2), often referred to as debiasing, has been shown to improve performances
in other algorithms, too. As with the Iterative Hard Thresholding algorithms,
we may be more general and consider an algorithm (HTPµ) by allowing a factor
µ 6= 1 as follows.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 =
{

indices of s largest entries of xn + µA∗(y −Axn)
}
, (HTPµ1 )

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Sn+1

}
, (HTPµ2 )

until a stopping criterion is met.
By allowing the factor µ to depend on the iteration according to the specific choice

µn =
‖
(
A∗(y −Axn)

)
Sn‖22

‖A
((
A∗(y −Axn)

)
Sn

)
‖22
,
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we may also consider the Normalized Hard Thresholding Pursuit algorithm de-
scribed as follows.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 =
{

indices of s largest entries of xn + µnA
∗(y −Axn)

}
, (NHTP1)

xn+1 = argmin
{
‖y −Az‖2, supp(z) ⊆ Sn+1

}
, (NHTP2)

until a stopping criterion is met.
In all the above algorithms, the second steps require to solve the s× s system

of normal equations A∗Sn+1ASn+1xn+1 = A∗Sn+1y. If these steps are judged too
costly, we may consider instead a fast version of the Hard Thresholding Pursuit
algorithms, where the orthogonal projection is replaced by a certain number k
of gradient descent iterations. This leads for instance to the algorithm (FHTPµ)
described below. In the special case µ = 1, we call the algorithm Fast Hard
Thresholding Pursuit (FHTP) — note that k = 0 corresponds to the classical IHT
algorithm and that k =∞ corresponds to the HTP algorithm.
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 = supp(un+1,1), un+1,1 := Hs(x
n + µA∗(y −Axn)), (FHTPµ1 )

xn+1 = un+1,k+1, un+1,`+1 :=
(
un+1,` + tn+1,`A

∗(y −Aun+1,`)
)
Sn+1 , (FHTPµ2 )

until a stopping criterion is met.
A simple choice for tn+1,` is simply tn+1,` = 1, while a wiser choice, corresponding
to a steepest descent, is

tn+1,` =
‖
(
A∗(y −Aun+1,`)

)
Sn+1‖22

‖A
((
A∗(y −Aun+1,`)

)
Sn+1

)
‖22
. (2.1)

3. Theoretical justification. In this section, we analyze the theoretical
performances of the proposed algorithms. We first show the convergence of the
algorithms under some conditions on the measurement matrix A, precisely on
its operator norm then on its restricted isometry constants, which are introduced
along the way. Next, we study the exact recovery of sparse vectors as outputs of
the proposed algorithms using perfect measurements. Sufficient conditions for
successful recovery are given in terms of restricted isometry constants, and we
heuristically argue that these conditions are the best available so far. Finally, we
prove that these sufficient conditions also guarantee a stable and robust recovery
with respect to sparsity defect and to measurement error.

3.1. Convergence. First and foremost, we make a simple observation about
the HTP algorithm — or HTPµ and NHTP, for that matter. Namely, since there
is only a finite number of subsets of {1, . . . , N} with size s, there exist integers
n, p ≥ 1 such that Sn+p = Sn, so that (HTP2) and (HTP1) yield xn+p = xn and
Sn+p+1 = Sn+1, and so on until xn+2p = xn+p and Sn+2p = Sn+p = Sn. Thus,
one actually shows recursively that xn+kp+r = xn+r for all k ≥ 1 and 1 ≤ r ≤ p.
Simply stated, this takes the following form.

LEMMA 3.1. The sequences defined by (HTP), (HTPµ), and (NHTP) are even-
tually periodic.

The importance of this observation lies in the fact that, as soon as the conver-
gence of one of these algorithms is established, then we can certify that the limit



Hard Thresholding Pursuit 5

is exactly achieved after a finite number of iterations. For instance, we establish
below the convergence of the HTP algorithm under a condition on the operator
norm ‖A‖2→2 := supx 6=0 ‖Ax‖2/‖x‖2 of the matrix A. This parallels a result of [2],
where the convergence of (IHT) was also proved under the condition ‖A‖2→2 < 1.
Our proof uses the same strategy, based on the decrease along the iterations of
the quantity ‖y − Axn‖2 (the ‘cost’; note that the auxiliary ‘surrogate cost’ is not
mentioned here).

PROPOSITION 3.2. The sequence (xn) defined by (HTPµ) converges in a finite
number of iterations provided µ‖A‖22→2 < 1.

Proof. Let us consider the vector supported on Sn+1 defined by

un+1 := Hs(x
n + µA∗(y −Axn)).

According to the definition of Axn+1, we have ‖y−Axn+1‖22 ≤ ‖y−Aun+1‖22, and
it follows that

‖y−Axn+1‖22 − ‖y−Axn‖22 ≤ ‖y−Aun+1‖22 − ‖y−Axn‖22
= ‖A(xn−un+1) + y−Axn‖22 − ‖y−Axn‖22
= ‖A(xn−un+1)‖22 + 2<〈A(xn−un+1),y−Axn〉. (3.1)

We now observe that un+1 is a better s-term approximation to xn +µA∗(y−Axn)
than xn is, so that

‖xn + µA∗(y −Axn)− un+1‖22 ≤ ‖µA∗(y −Axn)‖22.

After expanding the squares, we obtain

2µ<〈xn − un+1, A∗(y −Axn)〉 ≤ −‖xn − un+1‖22.

Substituting this into (3.1), we derive

‖y −Axn+1‖22 − ‖y −Axn‖22 ≤ ‖A(xn − un+1)‖22 −
1

µ
‖xn − un+1‖22. (3.2)

We use the simple inequality

‖A(xn − un+1)‖22 ≤ ‖A‖22→2 ‖xn − un+1‖22, (3.3)

and the hypothesis that ‖A‖22→2 < 1/µ to deduce that

‖y −Axn+1‖22 − ‖y −Axn‖22 ≤ −c ‖xn − un+1‖22, (3.4)

where c := 1/µ−‖A‖22→2 is a positive constant. This proves that the nonnegative
sequence (‖y − Axn‖2) is nonincreasing, hence it is convergent. Since it is also
eventually periodic, it must be eventually constant. In view of (3.4), we deduce
that un+1 = xn, and in particular that Sn+1 = Sn, for n large enough. This
implies that xn+1 = xn for n large enough, which implies the required result.

As seen in (3.3), it is not really the norm of A that matters, but rather its
‘norm on sparse vectors’. This point motivates the introduction of the sth order
restricted isometry constant δs = δs(A) of a matrix A ∈ Cm×N . We recall that
these were defined in [6] as the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all s-sparse vectors x ∈ CN . (3.5)
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Replacing (3.3) by ‖A(xn − un+1)‖22 ≤ (1 + δ2s) ‖xn − un+1‖22 in the previous proof
immediately yields the following result.

THEOREM 3.3. The sequence (xn) defined by (HTPµ) converges in a finite
number of iterations provided µ(1 + δ2s) < 1.

We close this subsection with analogs of Proposition 3.2 and Theorem 3.3 for
the fast versions of the Hard Thresholding Pursuit algorithm.

THEOREM 3.4. For any k ≥ 0, with µ ≥ 1/2 and with tn+1,` equal to 1 or given
by (2.1), the sequence (xn) defined by (FTHPµ) converges provided µ‖A‖22→2 < 1
or µ(1 + δ2s) < 1.

Proof. Keeping in mind the proof of Proposition 3.2, we see that it is enough
to establish the inequality ‖y − Axn+1‖2 ≤ ‖y − Aun+1‖2. Since xn+1 = un+1,k+1

and un+1 = un+1,1, we just need to prove that, for any 1 ≤ ` ≤ k,

‖y −Aun+1,`+1‖2 ≤ ‖y −Aun+1,`‖2. (3.6)

Let ASn+1 denote the submatrix of A obtained by keeping the columns indexed by
Sn+1 and let vn+1,`+1,vn+1,` ∈ Cs denote the subvectors of un+1,`+1,un+1,` ∈ CN
obtained by keeping the entries indexed by Sn+1. With tn+1,` = 1, we have

‖y−Aun+1,`+1‖2 = ‖y−ASn+1vn+1,`+1‖2 = ‖(I −ASn+1A∗Sn+1)(y−ASn+1vn+1,`)‖2
≤ ‖y−ASn+1vn+1,`‖2 = ‖y−Aun+1,`‖2,

where the inequality is justified because the hermitian matrix ASn+1A∗Sn+1 has
eigenvalues in [0, ‖A‖22→2] or [0, 1 + δ2s], hence in [0, 1/µ] ⊆ [0, 2]. Thus (3.6) holds
with tn+1,` = 1. With tn+1,` given by (2.1), it holds because this is actually the
value that minimizes over t = tn+1,` the quadratic expression

‖y −ASn+1vn+1,`+1‖22 = ‖y −ASn+1vn+1,` − t ASn+1A∗Sn+1(y −ASn+1vn+1,`+1)‖22,

as one can easily verify.

3.2. Exact recovery of sparse vectors from accurate measurements.
We place ourselves in the ideal case where the vectors to be recovered are exactly
sparse and are measured with infinite precision. Although the main result of
this subsection, namely Theorem 3.5, is a particular instance of Theorem 3.8, we
isolate it because its proof is especially elegant in this simple case and sheds light
on the more involved proof of Theorem 3.8. Theorem 3.5 guarantees the recovery
of s-sparse vectors via Hard Thresholding Pursuit under a condition on the 3sth
restricted isometry constant of the measurement matrix. Sufficient conditions
of this kind, which often read δt < δ∗ for some integer t related to s and for
some specific value δ∗, have become a benchmark for theoretical investigations,
because they are pertinent in the analysis a wide range of algorithms. Note
that the condition δt < δ∗ is mainly known to be satisfied for random matrices
provided the number of measurements scales like

m ≈ c t

δ2
∗

ln(N/t).

In fact, the condition δt < δ∗ can only be fulfilled if m ≥ c t/δ2
∗ — see Appendix for

a precise statement and its proof. Since we want to make as few measurements
as possible, we may heuristically assess a sufficient condition by the smallness
of the ratio t/δ2

∗. In this respect, the sufficient condition δ3s < 1/
√

3 of this paper
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— valid not only for HTP but also for FTHP (in particular for IHT, too) — is
currently the best available, as shown in the following table (we did not include
the sufficient conditions δ2s < 0.473 and δ3s < 0.535 of [10] and [5], giving the
ratios 8.924 and 10.44, because they are only valid for large s). More careful
investigations should be carried out in the framework of phase transition, see
e.g. [9].

Algorithm IHT GDS CoSaMP (F)HTP BP
Reference [11] [12] [11] this paper [10]
δt < δ∗ δ3s < 0.5 δ2s < 0.333 δ4s < 0.384 δ3s < 0.577 δ2s < 0.465

Ratio t/δ2
∗ 12 18 27.08 9 9.243

Before turning to the main result of this subsection, we point out a less common,
but sometimes preferable, expression of the restricted isometry constant, i.e.,

δs = max
|S|≤s

‖A∗SAS − Id‖2→2,

where AS denotes the submatrix of A obtained by keeping the columns indexed
by S. This enables to observe easily that

|〈u, (Id−A∗A)v〉| ≤ δt‖u‖2‖v‖2 whenever |supp(u) ∪ supp(v)| ≤ t. (3.7)

Indeed, setting T := supp(u)∪ supp(v) and denoting by uT and vT the subvectors
of u and v obtained by only keeping the components indexed by T (this notation
is in slight conflict with the one used elsewhere in the paper, where uT and vT
would be vectors in CN ), we have

|〈u, (Id−A∗A)v〉| = |〈u,v〉 − 〈Au, Av〉| = |〈uT ,vT 〉 − 〈ATuT , ATvT 〉|
= |〈uT , (Id−A∗TAT )vT | ≤ ‖uT ‖2 ‖(Id−A∗TAT )vT ‖2
≤ ‖uT ‖2 ‖Id−A∗TAT ‖2→2‖vT ‖2 ≤ ‖uT ‖2 δt‖vT ‖2 = δt‖u‖2‖v‖2.

It also enables us to observe easily that

‖((Id−A∗A)v)U‖2 ≤ δt‖v‖2 whenever |U ∪ supp(v)| ≤ t. (3.8)

Indeed, using (3.7), we have

‖((Id−A∗A)v)U‖22 = 〈((Id−A∗A)v)U , (Id−A∗A)v〉 ≤ δt‖((Id−A∗A)v)U‖2‖v‖2,

and it remains to simplify by ‖((Id−A∗A)v)U‖2 to obtain (3.8).
THEOREM 3.5. Suppose that the 3sth order restricted isometry constant of the

measurement matrix A ∈ Cm×N satisfies

δ3s <
1√
3
≈ 0.57735.

Then, for any s-sparse x ∈ CN , the sequence (xn) defined by (HTP) with y = Ax
converges towards x at a geometric rate given by

‖xn − x‖2 ≤ ρn ‖x0 − x‖2, ρ :=

√
2δ2

3s

1− δ2
2s

< 1. (3.9)
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Proof. The first step of the proof is a consequence of (HTP2). We notice that
Axn+1 is the best `2-approximation to y from the space {Az, supp(z) ⊆ Sn+1},
hence it is characterized by the orthogonality condition

〈Axn+1 − y, Az〉 = 0 whenever supp(z) ⊆ Sn+1. (3.10)

Since y = Ax, this may be rewritten as

〈xn+1 − x, A∗Az〉 = 0 whenever supp(z) ⊆ Sn+1.

We derive in particular

‖(xn+1 − x)Sn+1‖22 = 〈xn+1 − x, (xn+1 − x)Sn+1〉
= 〈xn+1 − x, (I −A∗A)

(
(xn+1 − x)Sn+1

)
〉

≤
(3.7)

δ2s‖xn+1 − x‖2‖(xn+1 − x)Sn+1‖2.

After simplification, we have ‖(xn+1 − x)Sn+1‖2 ≤ δ2s‖xn+1 − x‖2. It follows that

‖xn+1 − x‖22 = ‖(xn+1 − x)
Sn+1‖22 + ‖(xn+1 − x)Sn+1‖22

≤ ‖(xn+1 − x)
Sn+1‖22 + δ2

2s‖xn+1 − x‖22.

After a rearrangement, we obtain

‖xn+1 − x‖22 ≤
1

1− δ2
2s

‖(xn+1 − x)
Sn+1‖22. (3.11)

The second step of the proof is a consequence of (HTP1). With S := supp(x), we
notice that

‖(xn +A∗(y −Axn))S‖22 ≤ ‖(xn +A∗(y −Axn))Sn+1‖22.

Eliminating the contribution on S ∩ Sn+1, we derive

‖(xn +A∗(y −Axn))S\Sn+1‖2 ≤ ‖(xn +A∗(y −Axn))Sn+1\S‖2. (3.12)

For the right-hand side, we have

‖(xn +A∗(y −Axn))Sn+1\S‖2 = ‖
(
(I −A∗A)(xn− x)

)
Sn+1\S‖2.

As for the left-hand side, we have

‖(xn +A∗(y −Axn))S\Sn+1‖2 = ‖(x− xn+1)
Sn+1 +

(
(I−A∗A)(xn− x)

)
S\Sn+1‖2

≥ ‖(x− xn+1)
Sn+1‖2−‖

(
(I−A∗A)(xn− x)

)
S\Sn+1‖2.

With S∆Sn+1 denoting the symmetric difference of the sets S and Sn+1, it follows
that

‖(x− xn+1)
Sn+1‖2 ≤ ‖

(
(I −A∗A)(xn− x)

)
S\Sn+1‖2 + ‖

(
(I −A∗A)(xn− x)

)
Sn+1\S‖2

≤
√

2 ‖
(
(I −A∗A)(xn− x)

)
S∆Sn+1‖2 ≤

(3.8)

√
2 δ3s‖xn− x‖2. (3.13)
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As a final step, we put (3.11) and (3.13) together to obtain

‖xn+1 − x‖2 ≤

√
2δ2

3s

1− δ2
2s

‖xn − x‖2.

The estimate (3.9) immediately follows. We point out that the multiplicative
coefficient ρ :=

√
2δ2

3s/(1− δ2
2s) is less than one as soon as 2δ2

3s < 1 − δ2
2s. Since

δ2s ≤ δ3s, this occurs as soon as δ3s < 1/
√

3.
As noticed earlier, the convergence requires a finite number of iterations,

which can be estimated as follows.
COROLLARY 3.6. Suppose that the matrix A ∈ Cm×N satisfies δ3s < 1/

√
3.

Then any s-sparse vector x ∈ CN is recovered by (HTP) with y = Ax in at most⌈
ln
(√

2/3 ‖x0 − x‖2
/
ξ)

ln
(
1/ρ
) ⌉

iterations, (3.14)

where ρ :=
√

2δ2
3s/(1− δ2

2s) and ξ is the smallest nonzero entry of x in modulus.
Proof. We need to determine an integer n such that Sn = S, since then (HTP2)

implies xn = x. According to the definition of Sn, this occurs if, for all j ∈ S and
all ` ∈ S, we have

|(xn−1 +A∗A(x− xn−1))j | > |(xn−1 +A∗A(x− xn−1))`|. (3.15)

We observe that

|(xn−1+A∗A(x−xn−1))j | = |xj+
(
(I−A∗A)(xn−1−x)

)
j
| ≥ ξ−|

(
(I−A∗A)(xn−1−x)

)
j
|,

and that

|(xn−1 +A∗A(x− xn−1))`| = |
(
(I −A∗A)(xn−1 − x)

)
`
|.

Then, in view of

|
(
(I −A∗A)(xn−1 − x)

)
j
|+ |

(
(I −A∗A)(xn−1 − x)

)
`
|

≤
√

2 ‖
(
(I −A∗A)(xn−1 − x)

)
{j,`}‖2 ≤

√
2 δ3s‖xn−1 − x‖2

=
√

1− δ2
2s ρ ‖xn−1 − x‖2 <

√
2/3 ρn‖x0 − x‖2,

we see that (3.15) is satisfied as soon as

ξ ≥
√

2/3 ρn‖x0 − x‖2.

The smallest such integer n is the one given by (3.14).
Turning our attention to the fast version of the Hard Thresholding Pursuit

algorithm, it is interesting to notice that s-sparse recovery via (FHTP) is also
guaranteed by the condition δ3s < 1/

√
3, independently on the number k of de-

scent iterations used in (FHTP2). Note that here we do not make the default
choice for tn+1,` given by (2.1), but we simply choose tn+1,` = 1, which in practice
is not optimal. With k = 0, the result means that the classical IHT algorithm
also allows s-sparse recovery as soon as δ3s < 1/

√
3, which incidentally improves

the best condition [11] found in the current literature.
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THEOREM 3.7. Suppose that the 3sth order restricted isometry constant of the
measurement matrix A ∈ Cm×N satisfies

δ3s <
1√
3
≈ 0.57735.

Then, for any s-sparse x ∈ CN , the sequence (xn) defined by (FHTP) with y = Ax,
k ≥ 0, and tn+1,` = 1 converges towards x at a geometric rate given by

‖xn − x‖2 ≤ ρn ‖x0 − x‖2, ρ :=

√
δ2k+2
3s (1− 3δ2

3s) + 2δ2
3s

1− δ2
3s

< 1. (3.16)

Proof. Exactly as in the proof of Theorem 3.5, we can still derive (3.13) from
(FHTP1), i.e.,

‖(x− xn+1)
Sn+1‖22 ≤ 2δ2

3s‖x− xn‖22. (3.17)

Let us now examine the consequence of (FHTP2). With un+1,0 := xn, we can
write, for each 0 ≤ ` ≤ k,

‖x− un+1,`+1‖22 = ‖(x− un+1,`+1)Sn+1‖22 + ‖(x− un+1,`+1)
Sn+1‖22

= ‖
(
(I −A∗A)(x− un+1,`)

)
Sn+1‖22 + ‖x

Sn+1‖22
≤ δ2

2s‖x− un+1,`‖22 + ‖x
Sn+1‖22.

This yields, by immediate induction on `,

‖x− un+1,k+1‖22 ≤ δ2k+2
2s ‖x− un+1,0‖22 + (δ2k

2s + · · ·+ δ2
2s + 1)‖x

Sn+1‖22.

In other words, we have

‖x− xn+1‖22 ≤ δ2k+2
2s ‖x− xn‖22 +

1− δ2k+2
2s

1− δ2
2s

‖(x− xn+1)
Sn+1‖22. (3.18)

From (3.17), (3.18), and the simple inequality δ2s ≤ δ3s, we derive

‖x− xn+1‖22 ≤
δ2k+2
3s (1− 3δ2

3s) + 2δ2
3s

1− δ2
3s

‖x− xn‖22.

The estimate (3.16) immediately follows. We point out that, for any k ≥ 0, the
multiplicative coefficient ρ is less than one as soon as δ3s < 1/

√
3.

Note that, although the sequence (xn) does not converge towards x in a finite
number of iterations, we can still estimate the number of iterations needed to
approximate x with an `2-error not exceeding ε as

nε =

⌈
ln
(
‖x0 − x‖2/ε

)
ln
(
1/ρ
) ⌉

.

3.3. Approximate recovery of vectors from flawed measurements. In
this section, we extend the previous results to the case of vectors that are not
exactly sparse and that are not measured with perfect precision. Precisely, we
prove that the HTP algorithm is stable and robust with respect to sparsity defect
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and to measurement error under the same sufficient condition on δ3s. To this
end, we need the observation that, for any e ∈ Cm,

‖(A∗e)S‖2 ≤
√

1 + δs ‖e‖2 whenever |S| ≤ s. (3.19)

To see this, we write

‖(A∗e)S‖22 = 〈A∗e, (A∗e)S〉 = 〈e, A
(
(A∗e)S

)
〉 ≤ ‖e‖2 ‖A

(
(A∗e)S

)
‖2

≤ ‖e‖2
√

1 + δs ‖(A∗e)S‖2,

and we simplify by ‖(A∗e)S‖2. Let us now state the main result of this subsection.
THEOREM 3.8. Suppose that the 3sth order restricted isometry constant of the

measurement matrix A ∈ Cm×N satisfies

δ3s <
1√
3
≈ 0.57735.

Then, for any x ∈ CN and any e ∈ Cm, if S denotes an index set of s largest (in
modulus) entries of x, the sequence (xn) defined by (HTP) with y = Ax+e satisfies

‖xn − xS‖2 ≤ ρn‖x0 − xS‖2 + τ
1− ρn

1− ρ
‖AxS + e‖2, all n ≥ 0, (3.20)

where

ρ :=

√
2δ2

3s

1− δ2
2s

< 1 and τ :=

√
2(1− δ2s) +

√
1 + δs

1− δ2s
≤ 5.15.

Proof. The proof follows the proof of Theorem 3.5 closely, starting with a
consequence of (HTP2) and continuing with a consequence of (HTP1). We notice
first that the orthogonality characterization (3.10) of Axn+1 is still valid, so that,
writing y = AxS + e′ with e′ := AxS + e, we have

〈xn+1 − xS , A
∗Az〉 = 〈e′, Az〉 whenever supp(z) ⊆ Sn+1.

We derive in particular

‖(xn+1 − xS)Sn+1‖22 = 〈xn+1 − xS , (x
n+1 − xS)Sn+1〉

= 〈xn+1 − xS , (I −A∗A)
(
(xn+1 − xS)Sn+1

)
〉+ 〈e′, A

(
(xn+1 − xS)Sn+1

)
〉

≤
(3.7)−(3.19)

δ2s‖xn+1 − xS‖2‖(xn+1 − xS)Sn+1‖2 + ‖e′‖2
√

1 + δs ‖(xn+1 − xS)Sn+1‖2.

After simplification, we have ‖(xn+1−xS)Sn+1‖2 ≤ δ2s‖xn+1−xS‖2+
√

1 + δs ‖e′‖2.
It follows that

‖xn+1 − xS‖22 = ‖(xn+1 − xS)
Sn+1‖22 + ‖(xn+1 − xS)Sn+1‖22

≤ ‖(xn+1 − xS)
Sn+1‖22 +

(
δ2s‖xn+1 − xS‖2 +

√
1 + δs ‖e′‖2

)2
.

This reads P (‖xn+1 − xS‖2) ≤ 0 for the quadratic polynomial defined by

P (t) := (1− δ2
2s) t

2 − (2δ2s
√

1 + δs ‖e′‖2) t− (‖(xn+1 − xS)
Sn+1‖22 + (1 + δs)‖e′‖22).
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Hence ‖xn+1 − xS‖2 is bounded by the largest root of P , i.e.,

‖xn+1 − xS‖2 ≤
δ2s
√

1 + δs ‖e′‖2 +
√

(1− δ2
2s)‖(xn+1 − xS)

Sn+1‖22 + (1 + δs)‖e′‖22
1− δ2

2s

.

Using the fact that
√
a2 + b2 ≤ a+ b for a, b ≥ 0, we obtain

‖xn+1 − xS‖2 ≤
1√

1− δ2
2s

‖(xn+1 − xS)
Sn+1‖2 +

√
1 + δs

1− δ2s
‖e′‖2. (3.21)

We now notice that (HTP1) still implies (3.12). For the right-hand side of (3.12),
we have

‖(xn +A∗(y −Axn))Sn+1\S‖2 = ‖
(
(I −A∗A)(xn − xS) +A∗e′

)
Sn+1\S‖2

≤ ‖
(
(I −A∗A)(xn − xS)

)
Sn+1\S‖2 + ‖(A∗e′)Sn+1\S‖2.

As for the left-hand side of (3.12), we have

‖(xn +A∗(y −Axn))S\Sn+1‖2 = ‖
(
xS + (I −A∗A)(xn − xS) +A∗e′

)
S\Sn+1‖2

≥ ‖(xS − xn+1)
Sn+1‖2 − ‖

(
(I −A∗A)(xn − xS)

)
S\Sn+1‖2 − ‖(A∗e′)S\Sn+1‖2.

It follows that

‖(xS−xn+1)
Sn+1‖2 ≤ ‖

(
(I−A∗A)(xn− xS)

)
S\Sn+1‖2+‖

(
(I−A∗A)(xn− xS)

)
Sn+1\S‖2

+ ‖(A∗e′)S\Sn+1‖2 + ‖(A∗e′)Sn+1\S‖2
≤
√

2
[
‖
(
(I −A∗A)(xn − xS)

)
S∆Sn+1‖2 + ‖(A∗e′)S∆Sn+1‖2

]
≤

(3.8)−(3.19)

√
2
[
δ3s‖xn − xS‖2 +

√
1 + δ2s ‖e′‖2

]
. (3.22)

As a final step, we put (3.21) and (3.22) together to obtain

‖xn+1 − xS‖2 ≤

√
2δ2

3s

1− δ2
2s

‖xn − xS‖2 +

√
2(1− δ2s) +

√
1 + δs

1− δ2s
‖e′‖2.

Again, we point out that the multiplicative coefficient ρ :=
√

2δ2
3s/(1− δ2

2s) is less
than one as soon as δ3s < 1/

√
3. In this case, the estimate (3.20) easily follows.

We can deduce from Theorem 3.8 some error estimates that are comparable
to the ones available for Basis Pursuit. We include the argument here because it
does not seem to be standard, although somewhat known, see [18, Remark 2.3]
and [1, p. 87]. It actually applies to any algorithm producing (c s)-sparse vectors
for which the estimates (3.20) are available, hence also to IHT and to CoSaMP. A
key inequality in the proof goes back to Stechkin, and reads, for p ≥ 1,

σs(x)p ≤
1

s1−1/p
‖x‖1, x ∈ CN . (3.23)

An improved inequality can be found in [13] for p = 2, and a sharp and more
general inequality can be found in [11] for any p ≥ 1.
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COROLLARY 3.9. Suppose that the matrix A ∈ Cm×N satisfies δ6s < 1/
√

3.
Then, for any x ∈ CN and any e ∈ Cm, every cluster point x? of the sequence (xn)
defined by (HTP) with s replaced by 2s and with y = Ax + e satisfies

‖x− x?‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2‖e‖2, 1 ≤ p ≤ 2,

where the constants C and D depend only on δ6s.
Proof. Let S0 be an index set of s largest components of x, S1 an index set of

s next largest components of x, etc. It is classical to notice that, for k ≥ 1,

‖xSk
‖2 ≤

‖xSk−1
‖1

s1/2
. (3.24)

We then obtain

‖x− x?‖p ≤ ‖xS0∪S1
‖p + ‖x? − xS0∪S1

‖p ≤ ‖xS0∪S1
‖p + (4s)1/p−1/2‖x? − xS0∪S1

‖2

≤
(3.20)

‖xS0∪S1
‖p + (4s)1/p−1/2 τ

1− ρ
‖AxS0∪S1

+ e‖2

≤
(3.23)

1

s1−1/p
‖xS0

‖1 + (4s)1/p−1/2 τ

1− ρ
‖AxS0∪S1

+ e‖2

≤ 1

s1−1/p
σs(x)1 + (4s)1/p−1/2 τ

1− ρ

(
‖AxS2‖2 + ‖AxS3‖2 + · · ·+ ‖e‖2

)
≤ 1

s1−1/p
σs(x)1 + (4s)1/p−1/2 τ

1− ρ

(√
1 + δs (‖xS2‖2 + ‖xS3‖2 + · · · ) + ‖e‖2

)
≤

(3.24)

1

s1−1/p
σs(x)1 + (4s)1/p−1/2 τ

1− ρ

(√
1 + δs

‖xS0
‖1

s1/2
+ ‖e‖2

)
=

C

s1−1/p
σs(x)1 +Ds1/p−1/2‖e‖2,

where C ≤ 1 + 41/p−1/2τ
√

1 + δ6s/(1− ρ) and D := 41/p−1/2τ/(1− ρ).
Remark: Theorem 3.8 does not guarantee the observed convergence of the

Hard Thresholding Pursuit algorithm. In fact, for a small restricted isometry
constant, say δ3s ≤ 1/2, Proposition 3.2 does not explain it either, except in the
restrictive case m ≥ cN for some absolute constant c > 0. Indeed, if ‖A‖2→2 < 1,
for any cluster point x? of the sequence (xn) defined by (HTP) with y = Ax + e,
we would derive from (3.20) that

‖x− x?‖2 ≤ C σs(x)2 +D‖e‖2, C = 1 +D‖A‖2→2 < 1 +D,

for some absolute constant D > 0. But the `2-instance optimal estimate obtained
by setting e = 0 is known to hold only when m ≥ cN with c depending only on C,
see [7]. This justifies our statement. However, if δ3s ≤ 0.4058, one can guarantee
both convergence and estimates of type (3.20) for HTPµ with µ ≈ 0.7113. Indeed,
we notice that applying HTPµ with inputs y ∈ Cm and A ∈ Cm×N is the same as
applying HTP with inputs y′ :=

√
µy ∈ Cm and A′ :=

√
µA ∈ Cm×N . Therefore,

our double objective will be met as soon as µ(1 + δ2s(A)) < 1 and δ3s(A′) < 1/
√

3.
With δ3s := δ3s(A), the former is implied by

µ <
1

1 + δ3s
, (3.25)
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while the latter, in view of δ3s(A′) ≤ max{1− µ(1− δ3s), µ(1 + δ3s)− 1}, is implied
by

1− 1/
√

3

1− δ3s
< µ <

1 + 1/
√

3

1 + δ3s
. (3.26)

These two conditions can be fulfilled simultaneously as soon as the upper bound
in (3.25) is larger than the lower bound in (3.26) by choosing µ between these two
values, i.e., as soon as

δ3s <
1

2
√

3− 1
≈ 0.4058 by choosing µ = 1− 1

2
√

3
≈ 0.7113.

4. Computational investigations. Even though we have obtained better
theoretical guarantees for the Hard Thresholding Pursuit algorithms than for
other algorithms, this does not say much about empirical performances, because
there is no way to verify conditions of the type δt ≤ δ∗. This section aims at sup-
porting the claim that the proposed algorithms are also competitive in practice
— at least in the situations considered. Of course, one has to be cautious about
the validity of the conclusions drawn from our computational investigations: our
numerical experiments only involved the dimensionsN = 1000 andm = 200, they
assess average situations while theoretical considerations assess worst-case situ-
ation, etc. The interested readers are invited to make up their own opinion based
on the codes for HTP and FHTP available on the author’s web page. To allow for
equitable comparison, the codes for the algorithms tested here — except `1-magic
and NESTA — have been implemented by the author on the same model as the
codes for HTP and FHTP. These implementations — and perhaps the usage of
`1-magic and NESTA — may not be optimal.

4.1. Number of iterations and CSMP algorithms. The first issue to be
investigated concerns the number of iterations required by the HTP algorithm
in comparison with algorithms in the CSMP family. We recall that, assuming
convergence of the HTP algorithm, this convergence only requires a finite num-
ber of iterations. The same holds for the CoSaMP and SP algorithms, since the
sequences (Un) and (xn) they produce are also eventually periodic. The stopping
criterion Un+1 = Un is natural for these algorithms, too, and was therefore incor-
porated in our implementations. Although acceptable outputs may be obtained
earlier (with e = 0, note in particular that xn ≈ x yields A∗(y−Axn) ≈ 0 , whose
s or 2s largest entries are likely to change with every n), our tests did not reveal
any noticeable difference with the stopping criterion ‖y−Axn‖2 < 10−4 ‖y‖2. The
experiment presented here consisted in running the HTP, SP, and CoSaMP algo-
rithms 500 times — 100 realizations of Gaussian matrices A and 5 realizations
of s-sparse Gaussian vectors x per matrix realization — with common inputs s,
A, and y = Ax. For each 1 ≤ s ≤ 120, the number of successful reconstructions
for these algorithms (and others) is recorded in the first plot of Figure 4.4. This
shows that, in the purely Gaussian setting, the HTP algorithm performs slightly
better than the CSMP algorithms. The most significant advantage appears to
be the fewer number of iterations required for convergence. This is reported in
Figure 4.1, where we discriminated between successful reconstructions (mostly
occurring for s ≤ 60) in the left column and unsuccessful reconstructions (mostly
occurring for s ≥ 60) in the right column. The top row of plots shows the num-
ber of iterations averaged over all trials, while the bottom row shows the largest
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FIG. 4.1. Number of iterations for CSMP and HTP algorithms (Gaussian matrices and vectors)

number of iterations encountered. In the successful case, we observe that the
CoSaMP algorithm requires more iterations than the SP and HTP algorithms,
which are comparable in this respect (we keep in mind, however, that one SP
iteration involves twice as many orthogonal projections as one HTP iteration).
In the unsuccessful case, the advantage of the HTP algorithm is even more ap-
parent, as CSMP algorithms fail to converge (the number of iterations reaches
the imposed limit of 500 iterations). For the HTP algorithm, we point out that
cases of nonconvergence were extremely rare. This raises the question of finding
suitable conditions to guarantee its convergence (see the remark at the end of
Subsection 3.3 in this respect).

4.2. Choices of parameters and thresholding algorithms. The second
issue to be investigated concerns the performances of different algorithms from
the IHT and HTP families. Precisely, the algorithms of interest here are the clas-
sical Iterative Hard Thresholding, the Iterative Hard Thresholding with parame-
ter µ = 1/3 (as advocated in [12]), the Normalized Iterative Hard Thresholding of
[4], the Normalized Hard Thresholding Pursuit, the Hard Thresholding Pursuit
with default parameter µ = 1 as well as with parameters µ = 0.71 (see remark
at the end of Section 3.3) and µ = 1.6, and the Fast Hard Thresholding Pursuit
with various parameters µ, k, and tn+1,`. For all algorithms — other than HTP,
HTP0.71, and HTP1.6 — the stopping criterion ‖y − Axn‖2 < 10−5‖y‖2 was used,
and a maximum of 1000 iterations was imposed. All the algorithms were run 500
times — 100 realizations of Gaussian matrices A and 5 realizations of s-sparse
Gaussian vectors x per matrix realization — with common inputs s, A, and
y = Ax. A successful reconstruction was recorded if ‖x − xn‖2 < 10−4‖x‖2. For
each 1 ≤ s ≤ 120, the number of successful reconstructions is reported in Figure
4.2. The latter shows in particular that HTP and FHTP perform slightly better
than NIHT, that the normalized versions of HTP and FHTP do not improve per-
formance, and that the choice tn+1,` = 1 degrades the performance of FHTP with
the default choice tn+1,` given by (2.1). This latter observation echoes the drastic
improvement generated by step (HTP2) when added in the classical IHT algo-
rithm. We also notice from Figure 4.2 that the performance of HTPµ increases
with µ in a neighborhood of one in this purely Gaussian setting, but the situation
changes in other settings, see Figure 4.4. We now focus on the reconstruction
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FIG. 4.2. Number of successes for IHT and HTP algorithms (Gaussian matrices and vectors)

time for the algorithms considered here, discriminating again between success-
ful and unsuccessful reconstructions. As the top row of Figure 4.3 suggests, the
HTP algorithm is faster than the NIHT, IHT1/3, and classical IHT algorithms
in both successful and unsuccessful cases. This is essentially due to the fewer
iterations required by HTP. Indeed, the average-time-per-reconstruction pattern
follows very closely the average-number-of-iterations pattern (not shown). For
larger scales, it is unclear if the lower costs per iteration of the NIHT, IHT1/3, and
IHT algorithms would compensate the higher number of iterations they require.
For the current scale, these algorithms do not seem to converge in the unsuccess-
ful case, as they reach the maximum number of iterations allowed. The middle
row of Figure 4.3 then suggests that the HTP1.6, HTP, NHTP, and HTP0.71 algo-
rithms are roughly similar in terms of speed, with the exception of HTP1.6 which
is much slower in the unsuccessful case (hence HTP1.3 was displayed instead).
Again, this is because the average-time-per-reconstruction pattern follows very
closely the average-number-of-iterations pattern (not shown). As for the bottom
row of Figure 4.3, it suggests that in the successful case the normalized version
of FHTP with k = 3 descent steps is actually slower than FTHP with default
parameters k = 3, tn+1,` given by (2.1), with parameters k = 10, tn+1,` given by
(2.1), and with parameters k = 3, tn+1,` = 1, which are all comparable in terms of
speed. In the unsuccessful case, FHTP with parameters k = 3, tn+1,` = 1 becomes
the fastest of these algorithms, because it does not reach the allowed maximum
number of iterations (figure not shown).

4.3. Non-Gaussian settings and other classical algorithms. The final
issue to be investigated concerns the relative performance of the HTP algorithm
compared with other classical algorithms, namely the NIHT, CoSaMP, SP, and
BP algorithms. This experiment is more exhaustive than the previous ones since
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FIG. 4.3. Time consumed by IHT and HTP algorithms (Gaussian matrices and vectors)

not only Gaussian matrices and sparse Gaussian vectors are tested, but also
Bernoulli and partial Fourier matrices and sparse Bernoulli vectors. The stop-
ping criterion chosen for NIHT, CoSaMP, and SP was ‖y−Axn‖2 < 10−5‖y‖2, and
a maximum of 500 iterations was imposed. All the algorithms were run 500 times
— 100 realizations of Gaussian matrices A and 5 realizations of s-sparse Gaus-
sian vectors x per matrix realization — with common inputs s, A, and y = Ax
(it is worth recalling that BP does not actually need s as an input). A successful
reconstruction was recorded if ‖x − xn‖2 < 10−4‖x‖2. For each 1 ≤ s ≤ 120, the
number of successful reconstructions is reported in Figure 4.4, where the top row
of plots corresponds to Gaussian matrices, the middle row to Bernoulli matrices,
and the third row to partial Fourier matrices, while the first column of plots cor-
responds to sparse Gaussian vectors and the second column to sparse Bernoulli
vectors. We observe that the HTP algorithms, especially HTP1.6, outperform
other algorithms for Gaussian vectors, but not for Bernoulli vectors. Such a phe-
nomenon was already observed in [8] when comparing the SP and BP algorithms.
Note that the BP algorithm behaves similarly for Gaussian or Bernoulli vectors,
which is consistent with the theoretical observation that the recovery of a sparse
vector via `1-minimization depends (in the real setting) only on the sign pattern
of this vector. The time consumed by each algorithm to perform the experiment is
reported in the legends of Figure 4.4, where the first number corresponds to the
range 1 ≤ s ≤ 60 and the second number to the range 61 ≤ s ≤ 120. Especially
in the latter range, HTP appears to be the fastest of the algorithms considered
here.

5. Conclusion. We have introduced a new iterative algorithm, called Hard
Thresholding Pursuit, designed to find sparse solutions of underdetermined lin-
ear systems. One of the strong features of the algorithm is its speed, which is
accounted for by its simplicity and by the fewer number of iterations needed for
its convergence. We have also given an elegant proof of its good theoretical per-
formance, as we have shown that the Hard Thresholding Pursuit algorithm finds
any s-sparse solution of a linear system (in a stable and robust way) if the re-
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FIG. 4.4. Comparison of different algorithms (top: Gauss, middle: Bernoulli, bottom: Fourier)
with sparse Gaussian (left) and Bernoulli (right) vectors

stricted isometry constant of the matrix of the system satisfies δ3s < 1/
√

3. We
have finally conducted some numerical experiments with random linear systems
to illustrate the fine empirical performance of the algorithm compared to other
classical algorithms. Experiments on realistic situations are now needed to truly
validate the practical performance of the Hard Thresholding Pursuit algorithm.
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Appendix. Here is a justification of the fact that δt < δ∗ implies m ≥ c t/δ2
∗.

THEOREM 5.1. For A ∈ Cm×N and 2 ≤ t ≤ N , one has

m ≥ c t

δ2
t

,

provided N ≥ Cm and δt ≤ δ∗, with e.g. c = 1/162, C = 30, and δ∗ = 2/3.
Proof. Let us first point out that the previous statement cannot hold for

t = 1, as δ1 = 0 if all the columns of A have `2-norm equal to 1. In this case,
we also note that the constant δ2 reduces to the coherence µ of A ∈ Cm×N , and,
specifying t = 2 in the argument below, we recognize a proof of the Welch bound
µ ≥

√
(N −m)/(m(N − 1)). Let us now set s := bt/2c ≥ 1, and let us decompose

the matrix A in blocks of size m× s — except possibly the last one — as

A =
[
A1 | A2 | · · · | An

]
, N ≤ ns.

We recall that, for all 1 ≤ i 6= j ≤ n,

‖A∗iAi − Is‖2→2 ≤ δs ≤ δt, ‖A∗iAj‖2→2 ≤ δ2s ≤ δt,

so that the eigenvalues of A∗iAi and the singular values of A∗iAj satisfy

1− δt ≤ λk(A∗iAi) ≤ 1 + δt, σk(A∗iAj) ≤ δt.

Let us introduce the matrices

H := AA∗ ∈ Cm×m, G := A∗A =
[
A∗iAj

]
1≤i,j≤n ∈ CN×N .

On the one hand, we have the lower bound

tr(H) = tr(G) =

n∑
i=1

tr(A∗iAi) =

n∑
i=1

s∑
k=1

λk(A∗iAi) ≥ n s (1− δt). (5.1)

On the other hand, writing 〈M,N〉F := tr(N∗M) for the Frobenius inner product,
we have

tr(H)2 = 〈Im, H〉2F ≤ ‖Im‖2F ‖H‖2F = m tr(H∗H).

Then, in view of

tr(H∗H) = tr(AA∗AA∗) = tr(A∗AA∗A) = tr(GG∗) =

n∑
i=1

tr
( m∑
j=1

A∗iAjA
∗
jAi

)
=

∑
1≤i 6=j≤n

s∑
k=1

σs(A
∗
iAj)

2 +
∑

1≤i≤n

s∑
k=1

λk(A∗iAi)
2 ≤ n (n− 1) s δ2

t + n s (1 + δt)
2,

we derive the upper bound

tr(H)2 ≤ mns
(
(n− 1) δ2

t + (1 + δt)
2
)
. (5.2)

Combining the bounds (5.1) and (5.2) yields

m ≥ n s (1− δt)2

(n− 1) δ2
t + (1 + δt)2

.
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If (n− 1) δ2
t < (1 + δt)

2/5, we would obtain, using δt ≤ 2/3,

m >
ns (1− δt)2

6(1 + δt)2/5
≥ 5(1− δt)2

6(1 + δt)2
N ≥ 1

30
N,

which contradicts our assumption. We therefore have (n − 1) δ2
t ≥ (1 + δt)

2/5,
which yields, using δt ≤ 2/3 again and t ≤ 3s,

m ≥ n s (1− δt)2

6(n− 1) δ2
t

≥ 1

54

s

δ2
t

≥ 1

162

t

δ2
t

.

This is the announced result.


