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Abstract

This article focuses on the maximum of relative projection constants over all m-dimensional

subspaces of the N -dimensional coordinate space equipped with the max-norm. This quantity,

called maximal relative projection constant, is studied in parallel with a lower bound, dubbed

quasimaximal relative projection constant. Exploiting alternative expressions for these quanti-

ties, we show how they can be computed when N is small and how to reverse the Kadec–Snobar

inequality when N does not tend to infinity. Precisely, we first prove that the (quasi)maximal

relative projection constant can be lower-bounded by c
√
m, with c arbitrarily close to one, when

N is superlinear in m. The main ingredient is a connection with equiangular tight frames. By

using the semicircle law, we then prove that the lower bound c
√
m holds with c < 1 when N is

linear in m.

Key words and phrases: projection constants, Seidel matrices, tight frames, equiangular lines,

graphs, semicircle law.
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1 Introduction

This article investigates relative projection constants of m-dimensional subspaces Vm of `∞N , which

are defined as

(1) λ(Vm, `N∞) := min
{
|||P |||∞→∞ : P is a projection from `N∞ onto Vm

}
,

and more specifically maximal relative projection constants, which are defined as

(2) λ(m,N) := max
{
λ(Vm, `N∞) : Vm is an m-dimensional subspace of `N∞

}
.

With K denoting either R or C, we append a subscript K in the notation λK(m,N) to indicate that

`N∞ = (KN , ‖ · ‖∞) is understood as a real or a complex linear space. The existing literature often

deals with maximal absolute projection constants, which may be defined as

λK(m) := sup
N≥m

λK(m,N).

∗Texas A&M University. S. F. thanks the University of South Florida for its hospitality during May–June 2015.
†University of South Florida.
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As a representative example, the Kadec–Snobar estimate λK(m) ≤
√
m can be proved by several

different approaches — we can add yet another approach based on Theorem 1, see Remark 10.

Following earlier works such as [12] and [5], we focus on the properties of λK(m,N) with N fixed

rather than the properties of λK(m). In particular, we are looking at reversing the Kadec–Snobar

inequality with N moderately large. In Section 2, we highlight two alternative expressions for the

maximal relative projection constant λK(m,N). They are only new in the case K = C, but even in

the case K = R, the arguments we propose contrast with the ones found in the literature. We also

introduce a related quantity µK(m,N), dubbed quasimaximal relative projection constant, which

is a lower bound for λK(m,N). We then establish some common properties shared by λK(m,N)

and µK(m,N). In Section 3, we focus on the computation of these quantities. We show how to

determine (for small N) the exact value of µR(m,N) and the value of a lower bound for λR(m,N),

which is in fact believed to be the true value. In particular, we reveal that λR(m,N) and µR(m,N)

really do differ in general. In Section 4, we make explicit a connection between equiangular tight

frames and specific values for λK(m,N) and µK(m,N). Based on these considerations, we prove

that the Kadec–Snobar estimate is optimal in the sense that there are spaces Vm of arbitrarily large

dimension m such that λK(m)/
√
m (or in fact µK(m)/

√
m) is arbitrarily close to one. This is only

new in the case K = R. However, in the examples provided in Section 4, the dimension N of the

superspace grows superlinearly in m. To the best of our knowledge, such a result was previously

achieved only with N growing quadratically in m. In Section 5, we further show that a lower

estimate λK(m,N) ≥ c
√
m (or in fact µK(m,N) ≥ c

√
m) is actually possible with N growing only

linearly in m. For this, we rely on the alternative expression for λK(m,N) in terms of eigenvalues

of Seidel matrices and invoke the semicircle law for such matrices chosen at random. We conclude

the article with some remarks linking minimal projections to matrix theory and graph theory via

the alternative expression for the maximal relative projection constant λK(m,N) highlighted at

the beginning. Four appendices collect some material whose inclusion in the main text would have

disrupted the flow of reading.

Notation: The blackboard-bold letter K represents either the field R of real numbers or the field

C of complex numbers. The set of nonnegative real numbers is denoted by R+. The notation Rn+
stands for the set of vectors with n nonnegative real entries, just like Kn stands for the set of vectors

with n entries in K. As a linear space, the latter may be equipped with the usual p-norm ‖ · ‖p for

any p ∈ [1,∞], in which case it is represented by `np . Given a vector v ∈ Kn, the notation diag(v)

refers to the diagonal matrix in Kn×n with v on its diagonal. The modulus (or absolute value) |M |
of a matrix M ∈ Kn×n is understood componentwise, so that its (i, j)th entry is |M |i,j = |Mi,j |. The

adjoint of a matrix M ∈ Kn×n is the matrix M∗ with (i, j)th entry M∗i,j = Mj,i. The eigenvalues

λ↓1(M), λ↓2(M), . . . , λ↓n(M) of a self-adjoint matrix M ∈ Kn×n are arranged in nonincreasing order,

so that λ↓1(M) ≥ λ↓2(M) ≥ · · · ≥ λ↓n(M). The squared Frobenius norm ‖M‖2F =
∑n

i,j=1 |Mi,j |2 of a

matrix M ∈ Kn×n can also be written as ‖M‖2F =
∑n

k=1 λ
↓
k(M)2. We use the letter B to represent

a Seidel matrix, i.e., a self-adjoint matrix B ∈ Kn×n with Bi,i = 0 for all i ∈ J1 : nK and |Bi,j | = 1

for all i 6= j ∈ J1 : nK — in the case K = R, these matrices are often called Seidel adjacency

matrices. The set of n× n Seidel matrices is denoted by Sn×nK . We use the letter A to represent a
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matrix of the form A = In+B where B ∈ Sn×nK , i.e., a self-adjoint matrix with the diagonal entries

equal to one and off-diagonal entries having a modulus (or absolute value) equal to one.

2 Conversion of Maximal Relative Projection Constants

In this section, we highlight two alternative expressions for λK(m,N) that turn out to be useful for

establishing some properties of the maximal relative projection constants, e.g. the properties listed

in Proposition 2 below. These expressions are not new: the ≤-part of (3) uses trace duality and

dates back to [13] (combining Proposition 2.2 with (3.7) on page 260); in the case K = R, both (3)

and (4) are proved in [5] (combining Theorem 2.2 and Theorem 2.1) and again explicitly stated in

[4] (combining Theorem 2.1 with Lemma 2.2). We propose different arguments that are also valid

in the case K = C. Specifically, our argument for the ≥-part of (3) sidesteps Lagrange multipliers

and Chalmers–Metcalf operators EP . Besides, the identification of (3) and (4) is simplified.

Theorem 1. For integers N ≥ m, one has

λK(m,N) = max

{ N∑
i,j=1

titj |UU∗|i,j : t ∈ RN+ , ‖t‖2 = 1, U ∈ KN×m, U∗U = Im

}
(3)

= max

{ m∑
k=1

λ↓k(TAT ) : T = diag(t), t ∈ RN+ , ‖t‖2 = 1, A = IN +B,B ∈ SN×NK

}
.(4)

Proof. The justification of (3) is deferred to Appendix A to avoid digressing into unnecessary

technicalities. We only highlight here a quick way to identify (3) and (4). For a fixed t ∈ RN+ with

‖t‖2 = 1, writing T := diag(t), we have

max

{ N∑
i,j=1

titj |UU∗|i,j : U ∈ KN×m, U∗U = Im

}

= max

{ N∑
i,j=1

titjAi,j(UU∗)i,j : U ∈ KN×m, U∗U = Im, A ∈ KN×N , A∗ = A, |Ai,j | = 1, Ai,i = 1

}

= max

{
tr((TAT )∗UU∗) : U ∈ KN×m, U∗U = Im, A = IN +B,B ∈ SN×NK

}
= max

{
tr(U∗TATU) : U ∈ KN×m, U∗U = Im, A = IN +B,B ∈ SN×NK

}
= max

{ m∑
k=1

λ↓k(TAT ) : A = IN +B,B ∈ SN×NK

}
,

where the last step is a known variational characterization of the sum of the m largest eigenvalues,

see e.g. [2, Problem III.6.11]. Note that the maximum over U occurs when the m columns of U
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are orthonormal eigenvectors of TAT associated with the eigenvalues λ↓1(TAT ) ≥ · · · ≥ λ↓m(TAT ).

Taking the maximum over all t’s concludes the proof.

A lower bound for λK(m,N) plays a central role throughout this article — it arises by making the

particular choice t = [1, . . . , 1]>/
√
N in (3)-(4). We denote it by µK(m,N) and call it quasimaximal

relative projection constant (even though it is not intrinsically a projection constant). Precisely,

(5) µK(m,N) ≤ λK(m,N),

where µK(m,N) satisfies

µK(m,N) =
1

N
max

{ N∑
i,j=1

|UU∗|i,j : U ∈ KN×m, U∗U = Im

}
(6)

=
1

N
max

{ m∑
k=1

λ↓k(A) : A = IN +B,B ∈ SN×NK

}
.(7)

Although the quantity µR(m,N) is in general a strict lower bound for the quantity λR(m,N)

(see Section 3), they do share some common properties listed below. These properties are proved

using the expressions (3)-(4) and (6)-(7), even if several of them (e.g. 2)α) and 4)α)) could be

seen directly from (1)-(2). Sometimes, the properties are better grasped in terms of the reduced

quantities λ̃K(m,N) := λK(m,N)−m/N and µ̃K(m,N) := µK(m,N)−m/N , i.e.,

µ̃K(m,N) =
1

N
max

{ N∑
i,j=1
i 6=j

|UU∗|i,j : U ∈ KN×m, U∗U = Im

}
(8)

=
1

N
max

{ m∑
k=1

λ↓k(B) : B ∈ SN×NK

}
.(9)

The latter expression readily implies that µ̃K(1, N) = (N − 1)/N (by Gershgorin theorem) and

that µ̃K(N,N) = 0 (by the zero-trace of Seidel matrices), yielding the values µK(1, N) = 1 and

µK(N,N) = 1. This matches the values λK(1, N) = 1 and λK(N,N) = 1. Note also that the

inequality µK(m,N) ≥ 1 holds in general, as can be seen by choosing A as the matrix with all 1’s

in (7).

Proposition 2. The maximal relative projection constants and quasimaximal relative projection

constants have the following properties:

1) Real vs. complex:

α) λR(m,N) ≤ λC(m,N) ≤ 2λR(m, 2N), β) µR(m,N) ≤ µC(m,N) ≤ 2µR(m, 2N).

2) Symmetry in m:

α) λK(m,N)− 1 ≤ λK(N −m,N) ≤ λK(m,N) + 1, β) µ̃K(N −m,N) = µ̃K(m,N).
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3) Behavior with m: for m ≤ N − 1,

α) λK(m+ 1, N) ≤ m+ 1

m
λK(m,N), β) µK(m+ 1, N) ≤ m+ 1

m
µK(m,N).

4) Behavior with N :

α) λK(m,N) ≤ λK(m,N + 1).

Remark 3. Before turning to the proof of Proposition 2, a few comments are in order:

• The inequalities in 1)α) are probably not sharp, but we emphasize that the leftmost inequality

cannot be an equality and that the factor 2 in the rightmost inequality cannot be replaced

by 1. Indeed, anticipating on Theorem 5, if λR(m,N) and λC(m,N) were equal, then the

existence of equiangular tight frames consisting of N unit vectors in Km would be independent

of whether K = R or K = C, which is not so. Moreover, λC(m,N) can exceed λR(m, 2N), for

instance when m = 2 and N = 4, since λC(2, 4) = (1 +
√

3)/2 ≈ 1.3660 (anticipating again on

Theorem 5) and λR(2, 8) = 4/3 ≈ 1.3333 (anticipating on Grünbaum conjecture). A similar

observation is valid for the inequalities in 1)β).

• The strict symmetry of µ̃(m,N) in 2)β) is not shared by λ̃(m,N). Indeed, the contrary would

mean equality between λK(m,N)−m/N and λK(N−m,N)−1+m/N . But such an equality

does not hold, e.g. for K = R, N = 5, and m = 2, as shown by a direct calculation using the

values λR(2, 3) = 4/3 and λR(3, 5) = (5 + 4
√

2)/7, see [5].

• The counterparts of 3)α-β) for λ̃K(m,N) and µ̃K(m,N) are also valid. Precisely, it is simple

to see that 3)α) is equivalent to λ̃K(m + 1, N) ≤ [(m + 1)/m] λ̃K(m,N) and that 3)α) is

equivalent to µ̃K(m+ 1, N) ≤ [(m+ 1)/m] µ̃K(m,N).

Proof of Proposition 2. 1)α-β) follow from the expressions (3) and (6). The leftmost inequalities

hold because any U ∈ RN×m also belongs to CN×m. For the rightmost inequalities, we start by

observing that any U ∈ CN×m with U∗U = Im satisfies, for all i, j ∈ J1 : NK,

|UU∗|i,j =
√

(Re(U) Re(U)> + Im(U) Im(U)>)2i,j + (Re(U) Im(U)> − Im(U) Re(U)>)2i,j

≤ |Re(U) Re(U)>|i,j + | Im(U) Im(U)>|i,j + |Re(U) Im(U)>|i,j + | Im(U) Re(U)>|i,j
= |V V >|i,j + |V V >|i+N,j+N + |V V >|i,j+N + |V V >|i+N,j ,

where the matrix V ∈ R2N×m is defined in block notation as V :=

[
Re(U)

Im(U)

]
. It satisfies V >V = Im.

Summing over all i, j ∈ J1 : NK and passing to the maxima gives NµC(m,N) ≤ 2NµR(m, 2N),

which yields the rightmost inequality in 1)β). As for the leftmost inequality in 1)α), given t ∈ RN+

with ‖t‖2 = 1, we introduce τ ∈ R2N
+ defined in block notation by τ =

1√
2

[
t

t

]
, so that ‖τ‖2 = 1.
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We then derive that

N∑
i,j=1

titj |UU∗|i,j ≤
N∑

i,j=1

(
titj |V V >|i,j + titj |V V >|i+N,j+N + titj |V V >|i,j+N + titj |V V >|i+N,j

)

= 2
2N∑
i,j=1

τiτj |V V >|i,j ≤ 2λR(m, 2N).

Passing to the maxima over U and t gives λC(m,N) ≤ 2λR(m, 2N), as announced.

To see why 2)β) holds, we start by observing that, for any B ∈ SN×NK ,

m∑
k=1

λ↓k(B) = −
N∑

k=m+1

λ↓k(B) =

N−m∑
k=1

λ↓k(−B), so
1

N

m∑
k=1

λ↓k(B) ≤ µ̃K(N −m,N),

because −B ∈ SN×NK , too. Taking the maximum over B yields µ̃K(m,N) ≤ µ̃K(N − m,N).

Exchanging the role of m and N−m leads to the reversed inequality, and in turn to 2)β). Similarly,

to prove 2)α), it is enough to establish that λK(m,N) ≤ 1 + λK(N −m,N). To this end, we write

λK(m,N) =

N∑
i,j=1

titj |UU∗|i,j for t ∈ RN+ with ‖t‖2 = 1 and U ∈ KN×m with U∗U = Im.

The m columns of U form an orthonormal system of KN that we complete to form an orthonormal

basis of KN , thus introducing a matrix V ∈ KN×(N−m) such that W :=
[
U V

]
is a unitary matrix.

Then WW ∗ = IN reads UU∗ + V V ∗ = IN . It follows that

λK(m,N) =

N∑
i=1

t2i (UU
∗)i,i +

N∑
i,j=1,i 6=j

titj |UU∗|i,j =
N∑
i=1

t2i (1− V V ∗)i,i +
N∑

i,j=1,i 6=j
titj |V V ∗|i,j

=
N∑
i=1

t2i +
N∑

i,j=1

titj |V V ∗|i,j − 2
N∑
i=1

t2i (V
∗V )i,i ≤ 1 + λK(N −m,N),

which is the inequality we were targeting in order to establish 2)α).

Both 3)α) and 3)β) result from the observation (λ↓1 + · · · + λ↓m+1)/(m + 1) ≤ (λ↓1 + · · · + λ↓m)/m,

valid for all real numbers λ↓1 ≥ λ
↓
2 ≥ · · · ≥ λ

↓
N , when it is applied in (4) and (7).

4)α) follows from the expression (3) simply by appending a row of zeros to any U ∈ KN×m satisfying

U∗U = Im.

We conjecture that the list from Proposition 2 could be completed by two additional properties.

The first conjectured property concerns the behavior with N of the quantity µ̃K(m,N). Note

that 4)α), stating that λK(m,N) increases with N , implies that the reduced quantity λ̃K(m,N) =

λK(m,N)−m/N also increases with N . But a similar behavior can be expected only for µ̃K(m,N),

since the column m = 2 of Table 1 in Appendix B reveals that µK(m,N) does not increase with N .
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Conjecture 1. Behavior with N :

µ̃K(m,N) ≤ µ̃K(m,N + 1).

The second conjectured property concerns the behavior with m of the quantities λ̃K(m,N) and

µ̃K(m,N), which we expect to be maximized at m = bN/2c or m = dN/2e. Note that a similar

statement appears to be invalid for λK(m,N) and µK(m,N). Tables 1 and 2 indicate that they

should be maximized at m = dN/2e+ 1 instead when N > 3.

Conjecture 2. Behavior with m, bis: for m ≤ N/2− 1,

α) λ̃K(m,N) ≤ λ̃K(m+ 1, N), β) µ̃K(m,N) ≤ µ̃K(m+ 1, N),

while the inequalities are reversed for m ≥ N/2.

Given m ≤ N/2− 1, the result β) would be clear if the Seidel matrix Bm attaining the maximum

in (9) had its (m + 1)st eigenvalue nonnegative. Unfortunately, in the case K = R at least, the

computations described in Section 3 suggest that λ↓m+1(Bm) < 0 (as well as λ↓m(Bm) > 0). We also

point out that the computations hint that the inequality λ̃R(m,N) ≤ µ̃R(m + 1, N) could hold,

which would immediately imply both α) and β) in the case K = R.

3 Computation of Real Maximal Relative Projection Constants

In this section, which deals only with the real case, we present methods to calculate quasimaximal

relative projection constants exactly and maximal relative projection constant approximately (at

least). The methods, implemented in matlab, can be found in the reproducible accompanying

this article. For small values of N , the results of our investigations are displayed in Tables 1 and 2

found in Appendix B. In the complex case, there is also a way to compute quasimaximal and

maximal relative projection constants approximately. This is included in the reproducible file, but

not incorporated in the main text because of theoretical uncertainty.

Computing quasimaximal relative projection constants: We simply determine µR(m,N) as

the value of the maximum in (7), which is possible because the set SN×NR of real Seidel matrices

is finite (as a reminder, it consists of all symmetric real matrices with diagonal entries equal to

zero and off-diagonal entries equal to −1 or +1). Hence, the quantity µR(m,N) can be calculated

exactly — at least in theory, but in practice it can only be calculated for small values of N because

the number of real Seidel matrices quickly becomes prohibitive when N grows. This number can

be reduced significantly, as explained later in this section, but it still limited our computations to

N = 10. We have obtained, for instance,

µR(3, 5) ≈ 1.5123.

7



On Maximal Relative Projection Constants

This shows that µR(m,N) is in general a strict lower bound for λR(m,N), as it is known [5] that

λR(3, 5) =
5 + 4

√
2

7
≈ 1.5224.

To remain convinced of the strict inequality λR(3, 5) > µR(3, 5) without verifying all the details

of [5], the reader can perform any of the following tests (all included in the matlab reproducible):

enter the space provided in [5, Theorem 3.6] and calculate its projection constant using the software

MinProj presented in [9]; make numerous random choices for t and U in (3) to derive a lower bound

for λR(3, 5); or compute (a lower bound for) λR(3, 5) based on the method described next.

Computing maximal relative projection constants: Determining λR(m,N) directly as the

value of the maximum in (3) appears difficult because of the simultaneous optimization over both

variables t and U . We simply propose an iterative scheme that alternates between optimizing

over one variable while keeping the other fixed. Precisely, starting with t(0) = [1, . . . , 1]>/
√
N , we

construct sequences (αn)n≥1, (βn)n≥1, (t(n))n≥1, and (U(n))n≥1 as follows:

• αn and U(n) are the maximum and maximizer in

max

{ N∑
i,j=1

t
(n−1)
i t

(n−1)
j |UU∗|i,j : U ∈ RN×m, U∗U = Im

}
;

• βn and t(n) are the maximum and maximizer in

max

{ N∑
i,j=1

titj |U(n)U
∗
(n)|i,j : t ∈ RN+ , ‖t‖2 = 1

}
.

The advantage of this approach is that both steps are computable in the real case. Indeed, keeping

in mind the identification of (3) and (4) in the proof of Theorem 1, we notice that determining αn
and U(n) involves computing the maximum over a finite set, since

αn = max

{ m∑
k=1

λ↓k(T
(n−1)AT (n−1)) : A = IN +B,B ∈ SN×NK

}
and U(n) is the matrix with columns equal to the orthonormal eigenvectors associated with the

eigenvalues λ↓1(T
(n−1)AT (n−1)) ≥ · · · ≥ λ↓m(T (n−1)AT (n−1)) for the optimal matrix A. We then

notice that determining βn and t(n) requires another eigenvalue calculation, since

βn = λ↓1(|U(n)U
∗
(n)|)

and t(n) is the eigenvector associated with λ↓1(|U(n)U
∗
(n)|). In terms of theoretical guarantees, we

can establish the following modest result, but we do expect that (αn)n≥1 and (βn)n≥1 genuinely

converge to the true maximal relative projection constant rather than to a lower bound.
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Theorem 4. The sequences (αn)n≥1 and (βn)n≥1 are nondecreasing and converge to a common

limit belonging to the interval [µR(m,N), λR(m,N)].

Proof. By the optimal properties of t(n) and U(n−1), we have

N∑
i,j=1

t
(n−1)
i t

(n−1)
j |U(n)U

∗
(n)|i,j ≤

N∑
i,j=1

t
(n)
i t

(n)
j |U(n)U

∗
(n)|i,j ≤

N∑
i,j=1

t
(n)
i t

(n)
j |U(n+1)U

∗
(n+1)|i,j ,

that is to say αn ≤ βn ≤ αn+1. This shows that the sequences (αn)n≥1 and (βn)n≥1 are both

nondecreasing. Since they are bounded above by λR(m,N), they must be convergent. It is clear

that they have the same limit, which is lower-bounded by α1 = µR(m,N) and upper-bounded by

λR(m,N).

Reducing the number of Seidel matrices: The computations of µR(m,N) and λR(m,N)

become quickly prohibitive when N increases. Indeed, we take the maximum over the set SN×NR ,

which has huge cardinality 2N(N−1)/2. However, since we are only interested in the eigenvalues of

matrices T (I +B)T , B ∈ SN×NR and T ∈ RN×N diagonal with ‖T‖F = 1, we shall avoid repeating

matrices that have the same spectrum. There are two obvious operations on SN×NK that preserve

the spectrum of T (I +B)T up to a possible change of T :

• the multiplication on the left by a diagonal matrix D of −1’s and +1’s and on the right by

its inverse D−1 = D, since

T (I +DBD)T = (TD)(I +B)(DT ) = D[T (I +B)T ]D−1;

• the multiplication on the left by a permutation matrix P and on the right by its inverse P−1,

since

T (I + PBP−1)T = (TP )(I +B)(P−1T ) = P [(P−1TP )(I +B)(P−1TP )]P−1,

where P−1TP is a diagonal matrix with ‖P−1TP‖F = 1 (since its diagonal entries are those

of T in a different order).

If one thinks of Seidel matrices as (−1, 0, 1)-adjacency matrices1 of simple graphs, then the first

operation corresponds to switching the connectivity of some vertices and the second operation

corresponds to reordering the vertices. Now, given an N ×N real Seidel matrix B, multiplying on

the left and on the right by D := diag[1, B1,2, . . . , B1,N ], we can assume that B takes the form

B =


0 1 · · · 1

1
... B′

1

 , where B′ is an (N − 1)× (N − 1) real Seidel matrix.

1The (i, j)th entry of a (−1, 0, 1)-adjacency matrix is 0 if i = j, 1 if i 6= j and there is an edge connecting i and j,

and −1 if i 6= j and there is no edge connecting i and j.
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The graph corresponding to this matrix B′ can be chosen up to isomorphism (i.e., reordering of the

vertices), since such an operation does not affect the first row and column of B. Thus, the number

of matrices we need to consider has reduced from 2N(N−1)/2 to the number of nonisomorphic simple

graphs on N −1 vertices, which is tabulated. Although this number still becomes prohibitive when

N increases, for N = 10, at least, there is a substantial reduction from 35, 184, 372, 088, 832 down to

274, 668, which makes this computation amenable. Moreover, the construction of all nonisomorphic

simple graphs can be performed rather efficiently using a software called nauty made publicly

available by the authors of [14] on their webpages. All in all, the previous considerations allowed

us to compute the values of µR(m,N) and of (lower bounds for) λR(m,N) for all 1 ≤ m ≤ N ≤ 10.

They are reported in Tables 1 and 2 displayed in Appendix B.

4 Connection with Equiangular Tight Frames

Sets of equiangular lines have appeared earlier in the study of absolute projection constants (see e.g.

[13, Theorem 1.1], but beware that [5] exposed a flaw in the argument which essentially amounts

to identifying λK(m,N) and µK(m,N)). In the context of relative projection constants, it is the

notion of equiangular tight frames that becomes pertinent. The article [12] contained the important

ingredients, even though it took a different perspective. The purpose of this section is to formulate

explicitly the connection between (quasi)maximal relative projection constants and equiangular

tight frames and to derive consequences about the former from facts about the latter. First of all,

we recall that a system of unit (i.e., `2-normalized) vectors f1, . . . , fN in Km is called equiangular

if

|〈fi, fj〉| = c for all i 6= j ∈ J1 : NK.

It is called a tight frame if the matrix F :=
[
f1 · · · fN

]
∈ Km×N satisfies

FF ∗ =
N

m
Im.

A usual definition would free the constant in front of Im, but here the normalization of the fi’s forces

it to be N/m, as readily seen by looking at tr(FF ∗) = tr(F ∗F ). Evidently, the system (f1, . . . , fN )

is called an equiangular tight frame if it is both equiangular and a tight frame. Equiangular tight

frames are exactly the systems of unit vectors for which the Welch bound is met, i.e., for which the

inequality

max
i 6=j∈J1:NK

|〈fi, fj〉| ≥

√
N −m
m(N − 1)

becomes an equality (see [10, Theorem 5.7] among other possible references). Thus, the existence of

an equiangular tight frame consisting of N unit vectors is equivalent to the existence of U ∈ KN×m

10
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(U =
√
m/N F ∗) such that

(10) (UU∗)i,i =
m

N
, i ∈ J1 : NK, |UU∗|i,j =

m

N

√
N −m
m(N − 1)

, i 6= j ∈ J1 : NK, U∗U = Im,

where the last condition is actually superfluous because it is a consequence of the first two. We are

now prepared to state the main result of this section.

Theorem 5. Given integers N ≥ m, the following properties are equivalent:

(i) there is an equiangular tight frame consisting of N unit vectors in Km,

(ii) µK(m,N) =
m

N

(
1 +

√
(N − 1)(N −m)

m

)
,

(iii) λK(m,N) =
m

N

(
1 +

√
(N − 1)(N −m)

m

)
.

Remark 6. When Condition (i) is met with K = R and N 6= 2m, the quantity (N − 1)(N −m)/m

is the square of an odd integer (see [20, Theorem A]), so that the maximal relative projection

constant λR(m,N) is a rational number in this case.

Remark 7. It is possible for µK(m,N) and λK(m,N) to be equal, yet there are no equiangular

tight frames consisting of N unit vectors in Km. For instance, the value µR(2, 9) = 4/3 is provided

by our computations, while the value λR(2, 9) = 4/3 results from a proof of Grünbaum conjecture

(see Remark 11). However, equiangular tight frames in R2 cannot consist of 9 unit vectors, as

the maximal number of unit vectors in this case is 3. We also point out that if equality between

µK(m,N) and λK(m,N) occurs, then there is an m-dimensional subspace of `N∞ maximizing the

projection constant for which the orthogonal projection is a minimal projection. This statement is

proved in Appendix C.

Proof of Theorem 5. Without restriction on m and N , invoking (5) and [12, Theorem 1] yields

(11) µK(m,N) ≤ λK(m,N) ≤ m

N

(
1 +

√
(N − 1)(N −m)

m

)
.

We also refer to Appendix D for a new proof based on the expression (4).

(i) ⇒ (ii): Picking a matrix U ∈ KN×m satisfying (10), the expression (6) for µK(m,N) gives

(12) µK(m,N) ≥ 1

N

(
N
m

N
+ (N2 −N)

m

N

√
N −m
m(N − 1)

)
=
m

N

(
1 +

√
(N − 1)(N −m)

m

)
.

Putting the estimates (11) and (12) together establishes Condition (ii).

(ii) ⇒ (iii): This is a direct consequence of (11).

11
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(iii) ⇒ (i): According to [12, Theorem 2], Condition (iii) implies the existence of a self-adjoint2

matrix C ∈ KN×N such that C2 = IN , Ci,i = 2m/N − 1, and |Ci,j | = 2/N
√
m(N −m)/(N − 1).

Note that D := (C + IN )/2 represents the matrix of an orthogonal projection (since D∗ = D and

D2 = D) with rank equal to tr(D) = m. This implies (look e.g. at the eigendecomposition of D)

that D = UU∗ for some U ∈ KN×m. The first two conditions of (10), namely (UU∗)i,i = m/N and

|UU∗|i,j = m/N
√

(N −m)/(m(N − 1)) are automatically fulfilled, and the third condition, namely

U∗U = Im, occurs as a consequence. As mentioned above, these three conditions are equivalent to

Condition (i) being fulfilled.

The question of existence of equiangular tight frames has been extensively studied (but so far not

completely settled), so Theorem 5 provides the exact values of the maximal relative projection

constants in a number of known situations (see [20, 3, 21] for table listing cases of existence).

As a first example, since there always exists an equiangular tight frame consisting of m + 1 unit

vectors in Rm — the vertices of the m-simplex centered at the origin — one retrieves the value

λR(m,m + 1) = 2 − 2/(m + 1) found e.g. in [5, Lemma 2.6]. As a second example, the small

equiangular tight frames collected in [10, Exercises 5.5 and 5.6] yield

λR(3, 6) =
1 +
√

5

2
≈ 1.6180, λR(7, 28) =

5

2
= 2.5.

λC(2, 4) =
1 +
√

3

2
≈ 1.3660, λC(3, 9) =

5

3
≈ 1.6667.

More unexpectedly, Condition (ii) from Theorem 5 provides an original test for the existence of

equiangular tight frames consisting of N unit vectors in Rm, since Section 3 showed that the

quantity µR(m,N) is ‘computable’. For instance, there is no equiangular tight frames consisting of

5 unit vectors in R3, since µR(3, 5) ≈ 1.5123 is strictly smaller than the value (3 + 2
√

6)/5 ≈ 1.5798

of the upper bound. All of this being said, the usefulness of Theorem 5 is counterbalanced by the

fact that equiangular tight frames are rare. In particular, they cannot possess an arbitrarily large

number of vectors. On this matter, there is some difference between the complex case and the real

case, as further discussed below.

Complex case: An equiangular tight frame consisting of N unit vectors in Cm must satisfy

N ≤ m2. Zauner conjecture suggests that this maximal number can be attained for every positive

integer m — at least, the numerical investigations of [18] indicate that it is so up to m = 67.

Regardless, if maximal equiangular tight frames in Cm do exist for a specific m, then the expression

of the maximal relative projection constant simplifies to

λC
(
m,m2

)
=

1

m
+

(m− 1)
√
m+ 1

m
.

This would give a sequence (Vm)m≥1 of complex m-dimensional spaces such that

lim
m→∞

λC(Vm)√
m

= 1.

2Self-adjointness was left out in the statement of the theorem, but it is implied by the conditions satisfied by C.
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Such a result can genuinely be obtained if one relaxes the equiangularity constraint. This point

was already observed in [11], and the following example provides a marginal improvement which

increases the lower bound on λC(m,m2) by the anecdotal quantity (1−1/m)2/
√
m. Precisely, when

m ≥ 5 is a prime number, the proof of [10, Proposition 5.13] (originally from [19]) offers an explicit

matrix U ∈ Cm2×m with U∗U = Im and

(UU∗)i,i =
1

m
, i ∈ J1 : m2K, |UU∗|i,j =

 0 m(m− 1) times,
1

m
√
m

m(m− 1)(m2 +m− 1) times,
i 6= j ∈ J1 : m2K.

Therefore, the expression (6) for µC(m,m2) yields

λC(m,m2) ≥ µC(m,m2) ≥ 1

m2

(
m2 1

m
+m(m− 1)(m2 +m− 1)

1

m
√
m

)
=

1

m
+

(m− 1)(m2 +m− 1)

m3

√
m.

Real case: An equiangular tight frame consisting of N unit vectors in Rm must satisfy the stronger

estimate N ≤ m(m + 1)/2. For m ≥ 3, if this maximal number is attained, then m + 2 must be

the square of an odd integer. Among the possible values, m = 7 and m = 23 do showcase maximal

equiangular tight frames, but m = 47 does not (and neither do several other plausible m’s, see [1]),

while the situation remains uncertain for m = 79, etc. Regardless, if maximal equiangular tight

frames in Rm do exist for infinitely many m, then the expression of the maximal relative projection

constant simplifies to

λR

(
m,

m(m+ 1)

2

)
=

2

m+ 1
+

(m− 1)
√
m+ 2

m+ 1
.

This would give a increasing sequence (Vmq)q≥1 of real mq-dimensional spaces such that

(13) lim
q→∞

λR(Vmq)√
mq

= 1.

Such a result can be obtained conditionally on an affirmative answer to Hadamard conjecture

(which states that Hadamard matrices, i.e., matrices populated by ±1 and having orthogonal rows,

do exist whenever their size is a multiple of 4). Indeed, the existence of equiangular tight frames

consisting of Nq := qn(1 + (qn − 1)/(q − 1)) unit vectors in Rmq , mq := qn−1(qn − 1)/(q − 1), was

established in [8, Subsection 3.1.5] provided that the prime power q and the integer n > 1 are such

that 1+(qn−1)/(q−1) = qn−1 + qn−2 + · · ·+ q+2 is the size of a Hadamard matrix. So, accepting

Hadamard conjecture, one can simply choose n = 3 and q to be one of the infinitely many prime

numbers congruent to 1 modulo 4, because q2 + q + 2 ≡ 12 + 1 + 2 ≡ 0 (mod 4). Then, for the

sequences (mq)q≥1 and (Nq)q≥1, Theorem 5 yields

λR(mq, Nq)√
mq

=

√
mq

Nq

(
1 +

√
(Nq − 1)(Nq −mq)

mq

)
∼

q→∞

√
mq

Nq

√
N2
q

mq
= 1.

13
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Note that Hadamard matrices are known to exist when their size is a power of 2, but finding

infinitely many admissible q seems unlikely in this situation because the intended condition reduces

to (qn − 1)/(q − 1) = 2k − 1, which is believed to have only finitely many solutions according to

Goormaghtigh conjecture. However, if one again relaxes the equiangularity constraint, then we can

genuinely find a sequence (Vmq)q≥1 of real mq-dimensional spaces for which (13) holds. To do so,

we borrow arguments from Section 3 of [15]3, which relies on Taylor graphs to establish that, as

soon as q is an odd prime power, there exists a graph of order Nq := q3 whose adjacency matrix4

G ∈ {0, 1}Nq×Nq has eigenvalues (q + 1)(q2 − 1)/2 with multiplicity 1, (q2 − 1)/2 with multiplicity

q(q− 1), and −(q+ 1)/2 with multiplicity (q− 1)(q2 + 1). Note that, if J denotes the matrix whose

entries all equal 1, then B := 2G + I − J is an Nq ×Nq Seidel matrix. Setting mq := q2 − q + 1,

we have, for A := I +B,

mq∑
k=1

λ↓k(A) =

mq∑
k=1

λ↓k(2(G+ I)− J) ≥
mq∑
k=1

λ↓k(2(G+ I))−
mq∑
k=1

λ↓k(J) = 2

mq∑
k=1

λ↓k(G) + 2mq −Nq

= (q + 1)(q2 − 1) + (q2 − 1)q(q − 1) + 2mq −Nq = (q2 − 1)(q2 + 1) + 2mq −Nq.

We finally derive (13) by observing that

λR(mq, Nq)√
mq

≥ µR(mq, Nq)√
mq

≥ (q2 − 1)(q2 + 1)/Nq + 2mq/Nq − 1
√
mq

∼
q→∞

q√
q2

= 1.

5 Refined Bounds on Maximal Relative Projection Constants

In Section 4, we have given evidence that, for some positive integers m, the Kadec–Snobar upper

bound on the maximal relative projection constant can be reversed as λK(m,N) ≥ c
√
m with N

depending more than linearly on m and with a constant c arbitrarily close to 1. This section shows,

roughly speaking, that the lower bound λK(m,N) ≥ c
√
m is in fact valid for all positive integers

m with N depending only linearly on m. The constant c cannot exceed
√

(κ− 1)/κ < 1 in case

N ≤ κm, though. Indeed, as shown in [12], the quantity appearing in Theorem 5 is always an

upper bound for λK(m,N), so that

λK(m,N) ≤ λK(m, bκmc) ≤ m

bκmc

(
1 +

√
(bκmc − 1)(bκmc −m)

m

)
∼

m→∞
=

√
κ− 1

κ

√
m.

3 The article [15] studies the quantity τ(m,N) = max{
∑m
k=1 λ

↓
k(G) : G adjacency matrix of graph of order n}/N .

It is strongly related to our quantity µ(m,N) — one can show that |µ(m,N)−2τ(m,N)−2m/N | ≤ 1. It is basically

[15, Theorem 1.4] that yields (13). The upper bound τ(m,N) ≤ (
√
m + 1)/2 found in [15, Theorem 1.3] follows

quickly from the Kadec–Snobar estimate µK(m,N) ≤ λR(m,N) ≤
√
m, and our stronger bound (11) in fact improves

on [15, Theorem 1.3] in case N does not tend to infinity.
4As opposed to the (−1, 0, 1)-adjacency matrix encountered before, for this more classical notion of adjacency

matrix, the (i, j)th entry is 0 if there is no edge connecting i and j and 1 if there is an edge connecting i and j.
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The argument we propose consists in bounding µ̃R(m,N) from below by making random, rather

than optimal, choices for the matrices B in (9). The main ingredient is the semicircle law for the

limiting distribution of eigenvalues of random symmetric matrices BN ∈ RN×N whose diagonal

entries equal 0 and whose off-diagonal entries equal −1 or +1, each with probability 1/2. Given

the density function f defined by f(x) = 0 for |x| > 2 and by

f(x) =
1

2π

√
4− x2 for |x| ≤ 2,

and with F denoting the complementary distribution function defined by

F (x) =

∫ 2

x
f(t)dt =

arccos(x/2)

π
− x
√

4− x2
2

for |x| ≤ 2,

we invoke one of the earlier results (see [17]) which states that, for any ε > 0 and any y ∈ R,

(14) hε,y(N) := P

(∣∣∣∣∣#{eigenvalues of BN/
√
N in [y,∞)}

N
− F (y)

∣∣∣∣∣ > ε

)
−→
N→∞

0.

Although more sophisticated results have appeared since then, this simple version is enough for us

to establish the following intermediate fact.

Theorem 8. Given ρ ∈ (0, 1/2) and ε ∈ (0,min{ρ/2, 1/2− ρ}),

1

N

∑
1≤k≤ρN

λ↓k(BN ) ≥ F−1(ρ− ε)(ρ− 2ε)
√
N

for a proportion of real N ×N Seidel matrices approaching 1 as N →∞.

In terms of (quasi)maximal relative projection constants, the result below follows immediately.

Corollary 9. Given ρ ∈ (0, 1/2) and c ∈ (0, F−1(ρ)
√
ρ), if m ≥ m∗ for some m∗ = m∗c,ρ, then

λR(m,N) ≥ µR(m,N) ≥ c
√
m

as soon as N ≥ ρ−1m.

Proof of Theorem 8. Let a = aρ,ε > 0 be chosen such that F (a) = ρ − ε. Let rN denote the

maximum index i ∈ J1 : NK such that λ↓i (BN/
√
N) ≥ 0, and let sN denote the maximum index

i ∈ J1 : NK such that λ↓i (BN/
√
N) ≥ a. Applying (14) to y = 0 and y = a, we obtain that

• with failure probability hε,0(N),∣∣∣∣rNN − 1

2

∣∣∣∣ < ε, i.e.,

(
1

2
− ε
)
N ≤ rN ≤

(
1

2
+ ε

)
N, and in particular rN ≥ ρN ;

• with failure probability hε,aρ,ε(N),∣∣∣sN
N
− F (a)

∣∣∣ < ε, i.e., (F (a)− ε)N ≤ sN ≤ (F (a) + ε)N.
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So, with failure probability at most hε,0(N)+hε,aρ,ε(N), we have λ↓k(BN/
√
N) ≥ λ↓rN (BN/

√
N) ≥ 0

whenever 1 ≤ k ≤ ρN , as well as (ρ− 2ε)N ≤ sN ≤ ρN . It follows that

∑
1≤k≤ρN

λ↓k(BN/
√
N) ≥

sN∑
k=1

λ↓k(BN/
√
N) ≥

sN∑
k=1

a ≥ a(ρ− 2ε)N.

We arrive at the desired conclusion after dividing by
√
N .

6 Concluding Remarks

To close this article, we show how the reformulations (4) and (7) of maximal and quasimaximal

relative projection constants in terms of eigenvalues can be elegantly exploited to retrieve results on

minimal projections or instead to turn results on minimal projections into results in matrix theory

or graph theory.

Remark 10. As announced in the introduction, the Kadec–Snobar estimate λK(m,N) ≤
√
m can

be derived from (4) in a simple way. For this purpose, one notices that, for T = diag(t) with t ∈ RN+
and ‖t‖2 = 1 and for A ∈ KN×N with modulus-one entries, one has ‖TAT‖2F =

∑N
i,j=1 |tiAi,jtj |2 =∑N

i,j=1 t
2
i t

2
j = 1, and consequently

m∑
k=1

λk(TAT ) ≤ m1/2

[
m∑
k=1

λk(TAT )2

]1/2
≤ m1/2

[
N∑
k=1

λk(TAT )2

]1/2
= m1/2‖TAT‖F = m1/2.

It now suffices to take the maximum over t and A. The stronger bound (11) on λK(m,N) can also

be shown using (4), as detailed in Appendix D.

Remark 11. Grünbaum conjecture states that λR(2) = 4/3 — which does not hold in the complex

case, for λC(2, 4) = (1 +
√

3)/2 > 4/3. The proof proposed in [13] relied on an erroneous lemma,

as pointed out in [5], but it was completed in [6]. Based on the different expressions of λR(m,N)

given in this paper, namely (3) and (4), the result can be rephrased as either one of the statements

that have nothing to do with projection constants:

• for every U ∈ RN×2 with U∗U = I2,

λ↓1(|UU
∗|) ≤ 4/3;

• for every graph of order N with Seidel adjacency matrix B ∈ {−1, 0, 1}N×N and for every

diagonal matrix T ∈ RN×N with unit Frobenius norm,

λ↓1(T (I +B)T ) + λ↓2(T (I +B)T ) ≤ 4/3.
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Remark 12. It is known [16, Theorem 3] that the matrices of the form UU∗ with U ∈ RN×m and

U∗U = Im are extreme points of the set {Z ∈ RN×N : 0 � Z � IN , tr(Z) = m}. Hence the real

maximal and quasimaximal relative projection constants also take the forms

λR(m,N) = max

{ N∑
i,j=1

titj |Z|i,j : t ∈ RN+ , ‖t‖2 = 1, Z ∈ RN×N : 0 � Z � IN , tr(Z) = m

}
,

µR(m,N) =
1

N
max

{ N∑
i,j=1

|Z|i,j : Z ∈ RN×N : 0 � Z � IN , tr(Z) = m

}
.

Grünbaum conjecture/theorem can then be rephrased as

• for every Z ∈ RN×N with 0 � Z � IN and tr(Z) = 2,

λ↓1(|Z|) ≤ 4/3.
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Appendix A: Proof of the Expression (3) for the Maximal Relative Projection Constant

We justify here the expression for the maximal relative projection constant given in (3), namely

λK(m,N) = max

{ N∑
i,j=1

titj |UU∗|i,j : t ∈ RN+ , ‖t‖2 = 1, U ∈ KN×m, U∗U = Im

}
.

We start by proving the ≤-part — as mentioned earlier, this is a rephrasing of existing arguments.

Let Vm be an m-dimensional subspace of `N∞ and let V ∈ KN×m be a matrix whose columns form

an orthonormal basis of Vm, so that V ∗V = Im. We draw attention to the easy observations that

(matrices of) operators form `N∞ into Vm take the form VW ∗ for someW ∈ KN×m and that (matrices

of) projections from `N∞ onto Vm take the form VW ∗ for some W ∈ KN×m satisfying W ∗V = Im.

We shall first prove the expression (experimentally validated in the matlab reproducible)

(15) λ(Vm, `N∞) = max
{

Re tr(C) : M ∈ KN×N , ‖M‖∗∞→∞ = 1, C ∈ Km×m,M∗V = V C
}
,

where the norm on KN×N that is dual to the operator norm on `N∞ is given by

‖M‖∗∞→∞ =
N∑
i=1

max
j∈J1:NK

|M |i,j .

To this end, we rely on the following equivalence: given a subspace Y of a normed space X and

given x ∈ X \ Y, a vector y ∈ Y is a best approximation to x from Y if and only if there exists

a linear functional η ∈ X ∗ vanishing on Y which satisfies η(x) = ‖x − y‖ and ‖η‖∗ = 1. This

equivalence is for instance crucial in the duality between Kolmogorov and Gelfand widths, as it

yields (see e.g. [7, Theorem 1.3] or [10, p. 323-324] for details)

min {‖x− y‖ : y ∈ Y} = max
{
η(x) : η ∈ X ∗, η|Y = 0, ‖η‖∗ = 1

}
.

In the present situation, with X := KN×N and P ∈ X denoting a projection from `N∞ onto Vm,

the relative projection constant λ(Vm, `N∞) equals min {‖P −Q‖∞→∞ : Q ∈ Y}, where the space

Y := {VW ∗ : W ∈ KN×m with W ∗V = 0} of operators from `N∞ into Vm vanishing on Vm
has dimension Nm −m2. Using trace duality to represent the linear functionals on X , we arrive

at λ(Vm, `N∞) = max{Re tr(M∗P ),M ∈ Z, ‖M‖∗∞→∞ = 1}, where Z is the space of dimension

N2 −Nm+m2 defined by Z := {M ∈ KN×N : tr(M∗Q) = 0 whenever Q ∈ Y}. We claim that Z
can also be described as the space Z ′ := {M ∈ KN×N : M∗V = V C for some C ∈ Km×m}. Indeed,

the inclusion Z ′ ⊆ Z follows from tr(M∗VW ∗) = tr(V CW ∗) = tr(CW ∗V ) = 0 when W ∗V = 0

and the equality Z ′ = Z follows from a dimensional argument, using for instance the rank-nullity

theorem for the map M ∈ Z ′ 7→ V ∗MV ∈ Km×m whose null space {M ∈ KN×N : M∗V = 0}
has dimension N2 −Nm and whose range Km×m has dimension m2. To wrap up the justification

of (15), it remains to notice that, when M∗V = V C and when P = VW ∗ is a projection, we have

Re tr(M∗P ) = Re tr(M∗VW ∗) = Re tr(V CW ∗) = Re tr(CW ∗V ) = Re tr(C).
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Now that (15) is fully established, let us consider matrices M ∈ KN×N , ‖M‖∗∞→∞ = 1 , and

C ∈ Km×m, M∗V = V C, achieving the maximum in (15). Let us define t ∈ RN+ with ‖t‖2 = 1 by

t2i := max
j∈J1:NK

|M |i,j .

With T := diag(t), let us also define

F := V (V ∗T 2V )−1/2 ∈ KN×m and U := TF = TV (V ∗T 2V )−1/2 ∈ KN×m.

In fact, F and U are not well-defined if t has some zero entries, but in this case we would simply

replace T by diag(t) + εIN for some ε > 0 that we make arbitrarily small at the end. It is readily

verified that U∗U = Im. Moreover, we have

λ(Vm, `N∞) = Re tr(C) = Re tr
((
V ∗T 2V

)−1/2 (
V ∗T 2V

)
C
(
V ∗T 2V

)−1/2)
= Re tr

(
F ∗T 2M∗F

)
= Re tr ((TF )∗(TM∗)F ) = Re

[ m∑
k=1

N∑
i,j=1

(TF )∗k,i(TM
∗)i,jFj,k

]

= Re

[ m∑
k=1

N∑
i,j=1

tiFi,ktiMj,iFj,k

]
= Re

[ N∑
i,j=1

t2iMj,i

m∑
k=1

Fi,kFj,k

]

≤
N∑

i,j=1

t2i |M |j,i|FF ∗|i,j ≤
N∑

i,j=1

t2i t
2
j |FF ∗|i,j =

N∑
i,j=1

titj |UU∗|i,j .

Bounding the latter from above by the right-hand side of (3) before taking the maximum over all

spaces Vm yields the upper estimate for λK(m,N).

Let us now turn to the ≥-part — the arguments differ from the ones of [5, 4] and they are valid in

case K = C, too. Let t ∈ RN+ with ‖t‖2 = 1 and U ∈ KN×m with U∗U = Im achieving the maximum

in the right-hand side of (3) and let γ be the value of this maximum. We shall exploit the extremal

properties of t (with U being fixed) and of U (with t being fixed) to deduce the conditions

N∑
j=1

|UU∗|i,jtj = γ ti for all i ∈ J1 : NK,(16)

N∑
i,j=1

titj |UW ∗|i,j ≥
N∑

i,j=1

titj |UU∗|i,j for all W ∈ KN×m with W ∗U = Im.(17)

To derive the first condition, we remark that γ and t are the maximum and maximizer of 〈|UU∗|x, x〉
over all x ∈ KN with ‖x‖2 = 1, so Rayleigh quotient theorem asserts that γ is the largest eigenvalue

of |UU∗| and t is an associated eigenvector. Condition (16) is just a rewriting of the equation

|UU∗|t = γ t. Deriving Condition (17) requires a little more work. Given W ∈ KN×m with

W ∗U = Im, for any ε ∈ (−1, 1), we consider

Uε := (1− ε)U + εW.
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An elementary calculation gives U∗εUε = (1− ε2)Im + ε2W ∗W . Since the latter is positive definite,

we can define

Ũε := Uε (U∗εUε)
−1/2 ∈ KN×m, which satisfies Ũ∗ε Ũε = Im.

From the truncated expansion

[U∗εUε]
−1 =

[
(1− ε2)

(
Im +

ε2

1− ε2
W ∗W

)]−1
=

1

1− ε2

(
Im −

ε2

1− ε2
W ∗W +O(ε2)

)
= Im+O(ε2),

we infer the truncated expansion

ŨεŨ
∗
ε = Uε[U

∗
εUε]

−1U∗ε = ((1− ε)U + εW )
(
Im +O(ε2)

)
((1− ε)U∗ + εW ∗)

= (1− ε)2UU∗ + (1− ε)ε(UW ∗ +WU∗) +O(ε2) = UU∗ + ε(UW ∗ +WU∗ − 2UU∗) +O(ε2).

In view of the extremal property of U , we have

N∑
i,j=1

titj |UU∗|i,j ≥
N∑

i,j=1

titj |ŨεŨ∗ε |i,j ≥
N∑

i,j=1

titjsgn(UU∗)i,j(ŨεŨ
∗
ε )i,j ,

so that

N∑
i,j=1

titjsgn(UU∗)i,j(UU
∗)i,j ≥

N∑
i,j=1

titjsgn(UU∗)i,j(UU
∗ + ε(UW ∗ +WU∗ − 2UU∗))i,j +O(ε2)

For this inequality to hold whenever ε ∈ (−1, 1), the ε-term must be zero, i.e.,

2
N∑

i,j=1

titjsgn(UU∗)i,j(UU
∗)i,j =

N∑
i,j=1

titjsgn(UU∗)i,j(UW
∗ +WU∗)i,j

= 2

N∑
i,j=1

titj Re
[
sgn(UU∗)i,j(UW

∗)i,j

]
.

Condition (17) is an immediate consequence of this identity. With Conditions (16) and (17) at

hand, we now aim at producing a subspace with a minimal projection of norm γ. This transpires

from the argument below if all the ti’s are positive by setting ε = 0 throughout. But we have to

introduce ε > 0 because some of the ti’s might vanish. Thus, we consider T ′ := diag(t′), where

t′ ∈ RN is the `2-normalized vector with entries

t′i :=

√
t2i + ε/N

1 + ε
> 0, i ∈ J1 : NK.

We also introduce

P := (T ′)−1UU∗T ′ ∈ KN×N ,
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which is (the matrix of) a projection by virtue of P 2 = P . It is not complicated to see that any

other projection onto the range of P takes the form Q = (T ′)−1UW ∗T ′ for some W ∈ KN×m

satisfying W ∗U = Im. We observe that

‖Q‖∞→∞ = max
i∈J1:NK

N∑
j=1

|(T ′)−1UW ∗T ′|i,j = max
i∈J1:NK

N∑
j=1

1

t′i
|UW ∗|i,jt′j ≥

N∑
i=1

(t′i)
2

N∑
j=1

1

t′i
|UW ∗|i,jt′j

=
N∑

i,j=1

t′it
′
j |UW ∗|i,j ≥

1

1 + ε

N∑
i,j=1

titj |UW ∗|i,j ≥
(17)

1

1 + ε

N∑
i,j=1

titj |UU∗|i,j =
(16)

γ

1 + ε
.

In the case ε = 0, we stress that equality holds all the way through when W = U thanks to (16),

meaning that P is a minimal projection onto its range. In the case ε > 0, we can still bound

λK(m,N) from below as

λK(m,N) ≥ λ(ran(P ), `N∞) ≥ γ

1 + ε
.

The desired result is obtained by taking ε > 0 arbitrarily small.

Appendix B: Computed Maximal and Quasimaximal Relative Projection Constants

We have applied the computational procedures described in Section 3 to determine the values of

µR(m,N) and λR(m,N) for 1 ≤ m ≤ N ≤ 10. They are displayed in Tables 1 and 2 below — strictly

speaking, the values in Table 2 are only guaranteed to be lower bounds for λR(m,N). Optimal

spaces Vm in (2), optimal vectors t in (3)-(4), optimal matrices U in (3)-(6), and optimal Seidel

matrices in (4)-(7) have also been determined. They are all included in the matlab reproducible,

where the reduced quantities µ̃R(m,N) and λ̃R(m,N) are also available for 1 ≤ m ≤ N ≤ 10.

Table 1: Values of µR(m,N)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

N = 1 1.0000

N = 2 1.0000 1.0000

N = 3 1.0000 1.3333 1.0000

N = 4 1.0000 1.3090 1.5000 1.0000

N = 5 1.0000 1.3123 1.5123 1.6000 1.0000

N = 6 1.0000 1.3333 1.6180 1.6667 1.6667 1.0000

N = 7 1.0000 1.3250 1.5962 1.7391 1.7536 1.7143 1.0000

N = 8 1.0000 1.3257 1.5875 1.7892 1.8375 1.8257 1.7500 1.0000

N = 9 1.0000 1.3333 1.5889 1.8020 1.9132 1.9223 1.8889 1.7778 1.0000

N = 10 1.0000 1.3292 1.5936 1.8485 2.0000 2.0485 1.9936 1.9292 1.8000 1.0000
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Table 2: Values of (lower bounds for) λR(m,N)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

N = 1 1.0000

N = 2 1.0000 1.0000

N = 3 1.0000 1.3333 1.0000

N = 4 1.0000 1.3333 1.5000 1.0000

N = 5 1.0000 1.3333 1.5224 1.6000 1.0000

N = 6 1.0000 1.3333 1.6180 1.6667 1.6667 1.0000

N = 7 1.0000 1.3333 1.6180 1.7398 1.7536 1.7143 1.0000

N = 8 1.0000 1.3333 1.6180 1.7923 1.8377 1.8257 1.7500 1.0000

N = 9 1.0000 1.3333 1.6180 1.8050 1.9142 1.9223 1.8889 1.7778 1.0000

N = 10 1.0000 1.3333 1.6180 1.8496 2.0000 2.0486 1.9939 1.9294 1.8000 1.0000

Appendix C: Equality of Maximal and Quasimaximal Relative Projection Constants

As pointed out in Remark 7, the quasimaximal relative projection constant µK(m,N) and the

maximal relative projection constant λK(m,N) are equal when there is an equiangular tight frame

of N vectors in Km, but this is not the only case. If equality occurs, then something can be said

about the minimal projections onto the optimal spaces.

Proposition 13. Given N ≥ m, if µK(m,N) = λK(m,N), then there exists an m-dimensional

subspace Vm of `N∞ such that λ(Vm, `N∞) = λK(m,N) for which the orthogonal projection onto Vm
is a minimal projection.

Proof. The equality between µK(m,N) and λK(m,N) tells us that t = [1, . . . , 1]>/
√
N is extremal

in (3). Let us denote by U ∈ KN×m the matrix achieving the maximum in (3) and let us consider

the orthogonal projection P := UU∗. Following the argument used in Appendix A to prove the

≥-part of (3), we can say that the range of P is an m-dimensional space achieving the maximum

in (2) and that P is a minimal projection.

We believe that the converse to Proposition 13 holds, but we were unsuccessful in proving it.

Appendix D: Proof of the Bound (11) on the Maximal Relative Projection Constant

We show here how the expression (4) can be exploited to provide a novel justification of the upper

bound (11) originally derived in Theorem 1 of [12] and unimproved since then, namely

(18) λK(m,N) ≤ m

N

(
1 +

√
(N − 1)(N −m)

m

)
=
m

N
+

√
(N − 1)m(N −m)

N
.

We start by establishing the following simple result.
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Lemma 14. Given integers N ≥ m, if x ∈ RN satisfies
N∑
k=1

xk = 0 and
N∑
k=1

x2k = 1, then

m∑
k=1

xk ≤
√
m(N −m)

N
.

Proof. Consider the vector 1 := [1, . . . , 1]> ∈ RN whose entries are all equal to one, as well as the

vector 1m := [1, . . . , 1, 0, . . . , 0]> ∈ RN whose first m entries are equal to one and whose remaining

entries are all equal to zero. The task at hand is to maximize 〈1m, x〉 subject to 〈1, x〉 = 0

and ‖x‖2 = 1, or equivalently to minimize ‖1m − x‖2 for x in the unit sphere of the hyperplane

H := 1⊥. As a picture would reveal, the extremizer x? is the `2-normalized orthogonal projection

of 1m onto H, i.e., x? = PH(1m)/‖PH(1m)‖2. Then the value of the maximum of 〈1m, x〉 is

〈1m, x?〉 =
〈1m, PH(1m)〉
‖PH(1m)‖2

= ‖PH(1m)‖2 =
√
‖1m‖22 − 〈1m,1〉2/‖1‖22 =

√
m−m2/N,

which is indeed the announced bound for 〈1m, x〉.

Turning now to the justification of (18), given T = diag(t) with t ∈ RN+ and ‖t‖2 = 1 and given

A = IN +B with B ∈ SN×NK , we set

xk =

√
N

N − 1

(
λ↓k(TAT )− 1

N

)
, k ∈ J1 : NK.

The condition
∑
xk = 0 holds because

∑
λ↓k(TAT ) = tr(TAT ) = 1, while the condition

∑
x2k = 1

holds because

N∑
k=1

(
λ↓k(TAT )− 1

N

)2

=
N∑
k=1

λ↓k(TAT )2 − 2

N

N∑
i=k

λ↓k(TAT ) +
1

N
= ‖TAT‖2F −

2

N
tr(TAT ) +

1

N

= 1− 2

N
+

1

N
=
N − 1

N
.

Thus, applying Lemma 14 gives

m∑
k=1

√
N

N − 1

(
λ↓k(TAT )− 1

N

)
≤
√
m(N −m)

N
, i.e.,

m∑
k=1

λ↓k(TAT ) ≤ m

N
+

√
(N − 1)m(N −m)

N
.

Taking the maximum over t and A yields the upper bound on λK(m,N) announced in (18).
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