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Abstract

In Optimal Recovery, the task of learning a function from observational data is tackled

deterministically by adopting a worst-case perspective tied to an explicit model assumption

made on the functions to be learned. Working in the framework of Hilbert spaces, this article

considers a model assumption based on approximability. It also incorporates observational

inaccuracies modeled via additive errors bounded in `2. Earlier works have demonstrated that

regularization provide algorithms that are optimal in this situation, but did not fully identify

the desired hyperparameter. This article fills the gap in both a local scenario and a global

scenario. In the local scenario, which amounts to the determination of Chebyshev centers,

the semidefinite recipe of Beck and Eldar (legitimately valid in the complex setting only) is

complemented by a more direct approach, with the proviso that the observational functionals

have orthonormal representers. In the said approach, the desired parameter is the solution to

an equation that can be resolved via standard methods. In the global scenario, where linear

algorithms rule, the parameter elusive in the works of Micchelli et al. is found as the byproduct of

a semidefinite program. Additionally and quite surprisingly, in case of observational functionals

with orthonormal representers, it is established that any regularization parameter is optimal.

Key words and phrases: Regularization, Chebyshev center, semidefinite programming, S-procedure,

hyperparameter selection.
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1 Introduction

1.1 Background on Optimal Recovery

This article is concerned with a central problem in Data Science, namely: a function f is acquired

through point evaluations

(1) yi = f(x(i)), i = 1, . . . ,m,

∗S. F. is supported by grants from the NSF (CCF-1934904, DMS-2053172) and from the ONR (N00014-20-1-2787).
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and these data should be used to learn f—or to recover it, with the terminology preferred in

this article. Importantly, the evaluation points x(1), . . . , x(m) are considered fixed entities in our

scenario: they cannot be chosen in a favorable way, as in Information-Based Complexity [Novak

and Woźniakowski, 2008], nor do they occur as independent realizations of a random variable, as

in Statistical Learning Theory [Hastie, Tibshirani, and Friedman, 2009]. In particular, without an

underlying probability distribution, the performance of the recovery process cannot be assessed via

generalization error. Instead, it is assessed via a notion of worst-case error, central to the theory

of Optimal Recovery [Micchelli and Rivlin, 1977].

To outline this theory, we make the framework slightly more abstract. Precisely, given a normed

space F , the unknown function is replaced by an element f ∈ F . This element is accessible only

through a priori information expressing an educated belief about f and a posteriori information

akin to (1). In other words, our partial knowledge about f is summed up via

• the fact that f ∈ K for a subset K of F called a model set;

• the observational data yi = λi(f), i = 1, . . . ,m, for some linear functionals λ1, . . . , λm ∈ F ∗

making up the observation map Λ : g ∈ F 7→ [λ1(g); . . . ;λm(g)] ∈ Rm.

We wish to approximate f by some f̂ ∈ F produced using this partial knowledge of f . Since the

error ‖f − f̂‖ involves the unknown f , which is only accessible via f ∈ K and Λ(f) = y, we take a

worst-case perspective leading to the local worst-case error

(2) lwce(y, f̂) := sup
f∈K

Λ(f)=y

‖f − f̂‖.

Our objective consists in finding an element f̂ that minimizes lwce(y, f̂). Such an f̂ can be described,

almost tautologically, as a center of a smallest ball containing K∩Λ−1({y}). It is called a Chebyshev

center of this set of model- and data-consistent elements. This remark, however, does not come

with any practical construction of a Chebyshev center.

The term local was used above to make a distinction with the global worst-case error of a recovery

map ∆(= ∆K) : Rm → F , defined as

(3) gwce(∆) := sup
y∈Λ(K)

lwce(y,∆(y)) = sup
f∈K
‖f −∆(Λ(f))‖.

The minimal value of gwce(∆) is called the intrinsic error (of the observation map Λ over the model

set K) and the maps ∆ that achieve this minimal value are called globally optimal recovery maps.

Our objective consists in constructing such maps—of course, the map that assigns to y a Chebyshev

center of K∩Λ−1({y}) is one of them, but it may be impractical. By contrast, for model sets that

are convex and symmetric, the existence of linear maps among the set of globally optimal recovery

maps is guaranteed by fundamental results from Optimal Recovery in at least two settings: when
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F is a Hilbert space and when F is an arbitrary normed space but the full recovery of f gives way

to the recovery of a quantity of interest Q(f), Q being a linear functional. We refer the readers to

[Foucart, 2022, Chapter 9] for details.

1.2 The specific problem

The problem solved in this article is a quintessential Optimal Recovery problem—its specificity

lies in the particular model set and in the incorporation of errors in the observation process.

The underlying normed space F is a Hilbert space and is therefore denoted by H from now on.

Reproducing kernel Hilbert spaces, whose usage is widespread in Data Science [Schölkopf and

Smola, 2002], are of particular interest as point evaluations of type (1) make perfect sense there.

Concerning the model set, we concentrate on an approximation-based choice that is increasingly

scrutinized, see e.g. [Maday, Patera, Penn, and Yano, 2015], [DeVore, Petrova, and Wojtaszczyk,

2017] and [Cohen, Dahmen, Mula, and Nichols, 2020]. Depending on a linear subspace V of H and

on a parameter ε > 0, it takes the form

K = {f ∈ H : dist(f,V) ≤ ε}.

Binev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk [2017] completely solved the Optimal

Recovery problem with exact data in this situation (locally and globally). Precisely, they showed

that the solution f̂ to

(4) minimize
f∈H

dist(f,V) s.to Λ(f) = y,

which clearly belongs to the model- and data-consistent set K ∩ Λ−1({y}), turns out to be its

Chebyshev center. Moreover, with PV and PV⊥ denoting the orthogonal projectors onto V and

onto the orthogonal complement V⊥ of V, the fact that dist(f,V) = ‖f − PVf‖ = ‖PV⊥f‖ makes

the optimization program (4) tractable. It can actually be seen that ∆ : y 7→ f̂ is a linear map.

This is a significant advantage because ∆ can then be precomputed in an offline stage knowing only

V and Λ and the program (4) need not be solved afresh for each new data y ∈ Rm arriving in an

online stage.

Concerning the observation process, instead of exact data y = Λ(f) ∈ Rm, it is now assumed that

y = Λ(f) + e ∈ Rm

for some unknown error vector e ∈ Rm. This error vector is not modeled as random noise but

through the deterministic `2-bound ‖e‖2 ≤ η. Although other `p-norms can the considered for

the optimal recovery of Q(f0) when Q is a linear functional on an arbitrary normed space F (see

[Ettehad and Foucart, 2021]), here the arguments rely critically on Rm being endowed with the
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`2-norm. This `2-norm, as well as the Hilbert norm on H and any other Hilbert norm, will simply

be written as ‖ · ‖, hoping that the correct setting is clear from the context.

For our specific problem, the worst-case recovery errors (2) and (3) need to be adjusted. The local

worst-case recovery error at y for f̂ becomes

lwce(y, f̂) = sup
‖PV⊥f‖≤ε
‖Λ(f)−y‖≤η

‖f − f̂‖.

As for the global worst-case error of ∆ : Rm → H, it reads

gwce(∆) = sup
‖PV⊥f‖≤ε
‖e‖≤η

‖f −∆(Λ(f) + e)‖.

Note that both worst-case errors are infinite if one can find a nonzero h in V ∩ ker(Λ). Indeed, the

element ft := f + th, t ∈ R, obeys ‖PV⊥ft‖ = ‖PV⊥f‖ ≤ ε and ‖y − Λ(ft)‖ = ‖y − Λ(f)‖ ≤ η, so

for instance lwce(y, f̂) ≥ supt∈R ‖ft − f̂‖ = +∞. Thus, we always make the assumption that

(5) V ∩ ker(Λ) = {0}.

We keep in mind that the latter forces n := dim(V) ≤ m, as can be seen by dimension arguments.

With Λ∗ denoting the Hermitian adjoint of Λ, another assumption that we sometimes make reads

(6) ΛΛ∗ = IdRm .

This is not extremely stringent: assuming the surjectivity of Λ is quite natural, otherwise certain

observations need not be collected; then the map Λ can be preprocessed into another map Λ̃

satisfying Λ̃Λ̃∗ = IdRm by setting Λ̃ = (ΛΛ∗)−1/2Λ. Incidentally, if u1, . . . , um ∈ H represent the

Riesz representers of the observation functionals λ1, . . . , λm ∈ H∗, characterized by 〈ui, f〉 = λi(f)

for all f ∈ H, then the assumption (6) is equivalent to the orthonormality of the system (u1, . . . , um).

In a reproducing kernel Hilbert space with kernel K, if the λi’s are point evaluations at some x(i)’s,

so that ui = K(·, x(i)), then (6) is equivalent to K(x(i), x(j)) = δi,j for all i, j = 1, . . . ,m. This occurs

e.g. for the Paley–Wiener space of functions with Fourier transform supported on [−π, π] when the

evaluations points come from an integer grid, since the kernel is given by K(x, x′) = sinc(π(x−x′)),
x, x′ ∈ R.

Notation. From now on, we only deal with finite-dimensional Hilbert spaces.1 For a self-adjoint

operator T defined on such a Hilbert space H, we write λmin(T ) and λmax(T )—not to be confused

with the observation functionals—to denote its smallest and largest eigenvalues. We write T � 0

1It is likely that the results are still valid in the infinite-dimensional case. However, it would then be unclear how

semidefinite programs such as (8) and (9) are solved numerically, so the infinite-dimensional case is not given proper

scrutiny in the article.
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(respectively T � 0) to mean that T is positive semidefinite (respectively positive definite), i.e.,

that 〈Tf, f〉 ≥ 0 (respectively 〈Tf, f〉 > 0) for all nonzero f ∈ H, which is equivalent to the fact

that λmin(T ) ≥ 0 (respectively λmin(T ) > 0). Throughout the article, we also make heavy use of

block notation for linear maps to mimic a usual convention for matrices. Namely, if H1 and H2 are

Hilbert spaces, then the elements of the Hilbert space H1×H2 are represented by stacking elements

f1 ∈ H1 and f2 ∈ H2 to form

[
f1

f2

]
∈ H1 × H2. Furthermore, if L1 : H → H1, L2 : H → H2,

L′1 : H1 → H, and L′2 : H2 → H are linear maps between Hilbert spaces, then

[
L1

L2

]
: H → H1×H2

and
[
L′1 | L′2

]
: H1 ×H2 → H are the linear maps defined, for f ∈ H, f1 ∈ H2, and f2 ∈ H2, by[
L1

L2

]
f =

[
L1f

L2f

]
and

[
L′1 | L′2

] [f1

f2

]
= L′1f1 + L′2f2.

Finally, to parallel the notation ker(L) for the null space, aka kernel, of a linear map L, we use the

notation im(L) to represent the range, aka image, of L, i.e., im(L) = {L(f), f ∈ dom(L)}.

1.3 Main results

There are previous works on Optimal Recovery in Hilbert spaces in the presence of observation

error bounded in `2. Notably, [Beck and Eldar, 2007] dealt with the local setting, while [Melkman

and Micchelli, 1979] and [Micchelli, 1993] dealt with the global setting. These works underline the

importance of regularization, which is prominent in many other settings [Chen and Haykin, 2002].

They establish that the optimal recovery maps are obtained by solving the unconstrained program

(7) minimize
f∈H

(1− τ)‖PV⊥f‖2 + τ‖Λf − y‖2

for some τ ∈ [0, 1]. It is the precise choice of this regularization parameter τ which is the purpose

of this article. We provide a complete (almost) picture of the local and global Optimal Recovery

solutions, as summarized in the four points below, three of them being new:

L1. With H restricted here to be a complex Hilbert space, the Chebyshev center of the set

{f ∈ H : ‖PV⊥f‖ ≤ ε, ‖Λf − y‖ ≤ η} is the minimizer of (7) for the choice τ = d]/(c] + d]),

where c], d] are solutions to the semidefinite program

minimize
c,d,t≥0

ε2c+ (η2 − ‖y‖2)d+ t s.to cPV⊥ + dΛ∗Λ � Id,

and

[
cPV⊥ + dΛ∗Λ | −dΛ∗y

−d(Λ∗y)∗ | t

]
� 0.
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L2. Under the orthonormal observations assumption (6) but without the above restriction on H,

the Chebyshev center of the set {f ∈ H : ‖PV⊥f‖ ≤ ε, ‖Λf − y‖ ≤ η} is the minimizer of (7)

for the choice τ that satisfies

(8) λmin((1− τ)PV⊥ + τΛ∗Λ) =
(1− τ)2ε2 − τ2η2

(1− τ)ε2 − τη2 + (1− τ)τ(1− 2τ)δ2
,

where δ is precomputed as δ = min{‖PV⊥f‖ : Λf = y} = min{‖Λf − y‖ : f ∈ V}. For the

distinct case V = {0}, the best choice of parameter is more simply τ = max{1− η/‖y‖, 0}.

G1. A globally optimal recovery map is provided by the linear map sending y ∈ Rm to the

minimizer of (7) with parameter τ = d[/(c[+d[), where c[, d[ are solutions to the semidefinite

program

(9) minimize
c,d

ε2c+ η2d s.to cPV⊥ + dΛ∗Λ � Id.

G2. Under the orthonormal observations assumption (6), the linear map sending y ∈ Rm to the

minimizer of (7) is a globally optimal recovery map for any choice of parameter τ ∈ [0, 1].

Before entering the technicalities, a few comments are in order to put these results in context.

Item L1 is the result of [Beck and Eldar, 2007] (see Corollary 3.2 there) adapted to our situation.

It relies on an extension of the S-lemma involving two quadratic constraints. This extension is

valid in the complex finite-dimensional setting, but not necessarily in the real setting, hence the

restriction on H (this does not preclude the validity of the result in the real setting, though). It is

worth pointing out the nonlinearity of the map that sends y ∈ Rm to the above Chebyshev center.

Incidentally, we can safely talk about the Chebyshev center, because it is known [Garkavi, 1962]

that a bounded set in a uniformly convex Banach space has exactly one Chebyshev center. A sketch

of the argument adapted to our situation is presented in the appendix.

For item L2, working with an observation map Λ satisfying ΛΛ∗ = IdRm allows us to construct the

Chebyshev center even in the setting of a real Hilbert space. This is possible because our argument

does not rely on the extension of the S-lemma—it just uses the obvious implication. As for equation

(8), it is easily solved using the bisection method or the Newton/secant method. Moreover, it gives

some insight on the value of the optimal parameter τ . For instance, the proof reveals that τ is

always between 1/2 and ε/(ε + η). When ε ≥ η, say, the optimal parameter should then satisfy

τ ≥ 1/2, which is somewhat intuitive: ε ≥ η means that there is more model mismatch than data

mismatch, so the regularization should penalize model fidelity less than data fidelity by taking

1−τ ≤ τ , i.e., τ ≥ 1/2. As an aside, we point out that, here too, the map that sends y ∈ Rm to the

Chebyshev center is not a linear map—if it was, then the optimal parameter should be independent

of y.

In contrast, the globally optimal recovery map of item G1 is linear. It is one of several globally

optimal recovery maps, since the locally optimal one (which is nonlinear) is also globally optimal.

6



S. Foucart, C. Liao

However, as revealed in the reproducible2 accompanying this article, it is in general the only

regularization map that turns out to be globally optimal. The fact that regularization produces

globally optimal recovery maps was recognized by Micchelli, who wrote in the abstract of [Micchelli,

1993] that “the regularization parameter must be chosen with care”. However, a recipe for selecting

the parameter was not given there, except on a specific example. The closest to a nonexhaustive

search is found in [Plaskota, 1996, Lemma 2.6.2] for the case V = {0}, but even this result does

not translate into a numerically tractable recipe. The selection stemming from (9) does, at least

when H is finite-dimensional, which is assumed here. Semidefinite programs can indeed be solved

in matlab using CVX [Grant and Boyd, 2014] and in Python using CVXPY [Diamond and Boyd,

2016].

Finally, a surprise arises in item G2. Working with an observation map Λ satisfying ΛΛ∗ = IdRm ,

the latter indeed reveals that the regularization parameter does not need to be chosen with care

after all, since regularization maps are globally optimal no matter how the parameter τ ∈ [0, 1] is

chosen. The precise interpretation of the choices τ = 0 and τ = 1 will be elucidated later.

The rest of this article is organized as follows. Section 2 gathers some auxiliary results that are used

in the proofs of the main results. Section 3 elucidates item L1 and establishes item L2—in other

words, it is concerned with local optimality. Section 4, which is concerned with global optimality,

is the place where items G1 and G2 are proved. Lastly, a short appendix containing some side

information is included after the bibliography.

2 Technical Preparation

This section establishes (or recalls) a few results that we isolate here in order not to disrupt the

flow of subsequent arguments.

2.1 S-lemma and S-procedure

Loosely speaking, the S-procedure is a relaxation technique expressing the fact that a quadratic

inequality is a consequence of some quadratic constraints. In case of a single quadratic constraint,

the relaxation turns out to be exact. This result, known as the S-lemma, can be stated as follows:

given quadratic functions q0 and q1 defined on KN , with K = R or K = C,

[q0(x) ≤ 0 whenever q1(x) ≤ 0] ⇐⇒ [there exists a ≥ 0 : q0 ≤ aq1],

provided q1(x̃) < 0 for some x̃ ∈ KN . With more than one quadratic constraint, q1, . . . , qk, say,

q0(x) ≤ 0 whenever q1(x) ≤ 0, . . . , qk(x) ≤ 0 is still a consequence of q0 ≤ a1q1 + · · · + akqk for

2matlab and Python files illustrating the findings of this article are located at https://github.com/foucart/COR.
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some a1, . . . , ak ≥ 0, but the reverse implication does not hold anymore. There is a subtlety when

k = 2, as the reverse implication holds for K = C but not for K = R, see [Pólik and Terlaky,

2007, Section 3]. However, if the quadratic constraints do not feature linear terms, then the reverse

implication holds for k = 2 also when K = R. Since this result of [Polyak, 1998, Theorem 4.1] is to

be invoked later, we state it formally below.

Theorem 1. Suppose that N ≥ 3 and that quadratic functions q0, q1, q2 on RN take the form

qi(x) = 〈Aix, x〉+ αi for symmetric matrices A0, A1, A2 ∈ RN×N and scalars α0, α1, α2 ∈ R. Then

[q0(x) ≤ 0 whenever q1(x) ≤ 0 and q2(x) ≤ 0] ⇐⇒ [there exist a1, a2 ≥ 0 : q0 ≤ a1q1 + a2q2],

provided q1(x̃) < 0 and q2(x̃) < 0 for some x̃ ∈ RN and b1A1 + b2A2 � 0 for some b1, b2 ∈ R.

2.2 Regularization

In this subsection, we take a closer look at the regularization program (7). The result below shows

that its solution depends linearly on y ∈ Rm. In fact, the result covers a slightly more general

program and the linearity claim follows by taking R = PV⊥ , r = 0, S = Λ, and s = y.

Proposition 2. Let R,S be linear maps from H into Hilbert spaces HR, HS and let r ∈ HR,

s ∈ HS . For τ ∈ (0, 1), the optimization program

(10) minimize
f∈H

(1− τ)‖Rf − r‖2 + τ‖Sf − s‖2

has solutions fτ ∈ H characterized by

(11)
(
(1− τ)R∗R+ τS∗S

)
fτ = (1− τ)R∗r + τS∗s.

Moreover, if ker(R) ∩ ker(S) = {0}, then fτ is uniquely given by

(12) fτ =
(
(1− τ)R∗R+ τS∗S

)−1(
(1− τ)R∗r + τS∗s

)
.

Proof. The program (10) can be interpreted as a standard least squares problem, namely as

minimize
f∈H

∥∥∥∥∥
[√

1− τR√
τS

]
f −

[√
1− τr√
τs

]∥∥∥∥∥
2

.

According to the normal equations, its solutions fτ are characterized by[√
1− τR√
τS

]∗ [√
1− τR√
τS

]
fτ =

[√
1− τR√
τS

]∗ [√
1− τr√
τs

]
,

which is a rewriting of (11). Next, if ker(R) ∩ ker(S) = {0}, then

〈((1− τ)R∗R+ τS∗S)f, f〉 = (1− τ)‖Rf‖2 + τ‖Sf‖2 ≥ 0,

with equality only possible when f ∈ ker(R)∩ker(S), i.e., f = 0. This shows that (1−τ)R∗R+τS∗S

is positive definite, and hence invertible, which allows us to write (12) as a consequence of (11).
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The expression (12) is not always the most convenient one. Under extra conditions on R and S, we

shall see that fτ , τ ∈ [0, 1], can in fact be expressed as the convex combination fτ = (1−τ)f0 +τf1.

The elements f0 and f1 should be interpreted3 as

f0 = argmin
f∈H

‖Sf − s‖ s.to Rf = r,

f1 = argmin
f∈H

‖Rf − r‖ s.to Sf = s.

The requirements that r ∈ im(R) and s ∈ im(S) need to be imposed for f0 and f1 to even exist

and the condition ker(R) ∩ ker(S) = {0} easily guarantees that f0 and f1 are unique. They obey

(13) Rf0 = r, S∗(Sf0 − s) ∈ ker(R)⊥, Sf1 = s, R∗(Rf1 − r) ∈ ker(S)⊥.

For instance, the identity Rf0 = r reflects the constraint in the optimization program defining f0,

while S∗(Sf0 − s) ∈ ker(R)⊥ is obtained by expanding ‖S(f0 + tu) − s‖2 ≥ ‖S(f0) − s‖2 around

t = 0 for any u ∈ ker(R). At this point, we are ready to establish our claim under extra conditions

on R and S, namely that they are orthogonal projectors. These conditions will be in place when

the observation map satisfies ΛΛ∗ = IdRm . Indeed, in view of ‖w‖2 = 〈w,ΛΛ∗w〉 = ‖Λ∗w‖2 for any

w ∈ Rm, the regularization program (7) also reads

minimize
f∈H

(1− τ)‖PV⊥f‖2 + τ‖Λ∗Λf − Λ∗y‖2,

where both PV⊥ and Λ∗Λ are orthogonal projectors. The result below will then be applied with

R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y.

Proposition 3. Let R,S be two orthogonal projectors on H such that ker(R)∩ ker(S) = {0} and

let r ∈ im(R), s ∈ im(S). For τ ∈ [0, 1], the solution fτ to the optimization program

(14) minimize
f∈H

(1− τ)‖Rf − r‖2 + τ‖Sf − s‖2

satisfies

(15) fτ = (1− τ)f0 + τf1.

Moreover, one has

(16) ‖Rfτ − r‖ = τ‖f1 − f0‖ and ‖Sfτ − s‖ = (1− τ)‖f1 − f0‖.

Proof. Taking the extra conditions on R and S into account, the identities (13) read

(17) Rf0 = r, Sf0 − s ∈ im(R), Sf1 = s, Rf1 − r ∈ im(S).

3Intuitively, the solution to the program (10) written as the minimization of ‖Rf − r‖2 + (τ/(1 − τ))‖Sf − s‖2

becomes, as τ → 1, the mininizer of ‖Rf − r‖2 subject to ‖Sf − s‖2 = 0. This explains the interpretation of f1.

A similar argument explains the interpretation of f0.
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The third and second identities now imply that

〈S(f0 − f1), (R− S)(f0 − f1)〉 = 〈Sf0 − s,R(f0 − f1)〉 − 〈Sf0 − s, S(f0 − f1)〉
= 〈Sf0 − s, f0 − f1〉 − 〈Sf0 − s, f0 − f1〉
= 0.(18)

In a similar fashion, by exchanging the roles of R and S, and in turn of f0 and f1, the first and fourth

identities in (17) imply that 〈R(f1−f0), (S−R)(f1−f0)〉 = 0, i.e., 〈R(f0−f1), (R−S)(f0−f1)〉 = 0.

Subtracting (18) from the latter yields ‖(R−S)(f0−f1)‖2 = 0, in other wordsR(f0−f1) = S(f0−f1).

Then, the element h := f0 − f1 −R(f0 − f1) = f0 − f1 − S(f0 − f1) belongs to ker(R) ∩ ker(S), so

that h = 0. In summary, we have established that

(19) R(f0 − f1) = S(f0 − f1) = f0 − f1.

From here, we can deduce the two parts of the proposition. For the first part, we notice that (19)

yields Rf1 + Sf0 = Rf0 + Sf1, and in turn(
(1− τ)R+ τS

)(
(1− τ)f0 + τf1

)
= (1− τ)2Rf0 + (1− τ)τ(Rf1 + Sf0) + τ2Sf1

= (1− τ)2Rf0 + (1− τ)τ(Rf0 + Sf1) + τ2Sf1

= (1− τ)Rf0 + τSf1

= (1− τ)r + τs,

which shows that (1− τ)f0 + τf1 satisfies the relation (11) characterizing the minimizer fτ of (14),

so that fτ = (1− τ)f0 + τf1, as announced in (15). For the second part, we now use (15) and (19)

to notice that

Rfτ − r = (1− τ)Rf0 + τRf1 −Rf0 = τR(f1 − f0) = τ(f1 − f0),

so the first equality of (16) follows by taking the norm. The second equality of (16) is derived in a

similar fashion.

We complement Proposition 3 with a few additional pieces of information.

Remark. Under the assumptions of Proposition 3, the solution fτ to (14) is also solution to

minimize
f∈H

max
{

(1− τ)‖Rf − r‖, τ‖Sf − s‖
}
.

Indeed, at f = fτ , the squared objective function equals (1− τ)2τ2‖f1− f0‖2, while at an arbitrary

f ∈ H, it satisfies

max
{

(1− τ)2‖Rf − r‖2, τ2‖Sf − s‖2
}
≥ τ(1− τ)2‖Rf − r‖2 + (1− τ)τ2‖Sf − s‖2

= (1− τ)τ
(
(1− τ)‖Rf − r‖2 + τ‖Sf − s‖2

)
≥ (1− τ)τ

(
(1− τ)‖Rfτ − r‖2 + τ‖Sfτ − s‖2

)
= (1− τ)τ

(
(1− τ)τ2‖f1 − f0‖2 + τ(1− τ)2‖f1 − f0‖2

)
= (1− τ)2τ2‖f1 − f0‖2.

10
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In the case R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y, the choice τ = ε/(ε+η) is quite relevant, since

the above optimization program becomes equivalent to

minimize
f∈H

max

{
1

ε
‖PV⊥f‖,

1

η
‖Λf − y‖

}
.

Its solution is clearly in the model- and data-consistent set {f ∈ H : ‖PV⊥f‖ ≤ ε, ‖Λf − y‖ ≤ η}.
In fact, this could have been a natural guess for its Chebyshev center, but item L2 reveals the

invalidity of such a guess. Nonetheless, the special parameter τ = ε/(ε+η) will make a reappearance

in the argument leading to item L2.

Remark. The proof of Proposition 3 showcased the important identities Rf0 = r, Sf1 = s, and

R(f0 − f1) = S(f0 − f1) = f0 − f1. In the case R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y, if ∆τ

denotes the recovery map assigning to y ∈ Rm the solution fτ to the regularization program (7),

these identities read, when ΛΛ∗ = IdRm ,

(20) PV⊥∆0 = 0, Λ∗Λ∆1 = Λ∗, PV⊥(∆0 −∆1) = Λ∗Λ(∆0 −∆1) = ∆0 −∆1.

Remark. Considering again the case R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y, Proposition 3

implies that fτ ∈ V + im(Λ∗) for any τ ∈ [0, 1], given that the latter holds for τ = 0 and for τ = 1.

For τ = 0, this is because the constraint PV⊥f = 0 of the optimization program defining f0 imposes

f0 ∈ V. For τ = 1, this is a result established e.g. in [Foucart, Liao, Shahrampour, and Wang, To

appear, Theorem 2]. The said result also provides an efficient way to compute the solution fτ of

(7) even when H is infinite dimensional, as stated in the appendix.

3 Local Optimality

Our goal in this section is to determine locally optimal recovery maps. In other words, the section is

concerned with Chebyshev centers. We start by considering the situation of an arbitrary observation

map Λ, but with a restriction on the space H. Next, lifting this restriction on H, we refine the

result in the particular case of an observation map satisfying ΛΛ∗ = IdRm .

3.1 Arbitrary observations

In this subsection, we reproduce a result from [Beck and Eldar, 2007], albeit with different notation,

and explain how it implies the statement of item L1. The result in question, namely Corollary 3.2,

relies on the S-procedure with two constraints, and as such cannot be claimed in the real setting.

Theorem 4. Let H,HR, HS be complex Hilbert spaces, R : H → HR, S : H → HS be linear maps,

and r ∈ HR, s ∈ HS . Suppose the existence of f̃ ∈ H such that ‖Rf̃−r‖ < ε and ‖Sf̃−s‖ < η and

11
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the existence of τ ∈ [0, 1] such that (1 − τ)R∗R + τS∗S is positive definite. Then the Chebyshev

center of {f ∈ H : ‖Rf − r‖ ≤ ε, ‖Sf − s‖ ≤ η} equals f] =
(
c]R
∗R + d]S

∗S
)−1

(c]R
∗r + d]S

∗s),

where c], d] are solutions to

minimize
c,d,t≥0

(ε2 − ‖r‖2)c+ (η2 − ‖s‖2)d+ t s.to cR∗R+ dS∗S � Id,

and

[
cR∗R+ dS∗S | −cR∗r − dS∗s

−c(R∗r)∗ − d(S∗s)∗ | t

]
� 0.

The statement made in item L1 is of course derived by taking R = PV⊥ , r = 0, S = Λ, and s = y.

Theorem 4 is indeed applicable, as f̃ = (f0 + f1)/2 satisfies the strict feasibility conditions, while

the positive definiteness condition is not only fulfilled for some τ ∈ [0, 1], but for all τ ∈ (0, 1),

since 〈((1 − τ)PV⊥ + τΛ∗Λ)f, f〉 = (1 − τ)‖PV⊥f‖2 + τ‖Λf‖2 ≥ 0, with equality only possible

if f ∈ V ∩ ker(Λ), i.e., if f = 0 thanks to the assumption (5). We also note that, by virtue

of (12), the element f] defined above is nothing else than the regularized solution with parameter

τ = d]/(c] + d]).

3.2 Orthonormal observations

In this subsection, we place ourselves in the situation of an observation map satisfying ΛΛ∗ = IdRm

and we provide a proof of the statements made item L2. In fact, we prove some slightly more

general results and L2 follows by taking R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y. Note that

we must separate the cases where R = Id (corresponding to V = {0}) and where R is a proper

orthogonal projector (corresponding to V 6= {0}). We emphasize that, in each of these two cases,

the optimal parameter τ] is not independent of y. Therefore, in view of (15) and of the linear

dependence of f0 and f1 on y, the regularized solution fτ] does not depend linearly on y. In other

words, the locally optimal recovery map is not a linear map. The following two simple lemmas will

be used to deal with both cases.

Lemma 5. Let R,S be linear maps from H into Hilbert spaces HR, HS and let r ∈ HR, s ∈ HS .

Given f] ∈ H, let

h] ∈ argmax
h∈H

‖h‖ s.to

{
‖Rf] − r +Rh‖≤ ε,
‖Sf] − s+ Sh‖ ≤ η.

If the orthogonality conditions

(21) 〈R∗(Rf] − r), h]〉 = 0 and 〈S∗(Sf] − s), h]〉 = 0

12
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are fulfilled, then f] is the Chebyshev center of the set {f ∈ H : ‖Rf − r‖ ≤ ε, ‖Sf − s‖ ≤ η}, i.e.,

for any g ∈ H,

(22) sup
‖Rf−r‖≤ε
‖Sf−s‖≤η

‖f − g‖ ≥ sup
‖Rf−r‖≤ε
‖Sf−s‖≤η

‖f − f]‖.

Proof. First, writing f = f] + h, we easily see that the right-hand side of (22) reduces to ‖h]‖.
Second, let us remark that the orthogonality conditions guarantee that f± := f] ± h] both satisfy

‖Rf± − r‖ ≤ ε and ‖Sf± − s‖ ≤ η. For instance, we have

(23) ‖Rf± − r‖2 = ‖Rf] − r ±Rh]‖2 = ‖Rf] − r‖2 + ‖Rh]‖2 = ‖Rf] − r +Rh]‖2 ≤ ε2,

where the latter inequality reflects the feasibility of h]. Therefore, the left-hand side of (22) is

bounded below by

(24) max
±
‖f± − g‖ ≥

1

2

(
‖f+ − g‖+ ‖f− − g‖

)
≥ 1

2
‖(f+ − g)− (f− − g)‖ =

1

2
‖2h]‖ = ‖h]‖,

i.e., by the right-hand side of (22).

The next lemma somehow relates to the S-procedure. However, it does not involve the coveted

(and usually invalid) equivalence, but only the straightforward implication.

Lemma 6. Let R,S be linear maps from H into Hilbert spaces HR, HS and let r ∈ HR, s ∈ HS .

Given f] ∈ H and h] ∈ H, suppose that

(25) ‖Rf] − r +Rh]‖2 = ε2 and ‖Sf] − s+ Sh]‖2 = η2,

and that there exist a, b ≥ 0 such that

(26) aR∗R+ bS∗S � Id

as well as

(27) aR∗(Rf] − r) + bS∗(Sf] − s) + (aR∗R+ bS∗S)h] = h].

Then, one has

(28) h] ∈ argmax
h∈H

‖h‖ s.to

{
‖Rf] − r +Rh‖≤ ε,
‖Sf] − s+ Sh‖ ≤ η.

Proof. By writing the variable in the optimization program (28) as h = h]+g, the constraints on h

transform into constraints on g. Thanks to (25), the latter constraints read

〈R∗Rg, g〉+ 2〈R∗(Rf] − r +Rh]), g〉 ≤ 0 and 〈S∗Sg, g〉+ 2〈S∗(Sf] − s+ Sh]), g〉 ≤ 0.

13
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Combining these constraints—specifically, multiplying the first by a, the second by b, and summing—

implies that

0 ≥ 〈(aR∗R+ bS∗S)g, g〉+ 2〈aR∗(Rf] − r) + bS∗(Sf] − s) + (aR∗R+ bS∗S)h], g〉
≥ 〈g, g〉+ 2〈h], g〉,

where (26) and (27) were exploited in the last step. In other words, one has 0 ≥ ‖h] + g‖2−‖h]‖2,

i.e., ‖h‖2 ≤ ‖h]‖2, under the constraints on h, proving that h] is indeed a maximizer in (28).

3.2.1 The case R = Id

As mentioned earlier, the case R = Id corresponds to the choice V = {0}, i.e., to a model set K
being an origin-centered ball in H, and to regularizations being classical Tikhonov regularizations.

The arguments are slightly less involved here than for the case R 6= Id. Here is the main result.

Theorem 7. Let S be an orthogonal projector on H with ker(S) 6= {0} and let r ∈ H, s ∈ im(S).

The solution fτ] to the regularization program (14) with parameter

τ] = max

{
1− η

‖Sr − s‖
, 0

}
is the Chebyshev center of the set {f ∈ H : ‖f − r‖ ≤ ε, ‖Sf − s‖ ≤ η}.

Proof. Before separating two cases, we remark that ‖Sr − s‖ ≤ ε+ η is implicitly assumed for the

above set to be nonempty. Now, we first consider the case ‖Sr − s‖ > η. Defining f] := fτ] with

τ] = 1 − η/‖Sr − s‖ ∈ (0, 1), our objective is to find h] ∈ H and a, b ≥ 0 for which conditions

(25), (26), and (27) of Lemma 6 are fulfilled, so that h] is a maximizer appearing in Lemma 5,

and then to verify that the orthogonality conditions (21) hold, so that f] is indeed the required

Chebyshev center. We take any h] ∈ ker(S), with a normalization to be decided later, and a = 1,

b = τ]/(1 − τ]). In this way, since R = Id, condition (26) is automatic, and condition (27) follows

from the characterization (11) written here as (1−τ])(f]−r) = −τ](Sf]−s). This characterization

also allows us to deduce (21) only from 〈Sf] − s, h]〉 = 0, which holds because the spaces im(S)

and ker(S) are orthogonal. The remaining condition (25) now reads ‖f] − r‖2 + ‖h]‖2 = ε2 and

‖Sf]− s‖2 = η2. Recalling from Proposition 3 that f] = (1− τ])f0 + τ]f1, while taking into account

that f0 = r here and that f1 = f0+S(f1−f0) = r+s−Sr thanks to (19), we have f]−r = τ](s−Sr)
and Sf] − s = −(1− τ])(s− Sr). Thus, condition (25) reads

τ2
] ‖s− Sr‖2 + ‖h]‖2 = ε2 and (1− τ])2‖s− Sr‖2 = η2.

The latter is justified by our choice of τ], while the former can simply be achieved by normalizing h],

so long as ε ≥ τ]‖s−Sr‖, i.e., ε ≥ ‖s−Sr‖− η, which is our implicit assumption for nonemptiness

of the set under consideration.

14
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Next, we consider the case ‖Sr − s‖ ≤ η. We note that this implies that r belongs to the set

{f ∈ H : ‖f − r‖ ≤ ε, ‖Sf − s‖ ≤ η}—we are going to show that r is actually the Chebyshev center

of this set. In other words, since r = f0, this means that fτ] with τ] = 0 is the Chebyshev center.

To this end, we shall establish that, for any g ∈ H,

sup
‖f−r‖≤ε
‖Sf−s‖≤η

‖f − g‖ ≥ sup
‖f−r‖≤ε
‖Sf−s‖≤η

‖f − r‖.

On the one hand, the right-hand side is obviously bounded above by ε. On the other hand,

selecting h ∈ ker(S) with ‖h‖ = ε, we define f± := r ± h to obtain ‖f± − r‖ = ‖h‖ = ε and

‖Sf± − s‖ = ‖Sr − s‖ ≤ η. Thus, the left-hand side is bounded below by

max
±
‖f± − g‖ ≥

1

2
‖f+ − g‖+

1

2
‖f− − g‖ ≥

1

2
‖(f+ − g)− (f− − g)‖ =

1

2
‖2h‖ = ε.

This proves that the left-hand side is larger than or equal to the right-hand side, as required.

3.2.2 The case R 6= Id

We now assume that R is a proper orthogonal projector, i.e., that R 6= Id, which corresponds to

the case V 6= {0}. The main result is stated below. To apply it in practice, the optimal parameter

τ needs to be computed by solving an equation involving the smallest eigenvalue of a self-adjoint

operator depending on τ . This can be done using an all purpose routine. We could also devise

our own bisection method, Newton method (since the derivative dλmin/dτ is accessible, see the

appendix), or secant method.

Theorem 8. Let R 6= Id, S 6= Id be two orthogonal projectors on H such that ker(R)∩ker(S) = {0}
and let r ∈ im(R), s ∈ im(S). Consider τ] to be a (often unique) τ between 1/2 and ε/(ε+ η) such

that

(29) λmin((1− τ)R+ τS)− (1− τ)2ε2 − τ2η2

(1− τ)ε2 − τη2 + (1− τ)τ(1− 2τ)δ2
= 0,

where δ is precomputed as δ = min{‖Rf − r‖ : Sf = s} = min{‖Sf − s‖ : Rf = r}. Then the

solution fτ] of the regularization program (14) with parameter τ] is the Chebyshev center of the

set {f ∈ H : ‖Rf − r‖ ≤ ε, ‖Sf − s‖ ≤ η}.

Remark. If there is no observation error, i.e., if η = 0, then the parameter solving equation (29)

is τ] = 1. In case R = PV⊥ , r = 0, S = Λ∗Λ, and s = Λ∗y, this means that the Chebyshev center

is f1 = argmin ‖PV⊥f‖ s.to Λf = y and we thus retrieve the result of [Binev, Cohen, Dahmen,

DeVore, Petrova, and Wojtaszczyk, 2017].

The proof of Theorem 8 requires an additional result that gives information about the norms of the

projections Rh and Sh when h is an eigenvector of the positive semidefinite operator (1−τ)R+τS.

This result will be applied for the eigenvector associated with the smallest eigenvalue.
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Lemma 9. Let R,S be two orthogonal projectors on H. For τ ∈ (0, 1), let h ∈ H be an eigenvector

of (1− τ)R+ τS corresponding to an eigenvalue λ 6= 1/2. Then

(30) ‖Rh‖2 =
(τ − λ)λ

(1− τ)(1− 2λ)
‖h‖2 and ‖Sh‖2 =

(1− τ − λ)λ

τ(1− 2λ)
‖h‖2.

Proof. We notice, on the one hand, that

(1− τ)‖Rh‖2 + τ‖Sh‖2 = (1− τ)〈Rh, h〉+ τ〈Sh, h〉 = 〈((1− τ)R+ τS)h, h〉(31)

= λ‖h‖2,

and, on the other hand, that

(1− τ)2‖Rh‖2 − τ2‖Sh‖2 = 〈(1− τ)Rh+ τSh, (1− τ)Rh− τSh〉 = 〈λh, (1− τ)Rh− τSh〉
= λ(1− τ)‖Rh‖2 − λτ‖Sh‖2.

Rearranging the latter yields

(32) (1− τ)(1− τ − λ)‖Rh‖2 − τ(τ − λ)‖Sh‖2 = 0.

Together, the equaltions (31) and (32) form a two-by-two linear system in the unknowns ‖Rh‖2

and ‖Sh‖2 with determinant −(1− τ)τ(1− 2λ) 6= 0. Its solutions are easily verified to be the ones

given in (30).

Remark. Because ‖Rh‖2, ‖Sh‖2, and ‖h‖2 are all nonnegative, Lemma 9 implicitly guarantees

that τ − λ and 1− τ − λ have the same sign as 1− 2λ 6= 0. These quantities are nonnegative when

R 6= Id, S 6= Id, and λ is the smallest eigenvalue—the case of application of the lemma. Indeed,

taking f ∈ ker(R) with ‖f‖ = 1 (which is possible because R 6= Id), one has

λmin := λmin((1− τ)R+ τS) ≤ ‖(1− τ)Rf + τSf‖ = τ‖Sf‖ ≤ τ,

i.e., τ − λmin ≥ 0. The inequality λmin ≤ 1 − τ , i.e., 1 − τ − λmin ≥ 0, is obtained in a similar

fashion. These inequalities sum up to give 1 − 2λmin ≥ 0. The latter is in fact (strictly) positive

when τ 6= 1/2, since either τ or 1− τ is smaller than 1/2, so that λmin < 1/2.

With the above result at hand, we are ready to fully justify the main result of this subsection.

Proof of Theorem 8. Let us temporarily take for granted the existence of a solution τ] to (29).

Defining f] := fτ] , our objective is again to find h] ∈ H and a, b ≥ 0 for which conditions (25),

(26), and (27) of Lemma 6 are fulfilled, so that h] is a maximizer appearing in Lemma 5, and then

to verify that the orthogonality conditions (21) hold, so that f] is indeed the required Chebyshev

center. Writing λ] := λmin((1− τ])R+ τ]S), we choose h] to be a (so far unnormalized) eigenvector
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of (1 − τ])R + τ]S corresponding to the eigenvalue λ]. Setting a := (1 − τ])/λ] and b := τ]/λ],

conditions (26) is swiftly verified, since RR∗ = R, SS∗ = S, and

aR+ bS =
(1− τ])R+ τ]S

λmin((1− τ])R+ τ]S)
� Id.

Then, the characterization (11) of the regularization solution f], written as

(33) (1− τ])R(f] − r) = −τ]S(f] − s),

allows us to validate condition (27) via

aR(f] − r) + bS(f] − s) + (aR+ bS)h] =
1

λ]

(
(1− τ])R(f] − r)+τ]S(f] − s)+((1− τ])R+ τ]S)h]

)
=

1

λ]
(0 + λ]h]) = h].

The orthogonality conditions (21) are also swiftly verified: the second one follows from the first one

because R∗(Rf]−r) = R(f]−r) and S∗(Sf]−s) = S(f]−s) are proportional, see (33); the first one

holds because, while h] is an eigenvector of (1−τ])R+τ]S corresponding to its smallest eigenvalue,

R(f] − r) = −τ]/(1 − τ])S(f] − s) is an eigenvector corresponding to the largest eigenvalue (i.e.,

to one), since it is invariant when applying both R and S. Thus, it remains to verify that the two

conditions of (25) are fulfilled. In view of the orthogonality conditions (21), they read

(34) ‖Rf] − r‖2 + ‖Rh]‖2 = ε2 and ‖Sf] − s‖2 + ‖Sh]‖2 = η2.

Now, invoking Proposition 3, as well as Lemma 9, the two conditions of (25) become

τ2
] δ

2 +
(τ] − λ])λ]

(1− τ])(1− 2λ])
‖h]‖2 = ε2(35)

(1− τ])2δ2 +
(1− τ] − λ])λ]
τ](1− 2λ])

‖h]‖2 = η2.(36)

After some simplification work, starting by forming the combinations (1− τ])2×(35)−τ2
] ×(36) and

(1− τ] − λ])(1− τ])×(35)−(τ] − λ])(τ])×(36), these two conditions are seen to be equivalent to

‖h]‖2 =
1− 2λ]

(2τ] − 1)λ2
]

(
(1− τ])2ε2 − τ2

] η
2
)
,(37)

λ] =
(1− τ])2ε2 − τ2

] η
2

(1− τ])ε2 − τ]η2 + (1− τ])τ](1− 2τ])δ2
.(38)

These two conditions can be fulfilled: the latter is the condition that defined τ], i.e., (29), while

the former is simply guaranteed by properly normalizing the eigenvector h].

Before establishing the existence τ], we point out that its uniqueness holds when f0 6= f1, i.e., when

there is no f ∈ H such that Rf = r and Sf = s—such an f would solve the regularization program
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for any τ ∈ [0, 1]. Indeed, if τ 6= τ ′ were two solutions to (29), then the previous argument would

imply that fτ and fτ ′ are both Chebyshev centers, and by uniqueness of the Chebyshev center,

this could only happen if fτ = fτ ′ , so that f0 = f1 by (15). Now, for the existence of τ], it will be

justified by the fact that the function

θ : τ 7→ λmin((1− τ)R+ τS)− (1− τ)2ε2 − τ2η2

(1− τ)ε2 − τη2 + (1− τ)τ(1− 2τ)δ2

is continuous between 1/2 and ε/(ε + η) and takes values of different signs there. To see the

difference in sign, notice that λmin((1− τ)R+ τS) ∈ [0, 1/2] by the remark after Lemma 9—this is

where the assumption R 6= Id is critical—so that

θ

(
1

2

)
≤ 1

2
− 1

2
≤ 0 and θ

(
ε

ε+ η

)
≥ 0− 0 ≥ 0.

To see the continuity, we need the continuity of the smallest eigenvalue as a function of τ and the

nonvanishing of the denominator (1− τ)ε2 − τη2 + (1− τ)τ(1− 2τ)δ2 between 1/2 and ε/(ε+ η).

The former is a consequence of Weyl’s inequality, yielding

|λmin((1−τ)R+τS)−λmin((1−τ ′)R+τ ′S)| ≤ ‖((1−τ)R+τS)−((1−τ ′)R+τ ′S)‖ = |τ−τ ′| ‖R−S‖.

The latter is less immediate. We start by exploiting the minimizing property of fτ to write

(1− τ)ε2 + τη2 ≥ (1− τ)‖Rfτ − r‖2 + τ‖Sfτ − s‖2 = (1− τ)τδ2,

where the last equality relied on ‖Rfτ − r‖ = τ‖f1 − f0‖ and ‖Sfτ − s‖ = (1 − τ)‖f1 − f0‖,
see (16), together with the fact that ‖f1−f0‖ = δ. Therefore, if the denominator vanished for some

τ ∈ (0, 1) \ {1/2}, we would have

0 =
(1− τ)ε2 − τη2

1− 2τ
+ (1− τ)τδ2 ≤ (1− τ)ε2 − τη2

1− 2τ
+ (1− τ)ε2 + τη2 =

2(1− τ)2ε2 − 2τ2η2

1− 2τ

=

(
(1− τ)ε+ τη

)(
(1− τ)ε− τη

)
1/2− τ

=
(
(1− τ)ε+ τη

)(
ε+ η

)ε/(ε+ η)− τ
1/2− τ

.

This would force ε/(ε + η) − τ and 1/2 − τ to have the same sign, contrary to the assumption

that τ runs between 1/2 and ε/(ε + η). Thus, the nonvanishing of the denominator is explained,

concluding the proof.

Remark. The above arguments contain the value of the minimal local worst-case error, i.e., of the

Chebyshev radius of the set C = {f ∈ H : ‖Rf − r‖ ≤ ε, ‖Sf − s‖ ≤ η}. Indeed, we recall from the

proof of Lemma 5 that this radius equals ‖h]‖, whose value was derived in (37). This expression

can be simplified with the help of (38) by noticing that

1− 2λ]
λ]

= (2τ] − 1)
(1− τ])ε2 + τ]η

2 − (1− τ])τ]δ2

(1− τ])2ε2 − τ2
] η

2
.

As a consequence, we deduce that the Chebyshev radius satisfies

radius(C)2 =
1− τ]
λ]

ε2 +
τ]
λ]
η2 −

(1− τ])τ]
λ]

δ2, λ] := λmin((1− τ])R+ τ]S).

18



S. Foucart, C. Liao

4 Global Optimality

Our goal in this section is to uncover some favorable globally optimal recovery maps—favorable

in the sense that they are linear maps. We start by considering the situation of an arbitrary

observation map Λ before moving to the particular case where it satisfies ΛΛ∗ = IdRm .

4.1 Arbitrary observations

In this subsection, we first recall a standard lower bound for the global worst-case error. This lower

bound, already exploited e.g. in [Micchelli, 1993], shall be expressed as the minimal value of a

certain semidefinite program. This expression will allow us to demonstrate that the lower bound

is achieved by the regularization map

∆τ : y ∈ Rm 7→ argmin
f∈H

(1− τ)‖PV⊥f‖2 + τ‖Λf − y‖2

for some parameter τ ∈ (0, 1) to be explicitly determined. Here is a precise formulation of the

result.

Theorem 10. Given the approximability set K = {f ∈ H : dist(f,V) ≤ ε} and the uncertainty

set E = {e ∈ Rm : ‖e‖ ≤ η}, define τ[ := d[/(c[ + d[) where c[, d[ ≥ 0 are solutions to

minimize
c,d≥0

cε2 + dη2 s.to cPV⊥ + dΛ∗Λ � Id.

Then the regularization map ∆τ[ is a globally optimal recovery map over K and E , i.e.,

(39) gwce(∆τ[) = inf
∆:Rm→H

gwce(∆).

The proof relies on three lemmas given below, the first of which introducing the said lower bound.

Lemma 11. For any recovery map ∆ : Rm → H, one has gwce(∆) ≥ lb, where

lb := sup
‖PV⊥h‖≤ε
‖Λh‖≤η

‖h‖.

Proof. As a reminder, the global worst-case error of ∆ is defined by

gwce(∆) = sup
‖PV⊥f‖≤ε
‖e‖≤η

‖f −∆(Λf + e)‖.
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For any h ∈ H such that ‖PV⊥h‖ ≤ ε and ‖Λh‖ ≤ η, since f± = ±h satisfies ‖PV⊥f±‖ ≤ ε and

e± = ∓Λh satisfies ‖e±‖ ≤ η, we have

gwce(∆) ≥ max
±
‖f± −∆(Λf± + e±)‖ = max

±
‖f± −∆(0)‖ ≥ 1

2
‖f+ −∆(0)‖+

1

2
‖f− −∆(0)‖

≥ 1

2
‖(f+ −∆(0))− (f− −∆(0))‖ =

1

2
‖2h‖ = ‖h‖.

Taking the supremum over h leads to the required inequality gwce(∆) ≥ lb.

The second lemma expresses the square of the lower bound as the minimal value of a semidefinite

program. In passing, the square of the global worst-case error of a linear recovery map is also

related to the minimal value of a semidefinite program.

Lemma 12. One has

(40) lb2 = min
c,d≥0

cε2 + dη2 s.to cPV⊥ + dΛ∗Λ � Id.

Moreover, if a recovery map ∆ : Rm → H is linear, one also has

(41) gwce(∆)2 ≤ min
c,d≥0

cε2 + dη2 s.to

[
cPV⊥ | 0

0 | d IdRm

]
�

[
Id− Λ∗∆∗

∆∗

] [
Id−∆Λ | ∆

]
.

Proof. The first semidefinite characterization is based on the version of the S-procedure stated in

Theorem 1. Precisely, we write the square of the lower bound as

lb2 = sup
h
‖h‖2 s.to ‖PV⊥h‖2 ≤ ε2 and ‖Λh‖2 ≤ η2

= inf
γ
γ s.to ‖h‖2 ≤ γ whenever ‖PV⊥h‖2 ≤ ε2 and ‖Λh‖2 ≤ η2

= inf
γ
γ s.to ∃ c, d ≥ 0 : ‖h‖2 − γ ≤ c(‖PV⊥h‖2 − ε2) + d(‖Λh‖2 − η2) for all h ∈ H

= inf
γ

c,d≥0

γ s.to c〈PV⊥h, h〉+ d〈Λ∗Λh, h〉 − 〈h, h〉+ γ − cε2 − dη2 ≥ 0 for all h ∈ H.

The validity of Theorem 1 is ensured by the facts that ‖PV⊥ h̃‖2−ε2 < 0 and ‖Λh̃‖2−η2 < 0 for h̃ = 0

and that PV⊥ +Λ∗Λ � 0. Note that the resulting constraint decouples as 〈cPV⊥h+dΛ∗Λh−h, h〉 ≥ 0

for all h ∈ H, i.e., cPV⊥ + dΛ∗Λ − Id � 0, and γ − cε2 − dη2 ≥ 0. Taking the minimal value of γ

under the latter constraint, namely cε2 + dη2, leads to the expression of lb2 given in (40).

As for (41), we start by remarking that the linearity of the recovery map ∆ allows us to write

gwce(∆)2 = sup
f,e
‖f −∆Λf −∆e‖2 s.to ‖PV⊥f‖2 ≤ ε2 and ‖e‖2 ≤ η2

= inf
γ
γ s.to ‖f −∆Λf −∆e‖2 ≤ γ whenever ‖PV⊥f‖2 ≤ ε2 and ‖e‖2 ≤ η2.
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The latter constraint can be expressed in terms of the combined variable v =

[
f

−e

]
∈ H × Rm as

(42)
∥∥∥ [Id−∆Λ | ∆

]
v
∥∥∥2
≤ γ whenever

∥∥∥ [PV⊥ | 0
]
v
∥∥∥2
≤ ε2 and

∥∥∥ [0 | IdRm

]
v
∥∥∥2
≤ η2.

Although the proviso of Theorem 1 is not fulfiled here, the constraint (42) is still a consequence of

(but is not equivalent to) the existence of c, d ≥ 0 such that∥∥∥ [Id−∆Λ | ∆
]
v
∥∥∥2
−γ ≤ c

(∥∥∥ [PV⊥ | 0
]
v
∥∥∥2
−ε2

)
+d
(∥∥∥ [0 | IdRm

]
v
∥∥∥2
−η2

)
for all v ∈ H×Rm.

The latter can also be written as the existence of c, d ≥ 0 such that, for all v ∈ H × Rm,〈(
c
[
PV⊥ | 0

]∗ [
PV⊥ | 0

]
+ d

[
0 | IdRm

]∗ [
0 | IdRm

]
−
[
Id−∆Λ | ∆

]∗ [
Id−∆Λ | ∆

] )
v, v
〉

+ γ − cε2 − dη2 ≥ 0.

Therefore, we obtain the inequality (instead of the equality)

gwce(∆)2 ≤ inf
γ

c,d≥0

γ s.to c

[
PV⊥ | 0

0 | 0

]
+ d

[
0 | 0

0 | IdRm

]
−

[
Id− Λ∗∆∗

∆∗

] [
Id−∆Λ | ∆

]
� 0

and γ − cε2 − dη2 ≥ 0.

The variable γ can be eliminated from this optimization program by assigning it the value cε2 +dη2,

thus arriving at the semidefinite program announced in (41).

The third and final lemma relates the constraints of (40) and (41): while the constraint of (41) with

any regularization map ∆τ implies the constraint of (40), see the appendix, we need the partial

converse that the constraint of (40) implies the constraint of (41) for a specific regularization

map ∆τ .

Lemma 13. If cPV⊥ + dΛ∗Λ � Id, then setting τ = d/(c+ d) yields[
cPV⊥ | 0

0 | d IdRm

]
�

[
Id− Λ∗∆∗τ

∆∗τ

] [
Id−∆τΛ | ∆τ

]
.

Proof. We recall from Proposition 2 adapted to the current situation that, for any τ ∈ (0, 1),

∆τ =
(
(1− τ)PV⊥ + τΛ∗Λ

)−1
(τΛ∗), hence Id−∆τΛ =

(
(1− τ)PV⊥ + τΛ∗Λ

)−1
((1− τ)PV⊥).

We now notice that the hypothesis cPV⊥ + dΛ∗Λ � Id is equivalent to λmin(cPV⊥ + dΛ∗Λ) ≥ 1.

With our particular choice of τ , this reads λmin((1− τ)PV⊥ + τΛ∗Λ) ≥ 1/(c+ d). It follows that

λmax

(
((1− τ)PV⊥ + τΛ∗Λ)−1

)
=

1

λmin((1− τ)PV⊥ + τΛ∗Λ)
≤ c+ d.
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The inverse appearing above can be written as

(
(1− τ)PV⊥ + τΛ∗Λ

)−1
[√

1− τPV⊥ |
√
τΛ∗

] [√1− τPV⊥√
τΛ

] (
(1− τ)PV⊥ + τΛ∗Λ

)−1

and since AB and BA always have the same nonzero eigenvalues, we derive that

λmax

([√
1− τPV⊥√

τΛ

] (
(1− τ)PV⊥ + τΛ∗Λ

)−2
[√

1− τPV⊥ |
√
τΛ∗

])
≤ c+ d.

Writing the latter as[√
1− τPV⊥√

τΛ

] (
(1− τ)PV⊥ + τΛ∗Λ

)−2
[√

1− τPV⊥ |
√
τΛ∗

]
� (c+ d)Id

and multiplying on both sides by

[√
1− τPV⊥ | 0

0 |
√
τ IdRm

]
yields

[
(1− τ)PV⊥

τΛ

] (
(1− τ)PV⊥ + τΛ∗Λ

)−2
[
(1− τ)PV⊥ | τΛ∗

]
� (c+ d)

[
(1− τ)PV⊥ | 0

0 | τ IdRm

]
.

Taking the expressions of ∆τ and Id−∆τΛ into account, we conclude that[
Id− Λ∗∆∗τ

∆∗τ

] [
Id−∆τΛ | ∆τ

]
�

[
cPV⊥ | 0

0 | d IdRm

]
,

as announced.

With the above three lemmas at hand, the main result of this subsection follows easily.

Proof of Theorem 10. Since Lemma 11 guarantees that inf{gwce(∆),∆ : Rm → H} ≥ lb, we only

need to show that gwce(∆τ[) ≤ lb. By the first part of Lemma 12, we have lb2 = c[ε
2 + d[η

2 with

c[ and d[ satisfying c[PV⊥ + d[ΛΛ∗ � Id. By Lemma 13, the latter implies that[
c[PV⊥ | 0

0 | d[IdRm

]
�

[
Id− Λ∗∆∗τ[

∆∗τ[

] [
Id−∆τ[Λ | ∆τ[

]
.

By the second part of Lemma 12, it follows that gwce(∆τ[)
2 ≤ c[ε

2 + d[η
2 = lb2, which is the

required inequality.

Remark. When V = {0}, so that PV⊥ = Id, we obtain c[ = 1 and d[ = 0, resulting in a minimal

global worst-case error equal to ε and achieved for the regularization map ∆0 = 0. This result can

be seen directly from gwce(∆) ≥ sup{‖h‖ : ‖h‖ ≤ ε, ‖Λh‖ ≤ η} = ε for any ∆ : Rm → H, while

gwce(∆0) = sup{‖f‖ : ‖f‖ ≤ ε} = ε.
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4.2 Orthonormal observations

In this subsection, we demonstrate that the use of orthonormal observations guarantees, rather

unexpectedly, that regularization provides optimal recovery maps even without a careful parameter

selection. The main result reads as follows.

Theorem 14. Given the approximability set K = {f ∈ H : dist(f,V) ≤ ε} and the uncertainty set

E = {e ∈ Rm : ‖e‖ ≤ η}, if ΛΛ∗ = IdRm , then all the regularization maps ∆τ are optimal recovery

maps, i.e., for all τ ∈ [0, 1],

(43) gwce(∆τ ) = inf
∆:Rm→H

gwce(∆).

The proof strategy consists in establishing that the constraints in (40) and in (41) with ∆ = ∆τ

are in fact equivalent for any τ ∈ [0, 1]. This yields the inequality gwce(∆τ ) ≤ lb, which proves the

required result, given that lb was introduced as a lower bound on gwce(∆) for every ∆. While the

constraint in (41) implies the constraint in (40) for any observation map Λ (see the appendix), the

reverse implication relies on the fact that ΛΛ∗ = IdRm , e.g. via the identity ∆τ = (1− τ)∆0 + τ∆1

derived in Proposition 3. The following realization is also a crucial point of our argument.

Lemma 15. Assume that ΛΛ∗ = IdRm . For c, d ≥ 0, let h be an eigenvector of cPV⊥ + dΛ∗Λ

associated with an eigenvalue λ. For any τ ∈ [0, 1], one has

• if λ 6= c+ d, then

(Id− Λ∗∆∗τ )h =
c

λ
PV⊥h and Λ∗∆∗τh =

d

λ
Λ∗Λh;

• if λ = c+ d, then

(Id− Λ∗∆∗τ )h = (1− τ)h and Λ∗∆∗τh = τh.

Proof. Multiplying the eigenequation defining h on the left by Λ∗∆∗τ , we obtain

(44) cΛ∗∆∗τPV⊥h+ dΛ∗∆∗τΛ∗Λh = λΛ∗∆∗τh.

According to (20), we have ∆∗0PV⊥ = 0, ∆∗1PV⊥ = ∆∗1−∆∗0, ∆∗1Λ∗Λ = Λ, and ∆∗0Λ∗Λ = ∆∗0−∆∗1+Λ.

Thus, the relation (44) specified to τ = 0 and to τ = 1 yields

dΛ∗∆∗0h− dΛ∗∆∗1h+ dΛ∗Λh = λΛ∗∆∗0h,(45)

cΛ∗∆∗1h− cΛ∗∆∗0h+ dΛ∗Λh = λΛ∗∆∗1h.(46)

Subtracting (46) from (45) yields (c + d)(Λ∗∆∗0h − Λ∗∆∗1h) = λ(Λ∗∆∗0h − Λ∗∆∗1h). Therefore, we

derive that Λ∗∆∗0h = Λ∗∆∗1h provided λ 6= c + d. In this case, the equations (45)-(46) reduce to

Λ∗∆∗0h = Λ∗∆∗1h = (d/λ)Λ∗Λh. In view of ∆τ = (1−τ)∆0+τ∆1, we arrive at Λ∗∆∗τh = (d/λ)Λ∗Λh
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for any τ ∈ [0, 1]. The relation (Id−Λ∗∆∗τ )h = (c/λ)PV⊥h follows from the eigenequation rewritten

as (c/λ)PV⊥h+ (d/λ)Λ∗Λh = h.

It remains to deal with the case λ = c+ d. Notice that this case is not vacuous, as it is equivalent

to h ∈ V⊥ ∩ im(Λ∗Λ), which is nontrivial by a dimension argument involving assumption (5). To

see this equivalence, notice that h ∈ V⊥∩ im(Λ∗Λ) clearly implies cPV⊥h+dΛ∗Λh = (c+d)h, while

the latter eigenequation forces c‖PV⊥h‖2 + d‖Λ∗Λh‖2 = (c + d)‖h‖2, hence ‖PV⊥h‖2 = ‖h‖2 and

‖Λ∗Λh‖2 = ‖h‖2, i.e., h ∈ V⊥ and h ∈ im(Λ∗Λ). We now consider such an eigenvector h associated

with the eigenvalue c+ d: in view of h ∈ V⊥ ∩ im(Λ∗Λ), we remark that ∆∗0h = ∆∗0PV⊥h = 0 and

that ∆∗1h = ∆∗1Λ∗Λh = Λh. We deduce that Λ∗∆∗τh = (1− τ)Λ∗∆∗0h+ τΛ∗∆∗1h = τΛ∗Λh = τh and

in turn that (Id− Λ∗∆∗τ )h = (1− τ)h.

We are now ready to establish the main result of this subsection.

Proof of Theorem 14. Let τ ∈ [0, 1] be fixed throughout. As announced earlier, our objective is to

establish that, thanks to ΛΛ∗ = IdRm , the condition cPV⊥ + dΛ∗Λ � Id implies the condition[
cPV⊥ | 0

0 | d IdRm

]
�

[
Id− Λ∗∆∗τ

∆∗τ

] [
Id−∆τΛ | ∆τ

]
,

or equivalently the condition[
cPV⊥ | 0

0 | dΛ∗Λ

]
�

[
Id− Λ∗∆∗τ

Λ∗∆∗τ

] [
Id−∆τΛ | ∆τΛ

]
.

The equivalence of these conditions is seen as follows: the former implies the latter by multiplying

on the left by

[
Id | 0

0 | Λ∗

]
and on the right by

[
Id | 0

0 | Λ

]
, while the latter implies the former

under the assumption ΛΛ∗ = IdRm by multiplying on the left by

[
Id | 0

0 | Λ

]
and on the right by[

Id | 0

0 | Λ∗

]
. As a matter of fact, according to a classical result about Schur complements, see e.g.

[Boyd and Vandenberghe, 2004, Section A.5.5], the latter is further equivalent to Id | Id−∆τΛ | ∆τΛ

Id− Λ∗∆∗τ | cPV⊥ | 0

Λ∗∆∗τ | 0 | dΛ∗Λ

 � 0.

Thus, considering f, g, h ∈ H, our objective is to prove the nonnegativity of the inner product

ip :=

〈 Id | Id−∆τΛ | ∆τΛ

Id− Λ∗∆∗τ | cPV⊥ | 0

Λ∗∆∗τ | 0 | dΛ∗Λ


fg
h

 ,
fg
h

〉

= 〈f, f〉+ c〈PV⊥g, g〉+ d〈Λ∗Λh, h〉+ 2〈(Id− Λ∗∆∗τ )f, g〉+ 2〈Λ∗∆∗τf, h〉.
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Let us decompose f , g, and h as f = f ′+f ′′, g = g′+g′′, and h = h′+h′′, where f ′, g′, and h′ belong

to the space H ′ spanned by eigenvectors of cPV⊥ +dΛ∗Λ corresponding to eigenvalues λ 6= c+d and

where f ′′, g′′, and h′′ belong to the eigenspace H ′′ of cPV⊥ + dΛ∗Λ corresponding to the eigenvalue

λ = c + d, i.e., H ′′ = V⊥ ∩ im(Λ∗Λ). We take notice of the fact that the spaces H ′ and H ′′ are

orthogonal. With this decomposition, the above inner product becomes

ip = ip′ + ip′′ + ip′′′,

where we have set

ip′ = 〈f ′, f ′〉+ c〈PV⊥g′, g′〉+ d〈Λ∗Λh,′ h′〉+ 2〈(Id− Λ∗∆∗τ )f ′, g′〉+ 2〈Λ∗∆∗τf ′, h′〉,

ip′′ = 〈f ′′, f ′′〉+ c〈PV⊥g′′, g′′〉+ d〈Λ∗Λh′′, h′′〉+ 2〈(Id− Λ∗∆∗τ )f ′′, g′′〉+ 2〈Λ∗∆∗τf ′′, h′′〉,

ip′′′ = 2〈f ′, f ′′〉+ 2〈PV⊥g′, g′′〉+ 2〈Λ∗Λh′, h′′〉+ 2〈(Id− Λ∗∆∗τ )f ′, g′′〉+ 2〈Λ∗∆∗τf ′, h′′〉
+ 2〈(Id− Λ∗∆∗τ )f ′′, g′〉+ 2〈Λ∗∆∗τf ′′, h′〉.

We first remark that the terms in ip′′′ are all zero: first, it is clear that 〈f ′, f ′′〉 = 0; then, one has

〈PV⊥g′, g′′〉 = 〈g′, PV⊥g′′〉 = 〈g′, g′′〉 = 0 and 〈Λ∗Λh′, h′′〉 = 0 is obtained similarly; next, Lemma 15

ensures that 〈(Id − Λ∗∆∗τ )f ′′, g′〉 = (1 − τ)〈f ′′, g′〉 = 0 and 〈Λ∗∆∗τf ′′, h′〉 = 0 is obtained similarly;

last, writing f ′ =
∑

i fi where the fi ∈ H ′ are orthogonal eigenvectors of cPV⊥+dΛ∗Λ corresponding

to eigenvalues λi < c+ d, we derive from Lemma 15 that

〈(Id− Λ∗∆∗τ )f ′, g′′〉 =
∑
i

c

λi
〈PV⊥fi, g

′′〉 =
∑
i

c

λi
〈fi, PV⊥g′′〉 =

∑
i

c

λi
〈fi, g′′〉 = 0,

and 〈Λ∗∆∗τf ′, h′′〉 = 0 is obtained similarly. As a result, we have ip′′′ = 0.

We now turn to the quantity ip′. Exploiting Lemma 15 again, we write

ip′ = 〈f ′, f ′〉+ c〈PV⊥g′, g′〉+ d〈Λ∗Λh,′ h′〉+ 2

〈∑
i

c

λi
PV⊥fi, g

′
〉

+ 2

〈∑
i

d

λi
Λ∗Λfi, h

′
〉

= 〈f ′, f ′〉+ c

(
〈PV⊥g′, PV⊥g′〉+ 2

〈∑
i

1

λi
PV⊥fi, PV⊥g′

〉)

+ d

(
〈Λ∗Λh′,Λ∗Λh′〉+ 2

〈∑
i

1

λi
Λ∗Λfi,Λ

∗Λh′
〉)

= 〈f ′, f ′〉+ c

(∥∥∥∥PV⊥g′ +
∑
i

1

λi
PV⊥fi

∥∥∥∥2

−
∥∥∥∥∑

i

1

λi
PV⊥fi

∥∥∥∥2
)

+ d

(∥∥∥∥Λ∗Λh′ +
∑
i

1

λi
Λ∗Λfi

∥∥∥∥2

−
∥∥∥∥∑

i

1

λi
Λ∗Λfi

∥∥∥∥2
)
.
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At this point, we can bound ip′ from below as

ip′ ≥ 〈f ′, f ′〉 −

(
c

∥∥∥∥PV⊥

(∑
i

1

λi
fi

)∥∥∥∥2

+ d

∥∥∥∥Λ∗Λ
(∑

i

1

λi
fi

)∥∥∥∥2
)

= 〈f ′, f ′〉 −
〈(

cPV⊥ + dΛ∗Λ
)(∑

i

1

λi
fi

)
,
(∑

i

1

λi
fi

)〉
=
∑
i

‖fi‖2 −
〈∑

i

fi,
∑
i

1

λi
fi

〉
=
∑
i

‖fi‖2
(

1− 1

λi

)
.

This shows that ip′ ≥ 0 since the condition cPV⊥ + dΛ∗Λ � Id ensures that λi ≥ 1 for every i.

Finally, Lemma 15 also helps us to bound the quantity ip′′ from below according to

ip′′ = ‖f ′′‖2 + c‖g′′‖2 + d‖h′′‖2 + 2(1− τ)〈f ′′, g′′〉+ 2τ〈f ′′, h′′〉
= (1− τ)

(
‖f ′′‖2 + 2〈f ′′, g′′〉

)
+ τ
(
‖f ′′‖2 + 2〈f ′′, h′′〉

)
+ c‖g′′‖2 + d‖h′′‖2

≥ −(1− τ)‖g′′‖2 − τ‖h′′‖2 + c‖g′′‖2 + d‖h′′‖2.

This allows us to obtain ip′′ ≥ 0 since the condition cPV⊥ + dΛ∗Λ � Id ensures that c ≥ 1 and

d ≥ 1. Altogether, we have shown that ip = ip′ + ip′′ + ip′′′ ≥ 0, which concludes the proof.

Remark. The value of the minimal global worst-case error can, in general, be computed by solving

the semidefinite program (40) characterizing the lower bound lb. In the case where ΛΛ∗ = IdRm , it

can also be computed without resorting to semidefinite programming. Precisely, if τ] denotes the

(unique) τ between 1/2 and ε/(ε+ η) such that

(47) λmin((1− τ)PV⊥ + τΛ∗Λ) =
(1− τ)2ε2 − τ2η2

(1− τ)ε2 − τη2

and if λ] denotes λmin((1− τ])PV⊥ + τ]Λ
∗Λ), then we claim that, for any τ ∈ [0, 1],

gwce(∆τ )2 =
1− τ]
λ]

ε2 +
τ]
λ]
η2.

Indeed, since we now know that the global worst-case error gwce(∆τ ) equals its lower bound lb

independently of τ ∈ [0, 1] and since c] := (1−τ])/λ] and d] := τ]/λ] are feasible for the semidefinite

program (40) characterizing lb, we obtain

(48) gwce(∆τ )2 ≤
1− τ]
λ]

ε2 +
τ]
λ]
η2.

Moreover, going back to the proof of Theorem 8, we recognize that the choice of τ] here corresponds

to the instance y = 0 there. This instance comes with f] being equal to zero and with h] being equal

to a properly normalized eigenvector of (1 − τ])PV⊥ + τ]Λ
∗Λ corresponding to the eigenvalue λ].

The identities (34) now read ‖PV⊥h]‖2 = ε2 and ‖Λ∗Λh]‖2 = η2, i.e., ‖Λh]‖2 = η2. Setting f = h]
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and e = −Λh], which satisfy ‖PV⊥f‖ = ε and ‖e‖ = η, the very definition of the global worst-case

error yields

gwce(∆τ )2 ≥ ‖f −∆τ (Λf + e)‖2 = ‖h]‖2(49)

=
1

λ]

〈(
(1− τ])PV⊥ + τ]Λ

∗Λ
)
h], h]

〉
=

1− τ]
λ]
‖PV⊥h]‖2 +

τ]
λ]
‖Λ∗Λh]‖2

=
1− τ]
λ]

ε2 +
τ]
λ]
η2.

Together, the inequalities (48) and (49) justify our claim about the value of the global worst-case

error. In passing, it is worth noticing that the above argument reveals that f = h] and e = −Λh]
are extremal in the defining expression for the global worst-case error of the regularization map ∆τ

independently of the parameter τ ∈ [0, 1].
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Appendix

This additional section collects justifications for a few facts that were mentioned but not explained

in the main text. These facts are: the uniqueness of a Chebyshev center for the model- and data-

consistent set (see page 6), the efficient computation of the solution to (7) when ΛΛ∗ = IdRm (see

page 11), the form of Newton method when solving equation (29) (see page 15), and the reason

why the constraint of (41) always implies the constraint of (40) (see pages 21 and 23).

Uniqueness of the Chebyshev center. Let f̂1, f̂2 be two Chebyshev centers, i.e., minimizers

of max{‖f − g‖ : ‖PV⊥g‖ ≤ ε, ‖Λg − y‖ ≤ η} and let µ be the value of the minimum. Consider

g ∈ H such that ‖(f̂1 + f̂2)/2− g‖ = max{‖(f̂1 + f̂2)/2− g‖ : ‖PV⊥g‖ ≤ ε, ‖Λg − y‖ ≤ η}. Then

µ ≤ ‖(f̂1 + f̂2)/2− g‖ ≤ 1

2
‖f̂1 − g‖+

1

2
‖f̂2 − g‖

≤ 1

2
max{‖f̂1 − g‖ : ‖PV⊥g‖ ≤ ε, ‖Λg − y‖ ≤ η}+

1

2
max{‖f̂2 − g‖ : ‖PV⊥g‖ ≤ ε, ‖Λg − y‖ ≤ η}

=
1

2
µ+

1

2
µ = µ.

Thus, equality must hold all the way through. This implies that f̂1 − g = f̂2 − g, i.e., that f̂1 = f̂2,

as expected.

Computation of the regularized solution. Let (v1, . . . , vn) be a basis for V and let u1, . . . , um
denote the Riesz representers of the observation functionals λ1, . . . , λm, which form an orthonormal

basis for im(Λ∗) under the assumption that ΛΛ∗ = IdRm . With C ∈ Rm×n representing the cross-

gramian with entries 〈ui, vj〉 = λi(vj), the solution to the regularization program (7) is given, even

when H is infinite dimensional, by

fτ = τ
m∑
i=1

aiui +

n∑
j=1

bjvj ,

where the coefficient vectors a ∈ Rm and b ∈ Rn are computed according to

b =
(
C>C

)−1
C>y and a = y − Cb.

This is fairly easy to see for τ = 0 and it has been established in [Foucart, Liao, Shahrampour,

and Wang, To appear, Theorem 2] for τ = 1, so the general result follows from Proposition 3.

Alternatively, it can be obtained by replicating the steps from the proof of the case τ = 1 with

minor changes.
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Newton method. Equation (29) takes the form F (τ) = 0, where

F (τ) = λmin((1− τ)R+ τS)− (1− τ)2ε2 − τ2η2

(1− τ)ε2 − τη2 + (1− τ)τ(1− 2τ)δ2
.

Newton method produces a sequence (τk)k≥0 converging to a solution using the recursion

(50) τk+1 = τk −
F (τk)

F ′(τk)
, k ≥ 0.

In order to apply this method, we need the ability to compute the derivative of F with respect to

τ . Setting λmin = λmin((1 − τ)R + τS), this essentially reduces to the computation of dλmin/dτ ,

which is performed via the argument below. Note that the argument is not rigorous, as we take

for granted the differentiability of the eigenvalue λmin and of a normalized eigenvector h associated

with it. However, nothing prevents us from applying the scheme (50) using the expression for

dλmin/dτ given in (51) below and agree that a solution has been found if the output τK satisfies

F (τK) < ι for some prescribed tolerance ι > 0. Now, the argument starts from the identities

((1− τ)R+ τS)h = λminh and 〈h, h〉 = 1,

which we differentiate to obtain

(S −R)h+ ((1− τ)R+ τS)
dh

dτ
=
dλmin

dτ
h+ λmin

dh

dτ
and 2

〈
h,
dh

dτ

〉
= 0.

By taking the inner product with h in the first identity and using the second identity, we derive

〈(S −R)h, h〉 =
dλmin

dτ
, i.e.,

dλmin

dτ
= ‖Sh‖2 − ‖Rh‖2.

According to Lemma 9, this expression can be transformed, after some work, into

(51)
dλmin

dτ
=

1− 2τ

τ(1− τ)

λmin(1− λmin)

1− 2λmin
.

Relation between semidefinite constraints. Suppose that the constraint of (41) holds for a

regularization map ∆τ . In view of the expressions

∆τ =
(
(1− τ)PV⊥ + τΛ∗Λ

)−1
(τΛ∗) and Id−∆τΛ =

(
(1− τ)PV⊥ + τΛ∗Λ

)−1
((1− τ)PV⊥),

this constraint also reads[
cPV⊥ | 0

0 | d IdRm

]
�

[
(1− τ)PV⊥

τΛ

] (
(1− τ)PV⊥ + τΛ∗Λ

)−2
[
(1− τ)PV⊥ | τΛ∗

]
.

Multiplying on the left by
[
PV⊥ | Λ∗

]
and on the right by

[
PV⊥

Λ

]
yields

cPV⊥ + dΛ∗Λ � ((1− τ)PV⊥ + τΛ∗Λ)
(
(1− τ)PV⊥ + τΛ∗Λ

)−2
((1− τ)PV⊥ + τΛ∗Λ) = Id.

This is the constraint of (40).
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