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Abstract

For objects belonging to a known model set and observed through a prescribed linear process,

we aim at determining methods to recover linear quantities of these objects that are optimal

from a worst-case perspective. Working in a Hilbert setting, we show that, if the model set is

the intersection of two hyperellipsoids centered at the origin, then there is an optimal recovery

method which is linear. It is specifically given by a constrained regularization procedure whose

parameters, short of being explicit, can be precomputed by solving a semidefinite program.

This general framework can be swiftly applied to several scenarios: the two-space problem, the

problem of recovery from ℓ2-inaccurate data, and the problem of recovery from a mixture of

accurate and ℓ2-inaccurate data. With more effort, it can also be applied to the problem of

recovery from ℓ1-inaccurate data. For the latter, we reach the conclusion of existence of an

optimal recovery method which is linear, again given by constrained regularization, under a

computationally verifiable sufficient condition. Experimentally, this condition seems to hold

whenever the level of ℓ1-inaccuracy is small enough. We also point out that, independently of

the inaccuracy level, the minimal worst-case error of a linear recovery method can be found by

semidefinite programming.
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1 Introduction

The question “Do linear problems have linear optimal algorithms?” was surveyed by Packel [1988].

He gave the commonly accepted answer “usually but not always”. This question, central to the

subject of Optimal Recovery, is also one of the main concerns of the present article. We shall

start by recalling the meaning of this cryptic question and by introducing our notation, already

employed in [Foucart, 2022], which is inspired by the field of Learning Theory. The concepts differ

by names only from familiar concepts traditionally encountered in the field of Information-Based

Complexity (IBC), see e.g. [Novak and Woźniakowski, 2008]. We try to draw parallels between the

terminologies of these fields below.
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Common to the two notational settings is the use of the letter f for the objects of interest, since

in both cases they are primarily thought of as functions, although they could be seen as arbitrary

elements from a prescribed normed space. Whereas we use the notation F for this normed space

(and H when it is a Hilbert space), F typically stands for a strict subset of the said normed space

in IBC. We too assume that our objects of interest live in a strict subset of F , but it is denoted

by K and called model set. The premise that f ∈ K is referred to as a priori information, since

it reflects some prior scientific knowledge about realistic objects of interest. In addition, we have

at our disposal some a posteriori information in the form yi = λi(f), i = 1, . . . ,m, for some linear

functionals λ1, . . . , λm ∈ F ∗. Oftentimes, these linear functionals are point evaluations, giving rise,

in IBC parlance, to the standard information y1 = f(x(1)), . . . , ym = f(x(m)). We call y ∈ Rm the

observation vector and notice that it can be written as y = Λf for some linear map Λ : F → Rm,

referred to as observation map. From the available information, both a priori and a posteriori,

the task is to recover (approximate, learn, ...) the object f in full or maybe just to estimate a

quantity of interest Qf , where Q : F → Z is a linear map from F into another normed space Z.

Such a map Q is called the solution operator in IBC. Our task is realized by way of a recovery map

∆ : Rm → Z—we refrain from using the IBC term algorithm, since computational feasibility is

not a requirement at this point. The performance of this recovery map is assessed by the (global)

worst-case error defined as

ErrQ,K(Λ,∆) := sup
f∈K

∥Q(f)−∆(Λf)∥Z .

We are interested in how small the latter can be, in other words in the intrinsic error—often labeled

radius of information in IBC—defined as

Err∗Q,K(Λ) := inf
∆:Rm→Z

ErrQ,K(Λ,∆).

Moreover, our quest is concerned with optimal recovery maps, i.e., recovery maps ∆opt : Rm → Z

that achieve the above infimum. With the terminology settled, the initial question may now be

phrased as: “among all the possible optimal recovery maps, is there one which is linear?”. It is

well known that the answer is affirmative in two prototypical situations: (i) when the quantity of

interest Q is a linear functional and the model set K is symmetric and convex (this goes back to

[Smolyak, 1965]) and (ii) when F is a Hilbert space and the model set is a centered hyperellipsoid.

Another situation allowing for linear optimal recovery maps involves F = C(X ), although the

existence arguments rarely turn into practical constructions, except in a handful of cases such as

[Foucart, 2023].

One contribution of the present article is to uncover yet another situation where optimality of linear

recovery maps occurs, precisely when the model set is the intersection of two centered hyperellipsoids.

We do actually construct the linear optimal recovery map: it is given by constrained regularization

with parameters that are clearly determined. In fact, we determine the corresponding radius of

information simultaneously: it is the optimal value of a semidefinite program. The main theoretical

tool is Polyak’s S-procedure, which elucidates exactly when a quadratic inequality (with no linear
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terms) is a consequence of two quadratic inequalities (with no linear terms). This S-procedure is

in general not valid with more quadratic inequalities, explaining why our result pertains to the

intersection of two centered hyperellipsoids only. This foremost result is established in Section 2

and some implications are derived in subsequent sections. Specifically, Section 3 lists a few simple

consequences. One of them is the solution, in the so-called global Optimal Recovery setting, of the

two-space problem, where the model set is based on approximability capabilities of two linear sub-

spaces. The other consequences concern two situations for which the observations are inaccurate:

first, when inaccuracies are bounded in ℓ2, we retrieve—and extend to infinite dimensions—some

earlier results of ours; second, when some observations are exact while an ℓ2-bound is available

for the inaccurate ones, we uncover an optimal recovery map built by constrained regularization,

hence linear. Section 4 presents a more intricate consequence of Section 2, namely the scenario

of inaccurate observations bounded in ℓ1. There, the result is not as pleasing as hoped for, but

it nonetheless reveals, somewhat surprisingly, that linear recovery maps can be optimal in this

scenario, too. The caveat is that the result holds conditionally on a certain sufficient condition.

This condition is close to tautological, but it has the advantage of being computationally verifiable.

Our numerical experiments (outlined in the reproducible files accompanying this article) indicate

that the condition is likely to hold in case of small ℓ1-inaccuracies.

2 Solution for the two-hyperellipsoid-intersection model set

From now on, the space F where the objects of interest live will be a Hilbert space (of possibly

infinite dimension), hence it shall be designated by H. There are other Hilbert spaces involved as

ranges of linear maps, such as the quantity of interest Q. We will use the notation ∥ · ∥ and ⟨·, ·⟩
indistinctly for all the associated Hilbert norms and inner products. Thus, the model set considered

in this section—an intersection of two centered hyperellipsoids—takes the form

(1) K = {f ∈ H : ∥Rf∥ ≤ 1 and ∥Sf∥ ≤ 1}

for some Hilbert-valued bounded linear maps R and S defined on H. We assume throughout that

(2) ker(R) ∩ ker(S) ∩ ker(Λ) = {0},

for otherwise the worst-case error of any recovery map ∆, i.e.,

(3) ErrQ,K(Λ,∆) := sup
∥Rf∥≤1
∥Sf∥≤1

∥Qf −∆(Λf)∥

would be infinite for Q = Id, say. We also assume that Λ : H → Rm is surjective, for otherwise

some observations would be redundant. This allows us to define the pseudo-inverse of Λ as

Λ† = Λ∗(ΛΛ∗)−1 : Rm → H.
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2.1 Main result

The result stated below not only provides the value of the radius of information, i.e., of the minimal

worst-case error over all recovery maps, but it also identifies an optimal recovery map. The latter

involves the constrained regularization maps parametrized by a, b ≥ 0 and defined as

∆a,b : y ∈ Rm 7→
[
argmin

f∈H
a ∥Rf∥2 + b ∥Sf∥2 s.to Λf = y

]
∈ H, a, b > 0,(4)

∆a,0 : y ∈ Rm 7→
[
argmin

f∈H
∥Sf∥2 s.to Λf = y and Rf = 0

]
∈ ker(R), a > 0,(5)

∆0,b : y ∈ Rm 7→
[
argmin

f∈H
∥Rf∥2 s.to Λf = y and Sf = 0

]
∈ ker(S), b > 0.(6)

Although not obvious at first sight, the maps ∆a,b are linear. For instance, when a, b > 0, they

indeed take the form, with N := kerΛ denoting the null space of Λ and RN , SN standing for the

restrictions of R,S to N ,

(7) ∆a,b = Λ† −
[
aR∗

NRN + bS∗
NSN

]−1(
aR∗

NR+ bS∗
NS
)
Λ†,

where the invertibility of aR∗
NRN + bS∗

NSN follows from (2)1. It is also worth pointing out that

(8) Id−∆a,bΛ =
[
aR∗

NRN + bS∗
NSN

]−1(
aR∗

NR+ bS∗
NS
)
.

The justification of both (7) and (8) can be found in the appendix. There, we also establish the

convergence of ∆a,b(y) to ∆a,0(y) as b → 0 and of ∆a,b(y) to ∆0,b(y) as a → 0, the convergence

being understood in the weak sense when dim(H) = ∞.

Theorem 1. For the two-hyperellipsoid-intersection model set (1), the square of the radius of

information of the observation map Λ : H → Rm for the estimation of Q is given by the optimal

value of the program

(9) minimize
a,b≥0

a+ b s.to a∥Rh∥2 + b∥Sh∥2 ≥ ∥Qh∥2 for all h ∈ kerΛ.

Further, if a♯, b♯ ≥ 0 are minimizers of this program, then Q ◦∆a♯,b♯ is an optimal recovery map.

In short,

(10) ErrQ,K(Λ, Q ◦∆a♯,b♯)
2 = inf

∆:Rm→Z
ErrQ,K(Λ,∆)2 = a♯ + b♯.

The proof of this result is postponed for a short while. Before that, we address the question of

whether the optimization program (9) can be solved in practice. The answer is yes, at least when

H is finite-dimensional. Indeed, if (h1, . . . , hn) denotes a basis for N = kerΛ, representing h ∈ N
1In the infinite-dimensional setting, this assumption should in fact be strengthened to the existence of δ > 0 such

that max{∥Rh∥, ∥Sh∥} ≥ δ∥h∥ for all h ∈ kerΛ, see e.g. [Rudin, 1991, Theorem 12.12].
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as h =
∑n

i=1 xihi for x ∈ Rn allows us to reformulate the constraint a∥Rh∥2 + b∥Sh∥2 ≥ ∥Qh∥2 for

all h ∈ N as a⟨R′x, x⟩+ b⟨S′x, x⟩ ≥ ⟨Q′x, x⟩ for all x ∈ Rn, where R′,S′,Q′ ∈ Rn×n are symmetric

matrices with entries

(11) R′
i,j = ⟨R(hi), R(hj)⟩, S′i,j = ⟨S(hi), S(hj)⟩, Q′

i,j = ⟨Q(hi), Q(hj)⟩.

Thus, the program (9) is equivalent to the semidefinite program2

minimize
a,b≥0

a+ b s.to aR′ + bS′ ⪰ Q′.

Such a semidefinite program can be solved efficiently via a variety of solvers, e.g. the ones embedded

in the matlab-based modeling system CVX [Grant and Boyd, 2014], although they (currently) all

struggles when n is in the thousands.

2.2 Justification

The proof of Theorem 1 is broken down into three small results which we find useful to isolate as

separate lemmas. The first lemma estimates the radius of information from below and the second

lemma is a key step for the third lemma, which estimates the radius of information from above

using constrained regularization maps. Here is the first lemma.

Lemma 2. The squared worst-case error of any recovery map ∆ satisfies, with N := kerΛ,

(12) ErrQ,K(Λ,∆)2 ≥ LB := sup
h∈K∩N

∥Qh∥2

and this lower bound LB can be reformulated as

LB = inf
a,b≥0

a+ b s.to a∥Rh∥2 + b∥Sh∥2 ≥ ∥Qh∥2 for all h ∈ N .

Proof. We include the argument for the first part, even though it is very classical. It starts by

considering any h ∈ K∩N and by noticing that both +h and −h belong to K∩N before observing

that

ErrQ,K(Λ,∆)2 = sup
f∈K

∥Qf −∆(Λf)∥2 ≥ max
±

∥Q(±h)−∆(0)∥2

≥ 1

2
∥Qh−∆(0)∥2 + 1

2
∥ −Qh−∆(0)∥2 = ∥Qh∥2 + ∥∆(0)∥2

≥ ∥Qh∥2.

Finally, it finishes by taking the supremum over h ∈ K ∩N to derive that ErrQ,K(Λ,∆)2 ≥ LB.

2Here and in other places, we use the standard notation M ⪰ 0 to signify that a matrix M is positive semidefinite.

The same notation is used for operators.
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The argument for the second part begins by reformulating the lower bound as

LB = inf
γ
γ s.to ∥Qh∥2 ≤ γ whenever h ∈ N satisfies ∥Rh∥2 ≤ 1 and ∥Sh∥2 ≤ 1.

By the version of Polyak’s S-procedure recalled in the appendix and its extension to the inifinite-

dimensional case, the latter constraint is equivalent to3

there exist a, b ≥ 0 such that ∥Qh∥2 − γ ≤ a
(
∥Rh∥2 − 1

)
+ b
(
∥Sh∥2 − 1

)
for all h ∈ N .

The latter decouples as

there exist a, b ≥ 0 such that γ ≥ a+ b and a∥Rh∥2 + b∥Sh∥2 ≥ ∥Qh∥2 for all h ∈ N .

Therefore, the lower bound takes the form

LB = inf
γ

a,b≥0

γ s.to γ ≥ a+ b and a∥Rh∥2 + b∥Sh∥2 ≥ ∥Qh∥2 for all h ∈ N .

Since the minimal value that γ can achieve under these constraints is a + b, this infimum indeed

reduces to the form of the lower bound announced in the statement of lemma.

The second lemma is reminiscent of a result already obtained (with n = 2) in [Foucart and Liao,

2022, Lemma 13] for Q = Id and in [Foucart, Liao, and Veldt, 2023, Lemma 3] for an arbitrary linear

quantity of interest Q, but the new proof presented here is more transparent, as it avoids arguments

involving semidefinite matrices. As such, it is valid in infinite-dimensional Hilbert spaces, too.

Lemma 3. Let N be a linear subspace of H and let R1, . . . , Rn be Hilbert-valued linear maps

defined on H. Suppose that c1, . . . , cn > 0 satisfy

(13) ∥Qh∥2 ≤
n∑

i=1

ci∥Rih∥2 for all h ∈ N .

Then, setting T =
∑n

i=1 ciR
∗
i,NRi : H → N and assuming that TN =

∑n
i=1 ciR

∗
i,NRi,N : N → N is

invertible, one has∥∥∥QT−1
N

( n∑
i=1

ciR
∗
i,NRifi

)∥∥∥2 ≤ n∑
i=1

ci
∥∥Rifi

∥∥2 for all f1, . . . , fn ∈ H.

Proof. To ease notation, let h :=
∑n

i=1 ciR
∗
i,NRifi. Note that h belongs to N , and so does T−1

N h.

In view of (13), it is enough to prove that

(14)

n∑
i=1

ci∥RiT
−1
N h∥2 ≤

n∑
i=1

ci
∥∥Rifi

∥∥2.
3To verify the applicability of the S-procedure, note that h = 0 satisfies the strict feasibility condition (h ∈ N ,

∥Rh∥2 < 1, ∥Sh∥2 < 1) and that any a, b > 0 satisfy the positive definiteness condition (aR∗
NRN + bS∗

NSN ≻ 0).
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The left-hand side of (14), which we denote by LHS for short, is manipulated as follows:

LHS =
n∑

i=1

ci∥Ri,NT−1
N h∥2 =

n∑
i=1

ci

〈
R∗

i,NRi,NT−1
N h, T−1

N h

〉
=

〈 n∑
i=1

ciR
∗
i,NRi,NT−1

N h, T−1
N h

〉

=

〈
TNT−1

N h, T−1
N h

〉
=

〈
h, T−1

N h

〉
=

〈 n∑
i=1

ciR
∗
i,NRifi, T

−1
N h

〉
=

n∑
i=1

ci

〈
R∗

i,NRifi, T
−1
N h

〉

=
n∑

i=1

ci

〈
Rifi, RiT

−1
N h

〉
.

From the general inequality ⟨u, v⟩ ≤ (∥u∥2 + ∥v∥2)/2, we derive that

LHS ≤
n∑

i=1

ci
2

(∥∥∥Rifi

∥∥∥2 + ∥∥∥RiT
−1
N h

∥∥∥2) =
1

2

n∑
i=1

ci

∥∥∥Rifi

∥∥∥2 + 1

2
LHS,

which is just a rearrangement of the desired inequality (14).

The third and final lemma gives an upper bound for the squared worst-case error of the constrained

regularization map ∆a,b.

Lemma 4. Suppose that a, b > 0 satisfy

∥Qh∥2 ≤ a∥Rh∥2 + b∥Sh∥2 for all h ∈ kerΛ.

Then one has

ErrQ,K(Λ, Q ◦∆a,b)
2 ≤ a+ b.

Proof. The squared worst-case error of the recovery map Q ◦∆a,b is

ErrQ,K(Λ, Q ◦∆a,b)
2 = sup

f∈K
∥Qf −Q ◦∆a,b(Λf)∥2 = sup

∥Rf∥≤1
∥Sf∥≤1

∥Q(Id−∆a,bΛ)f∥2

= sup
∥Rf∥≤1
∥Sf∥≤1

∥∥∥Q[aR∗
NRN + bS∗

NSN
]−1(

aR∗
NRf + bS∗

NSf
)∥∥∥2,

where we have made use of (8) with N = kerΛ. Then, invoking Lemma 3 for n = 2, R1 = R,

R2 = S, and f1 = f2 = f , we obtain

ErrQ,K(Λ, Q ◦∆a,b)
2 ≤ sup

∥Rf∥≤1
∥Sf∥≤1

(
a∥Rf∥2 + b∥Sf∥2

)
≤ a+ b,

which is the announced result.

With this series of lemmas at hand, we are now ready to justify the main result of this section.
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Proof of Theorem 1. Let a♯, b♯ ≥ 0 be minimizers of the optimization program (9). On the one

hand, Lemma 2 guarantees that

(15) inf
∆:Rm→Z

ErrQ,K(Λ,∆)2 ≥ a♯ + b♯.

On the other hand, by the feasibility of a♯ and b♯, we have ∥Qh∥2 ≤ a♯∥Rh∥2 + b♯∥Sh∥2 for

all h ∈ kerΛ. To deal with the possibility of a♯ or b♯ being zero, we consider, for any ε > 0,

a
(ε)
♯ := a♯ + ε > 0 and b

(ε)
♯ := b♯ + ε > 0 and notice that ∥Qh∥2 ≤ a

(ε)
♯ ∥Rh∥2 + b

(ε)
♯ ∥Sh∥2 for all

h ∈ kerΛ. Lemma 4 then guarantees that ErrQ,K(Λ, Q ◦∆
a
(ε)
♯ ,b

(ε)
♯

)2 ≤ a
(ε)
♯ + b

(ε)
♯ . It is now easy to

see that taking (possibly weak) limits as ε → 0 yields

(16) ErrQ,K(Λ, Q ◦∆a♯,b♯)
2 ≤ a♯ + b♯.

The inequalities (15) and (16) together fully justify (10) and thus complete the proof.

2.3 Side results

In this section, we put forward an interpretation of the radius of information that differs from the

minimal value of the program (9) and we shed light on the extremizer appearing in the expression of

the lower bound from (12)—which is now known to coincide with the squared radius of information.

Although these results are not used later, we include them here because they appear interesting

for their own sake. Both results call upon the largest eigenvalue, denoted by λmax, of self-adjoint

operators.

Proposition 5. For the two-hyperellipsoid-intersection model set (1), the radius of information of

the observation map Λ : H → Rm for the estimation of Q is also given as the optimal value λ♯ of

the program

minimize
τ∈[0,1]

λmax

(
QN [(1− τ)R∗

NRN + τS∗
NSN ]−1Q∗

N
)
,

where N := kerΛ. Moreover, if τ♯ ∈ (0, 1) represents a minimizer of the above program, then

a♯ := (1− τ♯)λ♯ and b♯ := τ♯λ♯ are minimizers of (9).

Proof. The foremost observation consists in reformulating the constraint in (9) as

(17) λmax

(
QN [aR∗

NRN + bS∗
NSN ]−1Q∗

N
)
≤ 1.

Indeed, the said constraint can be equivalently expressed in the form

aR∗
NRN + bS∗

NSN ⪰ Q∗
NQN ⇐⇒ Id ⪰ [aR∗

NRN + bS∗
NSN ]−1/2Q∗

NQN [aR∗
NRN + bS∗

NSN ]−1/2

⇐⇒ 1 ≥ λmax

(
[aR∗

NRN + bS∗
NSN ]−1/2Q∗

NQN [aR∗
NRN + bS∗

NSN ]−1/2
)

⇐⇒ 1 ≥ λmax

(
QN [aR∗

NRN + bS∗
NSN ]−1Q∗

N
)
.
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Thus, the above-defined a♯ = (1− τ♯)λ♯ and b♯ = τ♯λ♯ are feasible for (9), since then

(18) λmax

(
QN [a♯R

∗
NRN + b♯S

∗
NSN ]−1Q∗

N
)
=

1

λ♯
λmax

(
QN [(1− τ♯)R

∗
NRN + τ♯S

∗
NSN ]−1Q∗

N
)
= 1.

It now remains to show that a+ b ≥ a♯ + b♯ whenever a, b > 0 are feasible for (9). To see this, with

τ = b/(a+ b) and 1− τ = a/(a+ b), notice that

λ♯ ≤ λmax

(
QN [(1− τ)R∗

NRN + τS∗
NSN ]−1Q∗

N
)
= (a+ b)λmax

(
QN [aR∗

NRN + bS∗
NSN ]−1Q∗

N
)

≤ (a+ b),

where (17) was used for the last inequality. The desired conclusion follows from λ♯ = a♯ + b♯.

Proposition 6. Under the setting of Proposition 5, recall that

(19) sup
h∈N

{
∥Qh∥2 : ∥Rh∥2 ≤ 1, ∥Sh∥2 ≤ 1

}
= inf

a,b≥0
{a+ b : aR∗

NRN + bS∗
NSN ⪰ Q∗

NQN } .

If h♯ ∈ N and a♯, b♯ > 0 are extremizers of the above two programs, then

(i) ∥Rh♯∥ = 1 and ∥Sh♯∥ = 1;

(ii)
(
a♯R

∗
NRN + b♯S

∗
NSN

)
h♯ = Q∗

NQNh♯.

Proof. Setting TN := a♯R
∗
NRN + b♯S

∗
NSN , we already know from (18) that λmax

(
QNT−1

N Q∗
N
)
= 1.

In view of ∥Rh♯∥ ≤ 1, ∥Sh♯∥ ≤ 1, ∥Qh♯∥2 = a♯ + b♯, and writing g♯ := T
1/2
N h♯, we observe that

∥g♯∥2 = ⟨TNh♯, h♯⟩ = ⟨(a♯R∗
NRN + b♯S

∗
NSN )h♯, h♯⟩ = a♯∥Rh♯∥2 + b♯∥Sh♯∥2

≤
(1)

a♯ + b♯ = ∥Qh♯∥2 = ∥QNT
−1/2
N g♯∥2 = ⟨(T−1/2

N Q∗
NQNT

−1/2
N )g♯, g♯⟩

≤
(2)

λmax

(
T
−1/2
N Q∗

NQNT
−1/2
N

)
∥g♯∥2 = λmax

(
QNT−1

N Q∗
N
)
∥g♯∥2 = ∥g♯∥2.

Since the left-hand and right-hand sides are identical, equality must hold throughout. In particular,

equality in (1) implies (i). As for equality in (2), it imposes that g♯ is an eigenvector associated

with the eigenvalue λmax

(
T
−1/2
N Q∗

NQNT
−1/2
N

)
= 1, meaning that (T

−1/2
N Q∗

NQNT
−1/2
N )g♯ = g♯, i.e.,

Q∗
NQNh♯ = TNh♯, which is (ii).

Remark. The result of Proposition 6 is, in a sense, a characterization of the equality between

the supremum and the infimum in (19). Indeed, the argument can easily be turned around: given

minimizers a♯, b♯ > 0, if we can find h♯ ∈ N satisfying (i) and (ii), then the supremum equals the

infimum (it is always “at most” by the trivial part of the S-procedure and it is “at least” thanks to

the existence of h♯). Such an approach was used, in essence, to determine explicit solutions of spe-

cific differential-equation-inspired Optimal Recovery problems featuring two quadratics constraints

but without invoking Polyak’s S-procedure, see [Magaril-Il’yaev, Osipenko, and Tikhomirov, 2004,

9
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Vvedenskaya, 2009]. The same circle of ideas extends to the intersection of n > 2 hyperellipsoids.

Indeed, leaving the details to the reader, we state the loose equivalence between the equality

sup
h∈N

{
∥Qh∥2 : ∥Rih∥2 ≤ 1, i = 1, . . . , n

}
= inf

c1,...,cn≥0

{
n∑

i=1

ci : ciR
∗
i,NRi,N ⪰ Q∗

NQN

}

and, with c♯1, . . . , c
♯
n > 0 denoting minimizers of the latter, the existence of h♯ ∈ N such that

∥Rih♯∥ = 1, i = 1, . . . , n, and

(
n∑

i=1

c♯iR
∗
i,NRi,N

)
h♯ = Q∗

NQNh♯.

This gives us a practical way of deciding whether Theorem 1 extends to n > 2 hyperellipsoids: after

solving a semidefinite program, construct a candidate h♯ by solving an eigenvalue problem and test

if the ∥Rih♯∥ are all equal. As observed numerically, this occurs in some situations, but certainly

not in all, in particular not when the Ri are orthogonal projectors (as in the multispace problem

described below). The moral is that this article deals with the intersection of n = 2 hyperellipsoids

not only because the strategy based on Polyak’s S-procedure does not apply to n > 2, but also

because the natural extension is not valid for n > 2.

3 Three easy consequences

The two-hyperellisoid-intersection framework has direct implications for optimal recovery from

(partially) inaccurate data, to be discussed later, and even more directly for optimal recovery from

accurate data under the two-space approximability model, to be elucidated right now.

3.1 The two-space problem

A model set based on approximability by a linear subspace V of F with parameter ε > 0, namely

K = {f ∈ F : dist(f, V ) ≤ ε},

gained traction after the work of Binev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk [2017].

When F is a Hilbert space, these authors completely solved the full recovery (Q = Id) problem

even in the local setting—the present article deals solely with the global setting. They also raised

the question of the multispace problem, a particular case of which being the two-space problem

where

(20) K = {f ∈ H : dist(f, V ) ≤ ε and dist(f,W ) ≤ η}.

10
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For the multispace problem, they proposed two iterative algorithms which, in the limit, produce

model- and data-consistent objects. As such, these algorithms yield worst-case errors that are

near-optimal by a factor at most two.

The two-space problem—in fact, even the multispace problem—in an arbitrary normed space F

was solved in [Foucart, 2021] but only when the quantity of interest Q is a linear functional. For

more general linear maps Q, but when F is a Hilbert space, the two-space problem is a special case

of our two-hyperellipsoid-intersection problem. Indeed, the model set (20) is an instantiation of the

model set (1) with R and S being scaled versions of the orthogonal projectors onto the orthogonal

complements of V and W , precisely R = (1/ε)PV ⊥ and S = (1/η)PW⊥ . Thus, Theorem 1 applies

directly and we arrive, through the change of optimization variables a = cε2 and b = dη2, at the

result stated below for completeness.

Theorem 7. For the two-space model set (20), the square of the radius of information of the

observation map Λ : H → Rm for the estimation of Q is given by the optimal value of the program

(21) minimize
c,d≥0

cε2 + dη2 s.to c∥PV ⊥h∥2 + d∥PW⊥h∥2 ≥ ∥Qh∥2 for all h ∈ kerΛ.

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if ∆c♯,d♯ is the map defined for y ∈ Rm by

∆c♯,d♯(y) =
[
argmin

f∈H
c♯∥PV ⊥f∥2 + d♯∥PW⊥f∥2 s.to Λf = y

]
(and interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦∆c♯,d♯ provides

an optimal recovery map.

3.2 Recovery from ℓ2-inaccurate data

Suppose now that the observations made on the objects of interest f ∈ K are not accurate anymore,

but rather of the form y = Λf +e with an error vector e ∈ Rm belonging to some uncertainty set E .
We then need to adjust the notion of worst-case error of a recovery map ∆ : Rm → Z and thus

define the quantity

(22) ErrQ,K,E(Λ,∆) := sup
f∈K
e∈E

∥Qf −∆(Λf + e)∥.

As already remarked in [Micchelli and Rivlin, 1977], this setting can formally be reduced to the

setting of accurate data. When Q is a linear functional, the existence of a linear optimal recovery

map follows for data perturbation not only bounded in ℓ2, see e.g. [Magaril-Il’yaev and Osipenko,

1991, Plaskota, 1996, Ettehad and Foucart, 2021].

In this subsection, both the model set and uncertainty set are hyperellipsoids, i.e.,

K = {f ∈ H : ∥Rf∥ ≤ ε},(23)

E = {e ∈ Rm : ∥Se∥ ≤ η}.(24)

11
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In this situation, the problem at hand reduces to the two-hyperellipsoid-intersection problem with

accurate data. Indeed, considering the compound variable f̃ = (f, e) belonging to the extended

Hilbert space H̃ := H × Rm, let us introduce linear maps Λ̃, Q̃, R̃, and S̃ defined on H̃ by

(25) Λ̃((f, e)) = Λf + e, Q̃((f, e)) = Qf, R̃((f, e)) = (1/ε)Rf, S̃((f, e)) = (1/η)Se.

The worst-case error (22) of the recovery map ∆ is then expressed as

ErrQ,K,E(Λ,∆) = sup
∥R̃f̃∥≤1

∥S̃f̃∥≤1

∥Q̃f̃ −∆(Λ̃f̃)∥,

i.e., exactly as in (3). Exploiting this analogy, Theorem 1 yields the result stated below. Note that

it is not entirely new. Indeed, the fact that regularization produces a (linear) optimal recovery

map was already recognized in [Melkman and Micchelli, 1979], see also [Micchelli, 1993]. However,

a recipe for selecting the regularization parameters was not given there, except on a specific example.

Such a recipe was uncovered in [Foucart and Liao, 2022] with Q = Id, R being an orthogonal

projector, and S = Id, and later in [Foucart, Liao, and Veldt, 2023] with arbitrary Q and R but

still with S = Id. The extension to S ̸= Id is minor—more pertinent is the fact that the result is

now valid in infinite dimensions (although solving (26) in practice would then be a challenge).

Theorem 8. For the hyperellipsoidal model and uncertainty sets (23) and (24), the square of the

radius of information of the observation map Λ : H → Rm for the estimation of Q is given by the

optimal value of the program

(26) minimize
c,d≥0

cε2 + dη2 s.to c∥Rf∥2 + d∥SΛf∥2 ≥ ∥Qf∥2 for all f ∈ H.

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if ∆c♯,d♯ is the map defined for y ∈ Rm by

(27) ∆c♯,d♯(y) =
[
argmin

f∈H
c♯∥Rf∥2 + d♯∥S(y − Λf)∥2

]
(and interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦∆c♯,d♯ provides

an optimal recovery map.

Proof. With the change of optimization variables a = cε2 and b = dη2, the program (9) for Λ̃, Q̃,

R̃, and S̃ becomes

minimize
c,d≥0

cε2 + dη2 s.to c∥Rf∥2 + d∥Se∥2 ≥ ∥Qf∥2 when f ∈ H, e ∈ Rm satisfy Λf + e = 0.

Eliminating e ∈ Rm from the above yields the program (26). As for the constrained regularization

map ∆a♯,b♯ from (4), it is to be replaced by

y ∈ Rm 7→
[
argmin
f∈H,e∈Rm

c♯∥Rf∥2 + d♯∥Se∥2 s.to Λf + e = y
]
.

Again, eliminating e ∈ Rm from the above leads to (27).

12
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3.3 Recovery for mixed accurate and ℓ2-inaccurate data

In some situations, parts of the observations on the objects of interest f ∈ K can be made accurately,

while other parts are subject to errors. Such a situation occurs e.g. when learning the parameters

of partial differential equations (using kernel methods, say) from example solutions that can be

perfectly evaluated at points on the boundary of the domain but imprecisely at points inside the

domain, see e.g. [Anandkumar, Azizzadenesheli, Bhattacharya, Kovachki, Li, Liu, and Stuart,

2020, Long, Mrvaljevic, Zhe, and Hosseini, 2023]. To cover this possibility, we can decompose the

error vector e ∈ Rm as e = (e′, e′′) ∈ Rm′ ×Rm′′
, with e′ = 0 and ∥e′′∥ ≤ η. More generally, we shall

assume that S′e = 0 and ∥S′′e∥ ≤ η for some Hilbert-valued linear maps S′, S′′ defined on Rm. We

shall therefore consider model and uncertainty sets of the form

K = {h ∈ H : ∥Rf∥ ≤ ε},(28)

E = {e ∈ ker(S′) : ∥S′′e∥ ≤ η}.(29)

This time working with the different extended space H̃ = H × ker(S′), we still introduce linear

maps Λ̃, Q̃, R̃, and S̃ defined on the compound variable f̃ = (f, e) ∈ H̃ almost as in (25), but with

one slight modification for S̃, namely

(30) Λ̃((f, e)) = Λf + e, Q̃((f, e)) = Qf, R̃((f, e)) = (1/ε)Rf, S̃((f, e)) = (1/η)S′′e.

The worst-case error (22) of a recovery map for this mixed error scenario is still identifiable with the

worst-case error (3) for the two-hyperellipsoid-intersection scenario, so we can once more leverage

Theorem 1 to derive the following result.

Theorem 9. For the model set (28) and the mixed-uncertainty set (29), the square of the radius

of information of the observation map Λ : H → Rm for the estimation of Q is given by the optimal

value of the program

(31) minimize
c,d≥0

cε2 + dη2 s.to c∥Rf∥2 + d∥S′′Λf∥2 ≥ ∥Qf∥2 for all f ∈ ker(S′Λ).

Further, if c♯, d♯ ≥ 0 are minimizers of this program and if ∆c♯,d♯ is the map defined for y ∈ Rm by

(32) ∆c♯,d♯(y) =
[
argmin

f∈H
c♯∥Rf∥2 + d♯∥S′′(y − Λf)∥2 s.to S′Λf = S′y

]
(interpreted via continuity in case c♯ = 0 or d♯ = 0), then the linear map Q ◦ ∆c♯,d♯ provides an

optimal recovery map.

Proof. With the change of optimization variables a = cε2 and b = dη2, the program (9) for Λ̃, Q̃,

R̃, and S̃ becomes

minimize
c,d≥0

cε2 + dη2 s.to c∥Rf∥2 + d∥S′′e∥2 ≥ ∥Qf∥2 when f ∈ H, e ∈ ker(S′) satisfy Λf + e = 0.

13
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The form of the program (31) is obtained by eliminating e ∈ Rm from the above via e = −Λf and

noticing that e ∈ ker(S′) means that S′Λf = 0, i.e., f ∈ ker(S′Λ). The constrained regularization

map is now to be replaced by

y ∈ Rm 7→
[

argmin
f∈H,e∈ker(S′)

c♯∥Rf∥2 + d♯∥S′′e∥2 s.to Λf + e = y
]
.

The form of the program (32) is obtained by eliminating e ∈ Rm from the above via e = y − Λf

and noticing that e ∈ ker(S′) means that S′Λf = S′y.

It is worth making this result more explicit for our motivating example where e ∈ Rm is decomposed

as e = (e′, e′′) ∈ Rm′ ×Rm′′
and we have S′e = e′, S′′e = e′′. The observation process on the object

of interest f ∈ H satisfying ∥Rf∥ ≤ ε is itself decomposed as y′ = Λ′f and y′′ = Λ′′f + e′′, where

Λ′ : H → Rm′
, Λ′′ : H → Rm′′

are linear maps and where ∥e′′∥ ≤ η. In this case, a linear optimal

recovery map is obtained, maybe somewhat intuitively, via the constrained regularization

minimize
f∈H

c♯∥Rf∥2 + d♯∥y′′ − Λ′′f∥2 s.to Λ′f = y′.

Our more significant contribution consists in uncovering a principled way of selecting the parameters

c♯, d♯ ≥ 0, namely as solutions to the program

minimize
c,d≥0

cε2 + dη2 s.to c∥Rf∥2 + d∥Λ′′f∥2 ≥ ∥Qf∥2 for all f ∈ ker(Λ′).

4 One intricate consequence: recovery from ℓ1-inaccurate data

In this final section, we contemplate yet another scenario of optimal recovery from inaccurate data

which borrows from the results of Section 2. The situation is more delicate than in Section 3,

though, because the observation error is not modeled through an ℓ2-bound but an ℓ1-bound. Thus,

the objects of interest f from a Hilbert space H are acquired via inaccurate linear observations

of the form y = Λf + e ∈ Rm, where the model set for f and the uncertainty set for e are given

relative to some parameter ε > 0 and η > 0 by

K = {f ∈ H : ∥Rf∥ ≤ ε},(33)

E = {e ∈ Rm : ∥e∥1 ≤ η}.(34)

Towards the goal of optimally estimating a Hilbert-valued linear quantity of interest Q : H → Z,

the worst-case error of a recovery map ∆ : Rm → Z is defined as

(35) ErrQ,K,E(Λ,∆) = sup
∥Rf∥≤ε
∥e∥1≤η

∥Qf −∆(Λf + e)∥.
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We will reveal that, conditionally on a checkable sufficient condition, the radius of information

can still be computed and a constrained-regularization-based optimal recovery map—turning out,

perhaps surprisingly, to be linear—can still be constructed efficiently. The sufficient condition is

not vacuous: numerically, it even appears to hold whenever η is small enough. Unfortunately, we

were not able to establish this fact theoretically.

4.1 Main result

The result presented below involves constrained regularization maps ∆
(j)
c,d defined, for j = 1, . . . ,m

and for c, d > 0, by

(36) ∆
(j)
c,d : y ∈ Rm 7→

[
argmin

f∈H
c∥Rf∥2 + d∥y − Λf∥2 s.to λi(f) = yi for i ̸= j

]
∈ H,

with the usual interpretation when c = 0 or d = 0. These constrained regularization maps are

linear. Indeed, as a consequence of Lemma 16 in the appendix, they are given by

∆
(j)
c,d = Λ† −

[
cR∗

Nj
RNj + dΛ∗

Nj
ΛNj

]−1
(cR∗

Nj
RΛ†), Nj =

⋂
i ̸=j

ker(λi).

For each j = 1, . . . ,m, fixing from now on an element uj ∈ H such that4 Λuj = ej (e.g. uj = Λ†ej),

we compute

(37) lb′j := min
c,d≥0

cε2+dη2 s.to c∥R(h−θuj)∥2+dθ2 ≥ ∥Q(h−θuj)∥2 for all h ∈ kerΛ and θ ∈ R

and we let cj , dj ≥ 0 denote extremizers of this optimization program. In addition, we consider

(and we shall compute some of) the quantities Mi,j defined for i, j = 1, . . . ,m by

Mi,j := min
c,d≥0

cε2 + dη2

s.to c∥R(h− θui)∥2 + dθ2 ≥ ∥Q(h− θui)−Q∆
(j)
cj ,dj

Λh∥2 for all h ∈ H and θ ∈ R.

The main result of this section can now be stated as follows.

Theorem 10. Aiming at estimating a Hilbert-valued linear map Q : H → Z from the observation

map Λ : H → Rm under the hyperellipsoid model set (33) and the ℓ1-uncertainty set (34), assume

that

(38) Mi,k ≤ Mk,k for all i = 1, . . . ,m, where k := argmax
j=1,...,m

lb′j .

Then the square of the radius of information is equal to lb′k and the linear map Q◦∆(k)
ck,dk

: Rm → Z

provides an optimal recovery map.

4In this section, the notation ej does not represent the jth entry of the error vector, but the jth element of the

canonical basis for Rm.
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The proof of this result is given in the next subsection. Before getting there, we reiterate that the

sufficient condition (38) seems to occur whenever η is small enough, as supported by the numerical

experiments presented in the reproducible files accompanying this article.

4.2 Justification

Much like the proof of Theorem 1, the proof of Theorem 10 is divided into three separate lemmas:

one which establishes lower bounds for the radius of information, one which indicates that each

lower bound is achieved by an associated constrained regularization map, and one that establishes

a key property of such constrained regularization maps. Finally, these three ingredients will be

put together while incorporating the sufficient condition (38). Throughout the argument, it will

be convenient to work with the linear maps Γ, Q(1), . . . , Q(m), R(1), . . . , R(m), and S defined for

g = (h, θ) in the extended Hilbert space H × R via

(39) Γ(g) = Λh, Q(j)(g) = Q(h− θuj), R(j)(g) = (1/ε)R(h− θuj), S(g) = (1/η)θ.

Let us now state the first of our series of three lemmas.

Lemma 11. The squared global worst-case error of any recovery map ∆ satisfies

ErrQ,K,E(Λ,∆)2 ≥ max
j=1,...,m

lbj(∆) ≥ max
j=1,...,m

lb′j ,

where the lower bounds are expressed as

lbj(∆) = sup
∥Rf∥≤ε
|θ|≤η

∥Qf −∆(Λf + θej)∥2(40)

= sup
∥R(j)g∥≤1
∥Sg∥≤1

∥Q(j)g −∆(Γg)∥2,(41)

lb′j = sup
∥R(j)g∥≤1
∥Sg∥≤1
g∈ker Γ

∥Q(j)g∥2(42)

= inf
a,b≥0

a+ b s.to a∥R(j)g∥2 + b∥Sg∥2 ≥ ∥Q(j)g∥2 for all g ∈ ker Γ.(43)

Proof. For j = 1, . . . ,m, noticing in (35) that the supremum over all e ∈ Rm satisfying ∥e∥1 ≤ η

is larger than or equal to the supremum over all e = θej with |θ| ≤ η leads to the lower bound on

ErrQ,K,E(Λ,∆)2 expressed in (40). To arrive at (41), we make the change of variable h = f + θuj ,

so that

lbj(∆) = sup
∥R(h−θui)∥≤ε

|θ|≤η

∥Q(h− θui)−∆(Λh)∥2,
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and (41) follows by setting g = (h, θ) ∈ H × R and taking the expressions (39) for Γ, Q(j), R(j),

and S into account. At this point, it is apparent that lbj(∆) coincides with the worst-case error of

∆ for the estimation of Q(j)g from Γg under the two-hyperellipsoid-intersection model assumption

∥R(j)g∥ ≤ 1 and ∥Sg∥ ≤ 1. Thus, the further lower bound (42) and its reformulation (43) follow

from an application of Lemma 2.

The lemma below, although not used explicitly later, gives us an idea of the coveted optimal

recovery map by looking at the case of equality in lbj(∆) ≥ lb′j . For the latter, note that the

expression (43) is seen to coincide with the expression (37) by making the change of optimization

variables a = cε2, b = dη2.

Lemma 12. For each j = 1, . . . ,m, if ∆
(j)
cj ,dj

is the constrained regularization map defined in (36)

and its parameters cj , dj ≥ 0 are extremizers of the expression (37) for lb′j , then

lbj(Q ◦∆(j)
cj ,dj

) = lb′j .

Proof. According to the results of Section 2, we know that equality in lbj(∆) ≥ lb′j occurs for

∆♭ = Q(j) ◦∆j,aj ,bj , where aj , bj > 0 are extremizers of the program

minimize
a,b≥0

a+ b s.to a∥R(j)g∥2 + b∥Sg∥2 ≥ ∥Q(j)g∥2 for all g ∈ ker Γ

and where the recovery map ∆j,aj ,bj : Rm → H × R is defined, for y ∈ Rm, by

∆j,aj ,bj (y) =
[
argmin
g∈H×R

aj∥R(j)g∥2 + bj∥Sg∥2 s.to Γg = y
]
.

It now remains to verify that ∆♭ agrees with Q ◦ ∆
(j)
cj ,dj

. First, according to the expressions (39)

for Γ, Q(j), R(j), and S, and in view of the relations a = cε2 and b = dη2, it is easily seen that

aj = cjε
2 and bj = djη

2. Then, writing ∆j,aj ,bj (y) = (h♭, θ♭) with h♭ ∈ H and θ♭ ∈ R, we see that

(h♭, θ♭) =
[
argmin
(h,θ)∈H×R

cj∥R(h− θuj)∥2 + djθ
2 s.to Λh = y

]
,

and consequently, making the change f = h− θuj , we deduce that

(h♭ − θ♭uj , θ♭) =
[
argmin
(f,θ)∈H×R

cj∥Rf∥2 + djθ
2 s.to Λf + θej = y

]
.

Since the constraint Λf+θej = y decomposes as λj(f)+θ = yj and λi(f) = yi for i ̸= j, we obtain,

after eliminating θ,

h♭ − θ♭uj =
[
argmin

f∈H
cj∥Rf∥2 + dj(yj − λj(f))

2 s.to λi(f) = yi for i ̸= j
]

= ∆
(j)
cj ,dj

(y),

where that last equality is simply the definition of ∆
(j)
cj ,dj

. The remaining justification is settled by

remarking that ∆♭(y) = Q(j)(∆j,aj ,bj (y)) = Q(j)((h♭, θ♭)) = Q(h♭ − θ♭uj) = Q(∆
(j)
cj ,dj

(y)).
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The third lemma is a step towards the determination of the worst-case error of the constrained

regularization map ∆
(j)
cj ,dj

.

Lemma 13. For each j = 1, . . . ,m, one has

sup
∥Rf∥≤ε
|θ|≤η

∥Qf −Q∆
(j)
cj ,dj

(Λf + θej)∥2 = lb′j .

Proof. Setting g = (f + θuj , θ) ∈ H × R, the quantity under consideration becomes

sup
∥R(j)g∥≤1
∥Sg∥≤1

∥Q(j)g −Q∆
(j)
cj ,dj

(Γg)∥2 = sup
∥R(j)g∥≤1
∥Sg∥≤1

∥Q(j)g −Q(j)∆j,aj ,bj (Γg)∥
2,

where we have borrowed from the previous proof the observation that Q ◦∆(j)
cj ,dj

= Q(j) ◦∆j,aj ,bj

with aj = cjε
2 and bj = djη

2. Thus, our quantity appears to be the worst-case error of Q(j)◦∆j,aj ,bj

for the estimation of Q(j)g from Γg given that ∥R(j)g∥ ≤ 1 and ∥Sg∥ ≤ 1. We know from the results

of Section 2 that the latter is equal to aj + bj = cjε
2 + djη

2, i.e., to lb′j , as announced.

Having these three lemmas at our disposal, we now turn to the justification of the main result of

this section.

Proof of Theorem 10. According to Lemma 11, there holds

inf
∆:Rm→Z

ErrQ,K,E(Λ,∆)2 ≥ lb′k,

where we recall that the index k is obtained as the maximizer of lb′j over all j = 1, . . . ,m. In order

to prove our result, we have to show that this infimum is actually achieved for the linear recovery

map Q ◦∆(k)
ck,dk

. To this end, we notice that the linearity of Q ◦∆(k)
ck,dk

guarantees that

ErrQ,K,E(Λ, Q ◦∆(k)
ck,dk

)2 = sup
∥Rf∥≤ε
∥e∥1≤η

∥Qf −Q∆
(k)
ck,dk

(Λf + e)∥2

= max
i=1,...,m

sup
∥Rf∥≤ε
|θ|≤η

∥Qf −Q∆
(k)
ck,dk

(Λf + θei)∥2

= max
i=1,...,m

sup
∥R(h−θui)∥≤ε

|θ|≤η

∥Q(h− θui)−Q∆
(k)
ck,dk

Λh∥2.

It has become familiar, relying on Polyak’s S-procedure, to transform the latter supremum into

inf
c,d≥0

cε2 + dη2 s.to c∥R(h− θui)∥2 + dθ2 ≥ ∥Q(h− θui)−Q∆
(k)
ck,dk

Λh∥2 for all h ∈ H and θ ∈ R,
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which we recognize as the quantity Mi,k. Now, calling upon the sufficient condition (38), we derive

that

ErrQ,K,E(Λ, Q ◦∆(k)
ck,dk

)2 = max
i=1,...,m

Mi,k = Mk,k = lb′k,

where the last step was due to Lemma 13. This equality completes the proof.

4.3 Side result

When the sufficient condition (38) fails, it is not anymore guaranteed that the linear map Q◦∆(k)
ck,dk

provides an optimal recovery map. Regardless, we can always solve a semidefinite program to obtain

a linear recovery map with minimal worst-case error, according to the result stated below with the

notation introduced in (39).

Proposition 14. The squared worst-case error of a linear recovery maps ∆lin : Rm → Z can be

computed as the optimal value of a semidefinite program, namely as

ErrQ,K,E(Λ,∆
lin)2 = min

γ∈R
a1,b1,...,am,bm≥0

γ s.to

[
Id Q(i) −∆linΓ

(Q(i) −∆linΓ)∗ aiR
(i)∗R(i) + biS

∗S

]
⪰ 0(44)

and ai + bi ≤ γ for all i = 1, . . . ,m.

This quantity can further be minimized over all linear maps ∆lin : Rm → Z, yielding a linear

recovery map with smallest worst-case error.

Proof. For a linear recovery map ∆lin : Rm → Z, we have

ErrQ,K,E(Λ,∆
lin)2 = max

i=1,...,m
sup

∥Rf∥≤ε
|θ|≤η

∥Qf −∆lin(Λf + θei)∥2

= inf
γ∈R

γ s.to sup
∥Rf∥≤ε
|θ|≤η

∥Qf −∆lin(Λf + θei)∥2 ≤ γ for all i = 1, . . . ,m.(45)

Note that the above i-dependent suprema can also be expressed as

sup
∥R(h−θui)∥≤ε

|θ|≤η

∥Q(h− θui)−∆linΛh∥2 = sup
∥R(i)g∥≤1
∥Sg∥≤1

∥Q(i)g −∆linΓg∥2

= inf
ai,bi≥0

ai + bi s.to ai∥R(i)g∥2 + bi∥Sg∥2 ≥ ∥Q(i)g −∆linΓg∥2 for all g ∈ H × R

= inf
ai,bi≥0

ai + bi s.to aiR
(i)∗R(i) + biS

∗S ⪰ (Q(i) −∆linΓ)∗(Q(i) −∆linΓ).
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Therefore, the i-dependent constraint in (45) is equivalent to the existence of ai, bi ≥ 0 such that

ai + bi ≤ γ and aiR
(i)∗R(i) + biS

∗S ⪰ (Q(i) −∆linΓ)∗(Q(i) −∆linΓ). As such, we arrive at

ErrQ,K,E(Λ,∆
lin)2 = inf

γ∈R
a1,b1,...,am,bm≥0

γ s.to aiR
(i)∗R(i) + biS

∗S ⪰ (Q(i) −∆linΓ)∗(Q(i) −∆linΓ)

and ai + bi ≤ γ for all i = 1, . . . ,m.

Using Schur complements, the above i-dependent semidefinite constraints can each be rephrased as[
Id Q(i) −∆linΓ

(Q(i) −∆linΓ)∗ aiR
(i)∗R(i) + biS

∗S

]
⪰ 0,

leading to ErrQ,K,E(Λ,∆
lin)2 being expressed as in (44). We finally note that the linear dependence

on ∆lin of the constraints in (44) allows us to further view the minimization of ErrQ,K,E(Λ,∆
lin)2

over all linear maps ∆lin as a semidefinite program.

We should remark that, even when η is small and the sufficient condition (38) holds, the linear

recovery map with smallest worst-case error obtained by semidefinite programming may differ from

the optimal recovery map Q ◦ ∆
(k)
ck,dk

, illustrating the nonuniqueness of optimal recovery maps.

Moreover, when η is not small, our numerical experiments (available from the reproducible files)

suggest that Q ◦∆(k)
ck,dk

may not be optimal among linear recovery maps anymore.

Appendix

In this appendix, we provide justifications for a few facts not fully explained in the main text.

Polyak’s S-procedure. Given quadratic functions q0, q1, . . . , qn, the statement q0(x) ≤ 0 when-

ever q1(x) ≤ 0, . . . , qn(x) ≤ 0 holds if there exists a1, . . . , an ≥ 0 such that q0 ≤ a1q1 + · · · anqn.
The following result, paraphrased from [Polyak, 1998, Theorem 4.1] establishes that this sufficient

condition is also necessary when n = 2 and the qi’s contain no linear terms.

Theorem 15. Suppose that N ≥ 3 and that quadratic functions q0, q1, q2 on RN take the form

qi(x) = ⟨Aix, x⟩+ αi for symmetric matrices A0, A1, A2 ∈ RN×N and scalars α0, α1, α2 ∈ R. Then

[q0(x) ≤ 0 whenever q1(x) ≤ 0 and q2(x) ≤ 0] ⇐⇒ [there exist a1, a2 ≥ 0 : q0 ≤ a1q1 + a2q2],

provided q1(x̃) < 0 and q2(x̃) < 0 for some x̃ ∈ RN (strict feasibility) and b1A1+ b2A2 ≻ 0 for some

b1, b2 ∈ R (positive definiteness).
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As established in [Contino, Fongi, and Muro, 2022, Proposition 5.2], such a result remains valid

when RN is replaced by an arbitrary Hilbert space H—even of infinite dimension—and the Ai’s

are self-adjoint bounded linear operators on H. This generalized version is the one called upon in

the main text.

Constrained Regularization. The goal here is to justify the identities (7) and (8), which are

consequences of the general observation below.

Lemma 16. Let A : H → H ′ and B : H → H ′′ be two bounded linear maps between Hilbert

spaces. Assume that there exists δ > 0 such that ∥Az∥ ≥ δ∥z∥ for all z ∈ B := ker(B), so that

A∗
BAB : B → B is invertible, where AB : B → H ′ denotes the restriction of A to B. Given a ∈ H ′

and b ∈ H ′′, the solution x♯ ∈ H to

minimize
x∈H

∥Ax− a∥2 s.to Bx = b

can be expressed, for any x such that Bx = b, as

x♯ = x−
[
A∗

BAB
]−1

A∗
B(Ax− a).

Proof. Writing the optimization variable x ∈ H as x = x − z with z ∈ B and the minimizer x♯ as

x♯ = x− z♯ with z♯ ∈ B, we see that z♯ is solution to

minimize
z∈B

∥Ax− a−Az∥2.

This solution is characterized by the orthogonality condition ⟨Ax− a−Az♯, Az⟩ = 0 for all z ∈ B,
which is equivalent to A∗

B(Ax − a − Az♯) = 0, or to A∗
BABz

♯ = A∗
B(Ax − a). Left-multiplying by[

A∗
BAB

]−1
to obtain z♯ and substituting into x♯ = x− z♯ yields the announced result.

It follows as a consequence that, if R1, . . . , Rn are Hilbert-valued bounded linear maps defined on H

such that there exists δ > 0 with max{∥R1z∥, . . . , ∥Rnz∥} ≥ δ∥z∥ for all z ∈ N := ker(Λ)5 and if

c1, . . . , cn > 0, then, for any y ∈ Rm,

∆c1,...,cn(y) :=

[
argmin

x∈H

n∑
i=1

ci∥Rix∥2 s.to Λx = y

]
(46)

= Λ†y −
[ n∑

i=1

ciR
∗
i,NRi,N

]−1( n∑
i=1

ciR
∗
i,NRi

)
Λ†y.

To arrive at this identity, which reduces to (7) when n = 2, it suffices to apply Lemma 16 with

A =


√
c1R1

...
√
cnRn

 , a = 0, B = Λ, b = y, x = Λ†y.

5This assumption simply reduces to ker(R1) ∩ . . . ∩ ker(Rn) ∩ ker(Λ) = {0} when H is finite dimensional.
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Furthermore, if y = Λx for some x ∈ H, taking x = x instead of x = Λ†y leads, after rearrangement,

to

x−∆c1,...,cnΛx =

[ n∑
i=1

ciR
∗
i,NRi,N

]−1( n∑
i=1

ciR
∗
i,NRi

)
x.

The latter reduces to (8) when n = 2.

Finally, we want to justify the statement made in Section 2 that ∆a,b(y) converges weakly to ∆a,0(y)

as b → 0 for any fixed y ∈ Rm. We shall do so under the working assumption that there exists δ > 0

such that max{∥Rz∥, ∥Sz∥} ≥ δ∥z∥ for all z ∈ N = ker(Λ)6. Supposing without loss of generality

that a = 1, we thus want to establish that

xb := argmin
x∈H

[
∥Rx∥2 + b∥Sx∥2 s.to Λx = y

]
⇀
b→0

x0 := argmin
x∈H

[
∥Sx∥2 s.to Λx = y, Rx = 0

]
.

If this was not the case, there would exist v ∈ H, ε > 0, and a sequence (bk)k≥1 decreasing to zero

such that |⟨xbk − x0, v⟩| ≥ ε for each k ≥ 1. Now, from the optimality property of xbk , we have

∥Rxbk∥2 + bk∥Sxbk∥2 ≤ ∥Rx0∥2 + bk∥Sx0∥2, which yields, in view of Rx0 = 0,

∥Rxbk∥
2 ≤ bk∥Sx0∥2 and ∥Sxbk∥

2 ≤ ∥Sx0∥2.

Thanks to our working assumption, it follows that the sequence (xbk − x0)k≥1 of elements in N
is bounded, and then so is the sequence (xbk)k≥1. As such, it possesses a subsequence weakly

converging to some x̃ ∈ H, say. We still write (xbk)k≥1 for this subsequence and we note that

|⟨x̃ − x0, v⟩| ≥ ε. Next, in view of Λxk = y for all k ≥ 1, we derive that Λx̃ = y from xbk ⇀ x̃.

From there, we also obtain Rxbk ⇀ Rx̃ and Sxbk ⇀ Sx̃, and in turn ∥Rx̃∥ ≤ lim inf ∥Rxbk∥ = 0

and ∥Sx̃∥ ≤ lim inf ∥Sxbk∥ = ∥Sx0∥. These facts imply that x̃ is also a minimizer for the program

defining x0, so that x̃ = x0 by uniqueness of the minimizer. This is of course incompatible with

|⟨x̃− x0, v⟩| ≥ ε and provides the required contradiction.
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