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Abstract

We investigate the recovery of almost s-sparse vectors x ∈ CN from undersampled and
inaccurate data y = Ax + e ∈ Cm by means of minimizing ‖z‖1 subject to the equality
constraints Az = y. If m � s ln(N/s) and if Gaussian random matrices A ∈ Rm×N are used,
this equality-constrained `1-minimization is known to be stable with respect to sparsity
defects and robust with respect to measurement errors. If m � s ln(N/s) and if Weibull
random matrices are used, we prove here that the equality-constrained `1-minimization
remains stable and robust. The arguments are based on two key ingredients, namely the
robust null space property and the quotient property. The robust null space property relies
on a variant of the classical restricted isometry property where the inner norm is replaced
by the `1-norm and the outer norm is replaced by a norm comparable to the `2-norm. For
the `1-minimization subject to inequality constraints, this yields stability and robustness
results that are also valid when considering sparsity relative to a redundant dictionary.
As for the quotient property, it relies on lower estimates for the tail probability of sums of
independent Weibull random variables.

1 Background and New Contributions

This article deals with the approximate recovery of signals using `1-minimizations. In classi-
cal works, the signals f are assumed to be compressible in an orthonormal basis, and they are
identified with their vectors x ∈ CN of coefficients on this orthonormal basis. The signals are
then acquired via the measurement vectors y = Ax + e ∈ Cm, m � N , where A ∈ Cm×N is a
measurement matrix (the same for all signals) and e ∈ Cm are error vectors. If the measure-
ment matrix A satisfies a restricted isometry condition of order s and if an estimate ‖e‖2 ≤ η

is available, then the reconstruction map given by the inequality-constrained `1-minimization

∆1,η(y) := argmin
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η

yields bounds on the reconstruction error of the type

‖x−∆1,η(Ax + e)‖1 ≤ C σs(x)1 +D
√
s η,(1)

‖x−∆1,η(Ax + e)‖2 ≤
C√
s
σs(x)1 +Dη,(2)
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see [3] for (2), [4] for (1) with η = 0, and [7] for a general statement valid for p ∈ [1, 2]. Here,

σs(x)1 := min{‖x− z‖1, card(supp(z)) ≤ s}

denotes the error of best `1-approximation of x by s-sparse vectors (i.e., vectors with at most
s nonzero entries). In particular, for exactly s-sparse vectors (i.e., σs(x)1 = 0) measured with
perfect accuracy (i.e., η = 0), the reconstruction is completely faithful (that is, ∆1,0(Ax) = x).
This framework has recently been generalized to signals that are compressible in a tight
frame, which is represented by a matrix B ∈ Cn×N satisfying BB∗ = Id. Namely, signals
f ∈ Cn are obtained from their vectors x ∈ CN of coefficients as

f = Bx ∈ Cn, where x := B∗f ∈ CN .

The signals are acquired via the measurement vectors y = Af + e = ABx + e ∈ Cm for some
measurement matrix A ∈ Cm×n with m < n and some error vectors e ∈ Cm. The bound (2)
was extended in [2] to ensure that, if m ≥ c s ln(eN/s), then with high probability on the draw
of a subgaussian random matrix A ∈ Cm×n, the bound

(3) ‖B∗(f − Λ1,η(Af + e))‖2 ≤
C√
s
σs(B

∗f)1 +Dη

holds for all f ∈ Cn and e ∈ Cm with ‖e‖2 ≤ η, where the reconstructed vector Λ1,η(Af + e)

is a minimizer of ‖B∗g‖1 subject to ‖Ag − y‖2 ≤ η. The bound (3) was established in the real
setting and was in fact stated for ‖f − Λ1,η(Af + e)‖2, but the formulations are equivalent for
tight frames, since

‖B∗g‖22 = 〈B∗g, B∗g〉 = 〈g, BB∗g〉 = 〈g,g〉 = ‖g‖22 for all g ∈ Cn.

In our considerations, we may quantify the measurement error via ‖e‖ ≤ η for some other
norm than the `2-norm, and we may replace B∗ by an unspecified B′ ∈ CN×n, so that the
reconstruction map is given by the inequality-constrained `1-minimization

(4) Λ1,η(y) := argmin
g∈Cn

‖B′g‖1 subject to ‖Ag − y‖ ≤ η.

In both basis and frame cases, the arguments are based on the restricted isometry property
of order s, which is typically fulfilled with high probability on the draw of an isotropic sub-
gaussian random matrix A ∈ Cm×N provided m ≥ c s ln(eN/s). In addition, for Gaussian
random matrices in the basis case, it is even known [15] that a prior estimation η of the
measurement error is not necessary to obtain bounds comparable to (2). Indeed, with high
probability on the draw of a Gaussian matrix A ∈ Cm×N , the reconstruction map given by the
equality-constrained `1-minimization1

∆1(y) := argmin
z∈CN

‖z‖1 subject to Az = y

1 When considering this minimization problem, it is implicitly assumed that it is feasible for all y ∈ Cm, i.e.,
that A is surjective.
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yields a bound on the reconstruction error of the type

(5) ‖x−∆1(Ax + e)‖2 ≤
C√
s
σs(x)1 +D ‖e‖2

holding for all x ∈ CN and all e ∈ Cm, as long as m ≥ c s ln(eN/s) (the additional condition
N ≥ m ln2(m), required in [15], is in fact not necessary). The case of Bernoulli matrices was
studied in [5], where a variation of (5) was established by altering the `2-norm on the right-
hand side. The results of [15, 5] were further complemented in [16] for matrices satisfying
the restricted isometry property. But for other matrices with m � s ln(eN/s) (for instance,
for matrices populated by independent Laplace random variables), the restricted isometry
property is not fulfilled [1], yet faithful reconstruction of exactly sparse vectors measured
with perfect accuracy via `1-minimization can be achieved, see [8].

The main objective of this article is to prove stability and robustness estimates of types (3)
and (5) for matrices without the restricted isometry property in the standard form. The article
reveals in particular that Gaussian matrices are not the only ones providing the estimate (5)
for equality-constrained `1-minimization. Weibull random matrices are used for this purpose.
The entries ai,j of such matrices A ∈ Rm×N are independent symmetric Weibull random vari-
ables with exponent r ≥ 1, i.e., their tail probabilities satisfy

Pr(|ai,j | ≥ t) = exp

(
−
(√

Γ(1 + 2/r) t

σr

)r)
, t ≥ 0.

These symmetric Weibull random variables have mean zero and variance σ2r . The value r = 1,
for instance, corresponds to Laplace random variables, and the value r = ∞ to Rademacher
random variables. Our definition of Weibull matrices requires that the squared `2-norm of
each column has mean equal to one, which we ensure by imposing

σr =
1√
m
.

We point out that the first absolute moment µr := E|ai,j | of the random variables ai,j is then

µr =
Γ(1 + 1/r)√
Γ(1 + 2/r)

1√
m
, so that µr ≥

1√
2
√
m
.

The article centers on the following two theorems. The first theorem incorporate estimates
similar to (3) as the particular case p = 2. Here, the matrix B′ ∈ CN×n in the definition (4) of
the reconstruction map Λ1,η equals the Moore–Penrose pseudo-inverse

B† := B∗(BB∗)−1.

Theorem 1. Let B ∈ Cn×N , n ≤ N , be a matrix with smallest and largest singular values
σmin and σmax. If A ∈ Rm×n is a Weibull random matrix with exponent 1 ≤ r ≤ 2, then with
probability at least 1− 2 exp(−c1m), the bounds

(6) ‖B†(f − Λ1,η(Af + e))‖p ≤
C

s1−1/p
σs(B

†f)1 +Ds1/p−1/2 η, 1 ≤ p ≤ 2,

hold for all f ∈ Cn and e ∈ Cm with ‖e‖2 ≤ η, as long as m ≥ c2 s ln(eN/s). The constants
c1, C > 0 are universal, while the constants c2, D > 0 depend on the ratio σmax/σmin.
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Theorem 1 extends the results of [2] to matrices that are not subgaussian. It also applies to
subgaussian matrices, and the statement for frames that are not necessarily tight, for p that
does not necessarily equal 2, and for the complex setting rather than the real setting are novel
in this context, too. The canonical basis case B = Id of Theorem 1 is needed to establish the
second theorem, which is concerned with the equality-constrained `1-minimization.

Theorem 2. If A ∈ Rm×N is a Weibull random matrix with exponent 1 ≤ r ≤ 2, then with
probability at least 1− 3 exp(−c1m), the bounds

(7) ‖x−∆1(Ax + e)‖p ≤
C

s1−1/p
σs(x)1 +Ds

1/p−1/2
∗ ‖e‖2, 1 ≤ p ≤ 2,

are valid for all x ∈ CN and all e ∈ Cm, as long as N ≥ c2m and s ≤ c3 s∗, s∗ := m/ ln(eN/m).
The constants c1, c2, c3, C,D > 0 are absolute constants.

It is natural to wonder if Theorem 2 extends from the basis case to the frame case, but this
question provides additional challenges, and it is not addressed here. The article is divided in
three remaining sections. In Section 2, two properties that must be fulfilled for the estimates
of Theorems 1 and 2 to hold are isolated: the robust null space property and the quotient
property. In the course of the article, these necessary properties are shown to be sufficient,
too. Sections 3 and 4 focus on the inequality-constrained and on the equality-constrained
`1-minimizations, respectively. They are organized on the same model: a first subsection
based on deterministic arguments proves the sufficiency of one of the two properties, it is then
followed by a subsection containing auxiliary results, and finally probabilistic arguments are
used to show that the property under consideration holds for random matrices. Although the
attention is put on Weibull random matrices, a subsection on subgaussian random matrices
is also included in Section 3.

2 Two Necessary Properties

The two ingredients at the core of Theorems 1 and 2 are the robust null space property and
the quotient property. Our strategy consists in proving that the robust null space property
guarantees the stability and robustness of the inequality-constrained `1-minimization, that
the combination of the robust null space property and the quotient property guarantees the
stability and robustness of the equality-constrained `1-minimization, and that the two prop-
erties are satisfied with high probability for Weibull random matrices. As an intuitive way
to understand the two properties, it is worth pointing out that they must be fulfilled for the
prospective estimates to hold.

Firstly, considering Theorem 1 where we deliberately replace in (6) the pseudo-inverse B† by
an unspecified right-inverse B′ and the norm ‖e‖2 by an unspecified norm ‖e‖, the prospective
bound reads

(8) ‖B′(f − Λ1,η(Af + e))‖p ≤
C

s1−1/p
σs(B

′f)1 +D s1/p−1/2 η
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for all f ∈ Cn and all e ∈ Cm with ‖e‖ ≤ η. Given v ∈ Cn, if we set f = v, e = −Av, and
η = ‖Av‖, so that B′Λ1,η(Af + e) = 0, then (8) yields

‖B′v‖p ≤
C

s1−1/p
σs(B

′v)1 +Ds1/p−1/2 ‖Av‖.

For any index set S of size at most s, the inequalities ‖(B′v)S‖p ≤ ‖B′v‖p and σs(B
′v)1 ≤

‖(B′v)S‖1 now give

‖(B′v)S‖p ≤
C

s1−1/p
‖(B′v)S‖1 +Ds1/p−1/2 ‖Av‖.

This is the `p-robust null space property of order s relative to the norm s1/p−1/2 ‖ · ‖. It could
be seen that, in the canonical basis case where B′ = Id, this property also follows from the
prospective estimate (7) by taking x = v and e = −Av.

Definition 3. Given p ≥ 1, the matrices A ∈ Cm×n and B′ ∈ CN×n are said to satisfy the
`p-robust null space property of order s with constant ρ > 0 and τ > 0 relative to a norm ‖ · ‖
on Cm if

(9) ‖(B′v)S‖p ≤
ρ

s1−1/p
‖(B′v)S‖1+τ ‖Av‖ for all v ∈ Cn and all S ⊆ [N ] with card(S) ≤ s.

The requirement ρ < 1 is implicitly added in informal mentions of the robust null space
property. This requirement is best understood by specifying the `1-robust null space property
to v ∈ kerA to obtain the null space property

(10) ‖(B′v)S‖1 < ‖(B′v)S‖1 for all v ∈ kerA \ {0} and all S ⊆ [N ] with card(S) ≤ s.

This condition easily implies that every f ∈ Cn such that B′f is s-sparse uniquely minimizes
‖B′g‖1 subject to Ag = Af . Indeed, if g ∈ Cn, g 6= f , is such that Ag = Af , then (10) applied to
v := f − g ∈ kerA \ {0} and S = supp(B′f) yields

‖B′g‖1=‖(B′g)S‖1+‖(B′g)S‖1=‖B′f − (B′v)S‖1+‖(B′v)S‖1≥‖B
′f‖1 − ‖(B′v)S‖1+‖(B′v)S‖1

> ‖B′f‖1.

In the basis case where B′ = B−1, the converse is well-known. Precisely, the unique recovery
via `1-minimization of every f ∈ Cn such that B′f is s-sparse implies the null space property.
Indeed, for v ∈ kerA and S ⊆ [N ] with card(S) = s, the equality 0 = Av = ABB′v yields
Af = Ag with f := B(B′v)S and g := −B(B′v)S , but since the vector B′f = (B′v)S is s-sparse,
it must indeed have a smaller `1-norm than B′g = −(B′v)S .

Secondly, considering Theorem 2 where we deliberately replace in (7) the norm ‖e‖2 by an
unspecified norm ‖e‖, the prospective bound reads

‖x−∆1(Ax + e)‖p ≤
C

s1−1/p
σs(x)1 +Ds

1/p−1/2
∗ ‖e‖.
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If we first set x = 0, so that ∆1(Af + e) = ∆1(e), this bound taken for p = 1 yields

‖∆1(e)‖1 ≤ D
√
s∗ ‖e‖,

which is equivalent to the existence of v ∈ CN with Av = e and ‖v‖1 ≤ D
√
s∗‖e‖, or to an

equality between the norm of e and the norm of its set of preimages in the quotient space of
`N1 by kerA, namely

‖[e]‖A := inf{‖v‖1, Av = e} ≤ D
√
s∗ ‖e‖.

This explains the terminology `1-quotient property. As a generalization to p ≥ 1, we introduce
the `p-quotient property as follows.2

Definition 4. Given p ≥ 1, the matrix A ∈ Cm×N is said to satisfy the `p-quotient property
with constant d relative to a norm ‖ · ‖ on Cm if, with s∗ := m/ ln(eN/m),

for all e ∈ Cm, there exists v ∈ CN with Av = e and ‖v‖p ≤ d s1/p−1/2∗ ‖e‖.

3 Inequality-Constrained `1-Minimization

This section is devoted to the proof of Theorem 1, whose special case B = Id will be needed
in Section 4. The deterministic argument showing that the estimate (6) is a consequence of
the robust null space property are presented in Subsection 3.1. Some preliminary lemmas
involved in the probabilistic justification that random matrices satisfy the robust null space
property are collected in Subsection 3.2. The case of subgaussian matrices is then revisited
in Subsection 3.3. Finally, Subsection 3.4 deals with Weibull matrices, and more generally
matrices whose entries are independent pregaussian (more often called ψ1) random variables.

3.1 Sufficiency of the Robust Null Space Property

The result below outlines the relevance of the `p-robust null space property when generalizing
estimate (3) to p 6= 2. It is stated for an unspecified B′ ∈ CN×n rather than the pseudo-inverse
B∗ of a tight frame B ∈ Cn×N .

Theorem 5. Given q ≥ 1, suppose that the matrices A ∈ Cm×n and B′ ∈ CN×n satisfy the
`q-robust null space property of order s with constants 0 < ρ < 1 and τ > 0 relative to a norm
‖ · ‖ on Cm. Then, for any 1 ≤ p ≤ q, the bounds

‖B′(f − Λ1,η(Af + e))‖p ≤
C

s1−1/p
σs(B

′f)1 +Ds1/p−1/q η,

hold for all f ∈ Cn and e ∈ Cm with ‖e‖ ≤ η. The constant C,D > 0 depend only on ρ and τ .
2 Note in particular that a matrix with the quotient property is automatically sujective.
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Proof. We shall prove the stronger statement that, for any f ,g ∈ Cn,

(11) ‖B′(f − g)‖p ≤
C

s1−1/p
(
‖B′g‖1 − ‖B′f‖1 + 2σs(B

′f)1
)

+Ds1/p−1/q ‖A(f − g)‖.

Then, choosing g := Λ1,η(Af + e), the announced result follows (with different constants) from
the inequality ‖B′g‖1 ≤ ‖B′f‖1 and the inequality ‖A(f − g)‖ ≤ ‖Af − y‖ + ‖Ag − y‖ ≤ 2η,
where y = Af +e. We notice first that, for 1 ≤ p ≤ q, the `q-robust null space property of order
s relative to ‖ · ‖ implies the `p-robust null space property of order s relative to s1/p−1/q ‖ · ‖,
by virtue of the inequality ‖(B′v)S‖p ≤ s1/p−1/q ‖(B′v)S‖q. Let us now isolate the case p = 1.
Here, the `1-robust null space property applied to the vector v := g − f ∈ Cn and to an index
set S ⊆ [N ] of s largest absolute entries of B′v reads

(12) ‖(B′v)S‖1 ≤ ρ ‖(B′v)S‖1 + τ s1−1/q ‖Av‖.

We write

‖B′f‖1 = ‖(B′f)S‖1 + ‖(B′f)S‖1 ≤ ‖(B
′v)S‖1 + ‖(B′g)S‖1 + ‖(B′f)S‖1,

‖(B′v)S‖1 ≤ ‖(B
′g)S‖1 + ‖(B′f)S‖1.

After summation and rearrangement, we obtain

(13) ‖(B′v)S‖1 ≤ ‖(B
′v)S‖1 + ‖B′g‖1 − ‖B′f‖1 + 2‖(B′f)S‖1.

Combining (13) and (12) gives, after rearrangement,

(14) ‖(B′v)S‖1 ≤
1

1− ρ

(
‖B′g‖1 − ‖B′f‖1 + 2‖(B′f)S‖1 + τ s1−1/q ‖Av‖

)
.

Using (12) once again, together with (14), we deduce

‖B′v‖1 = ‖(B′v)S‖1 + ‖(B′v)S‖1 ≤ (1 + ρ)‖(B′v)S‖1 + τ s1−1/q ‖Av‖

≤ 1 + ρ

1− ρ

(
‖B′g‖1 − ‖B′f‖1 + 2‖(B′f)S‖1

)
+

2τ

1− ρ
s1−1/q ‖Av‖.(15)

With C := (1+ρ)/(1−ρ) and D := 2τ/(1−ρ), we recognize the stated inequality (11) for p = 1.
Interestingly, it could be conversely verified that (11) for p = 1 implies the `1-robust null space
property. Now, for the general case 1 ≤ p ≤ q, we use the classical inequality

σs(B
′v)p ≤

1

s1−1/p
‖B′v‖1,

as well as the `p-robust null space property. Thus, we obtain

‖B′v‖p ≤ ‖(B′v)S‖p + ‖(B′v)S‖p ≤
1

s1−1/p
‖B′v‖1 +

ρ

s1−1/p
‖(B′v)S‖1 + τ s1/p−1/q ‖Av‖

≤ 1 + ρ

s1−1/p
‖B′v‖1 + τ s1/p−1/q ‖Av‖.

It remains to substitute (15) into the latter to deduce the desired inequality (11).
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Remark. If we impose η = 0, thus considering the reconstruction map given by the equality-
constrained `1-minimization

Λ1(y) := argmin
g∈Cn

‖B′g‖1 subject to Ag = y,

we see that if A and B′ satisfy the `p-robust null space property of order s, then the triple
(A,B′,Λ1) is mixed (`p, `1)-instance optimal of order s with constant C > 0 in the sense of [4],
i.e.,

(16) ‖B′(f − Λ1(Af))‖p ≤
C

s1−1/p
σs(B

′f)1 for all f ∈ Cn.

3.2 Auxiliary Lemmas

We now isolate two simple results used in the next two subsections. The first result is an
observation concerning a modified form of the robust null space property. This form emerges
more naturally than the original form of the robust null space property in our upcoming
proofs.

Lemma 6. Given p ≥ 1, the matrices A ∈ Cm×n and B′ ∈ CN×n satisfy the `p-robust null
space property of order s for some constants 0 < ρ < 1 and τ > 0 relative to a norm ‖ · ‖ as
soon as there exist constants 0 < ρ′ < 1/2 and τ ′ > 0 such that

(17) ‖(B′v)S‖p ≤
ρ′

s1−1/p
‖B′v‖1 + τ ′‖Av‖ for all v ∈ Cn and all S ⊆ [N ] with card(S) = s.

Proof. Substituting the bound

‖B′v‖1 = ‖(B′v)S‖1 + ‖(B′v)S‖1 ≤ s
1−1/p‖(B′v)S‖p + ‖(B′v)S‖1

into (17) and rearranging gives

‖(B′v)S‖p ≤
ρ′

(1− ρ′)s1−1/p
‖(B′v)S‖1 +

τ ′

1− ρ′
‖Av‖.

We recognize the `p-robust null space property (9) with τ := τ ′/(1 − ρ′) and ρ := ρ′/(1 − ρ′).
The fact that ρ < 1 follows from ρ′ < 1/2.

The second result is an observation that enables to control ‖(B†v)S‖2 in terms of ‖B(B†v)S‖2.
It is useful in the upcoming arguments based on the restricted isometry property, since these
are tailored to produce bounds on ‖B(B†v)S‖2. It is essential here to enforce B′ to coincide
with the pseudo-inverse

B† := B∗(BB∗)−1.

We recall that the smallest and largest singular values of B are simply denoted σmin and σmax.
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Lemma 7. For any v ∈ Cn, if S denotes an index set of s largest absolute entries of B†v, then

‖(B†v)S‖2 ≤
√
s′/s

σmin
‖B(B†v)S‖2 +

√
s/s′

2

‖B†v‖1√
s

for all integers s′ ≥ s.

Proof. Let S′ denote an index set of s′ largest absolute entries of B†v. We split ‖(B†v)S‖22 as

‖(B†v)S‖22 = 〈B†v, (B†v)S〉 = 〈B†
(
B(B†v)S′ +B(B†v)S′

)
, (B†v)S〉

= 〈(BB∗)−1B(B†v)S′ , B(B†v)S〉+ 〈B†B(B†v)S′ , (B
†v)S〉

≤ ‖(BB∗)−1B‖2→2‖(B†v)S′‖2‖B(B†v)S‖2 + ‖B†B‖2→2‖(B†v)S′‖2‖(B
†v)S‖2.

We notice that the singular values of (BB∗)−1B are the inverses of the singular values of B,
and that the nonzero singular values of B†B are all equal to one, so that

(18) ‖(B†v)S‖22 ≤
1

σmin
‖(B†v)S′‖2‖B(B†v)S‖2 + ‖(B†v)S′‖2‖(B

†v)S‖2.

Because of the way S was chosen, we have

(19)
1

s′
‖(B†v)S′‖22 ≤

1

s
‖(B†v)S‖22, so that ‖(B†v)S′‖2 ≤

√
s′

s
‖(B†v)S‖2.

Because of the way S′ was chosen (see [9, Lemma 7] or [6, Theorem 2]), we have

(20) ‖(B†v)S′‖2 ≤
1

2
√
s′
‖B†v‖1.

The result follows by substituting (19) and (20) into (18) and simplifying by ‖(B†v)S‖2.

3.3 Proof of the Robust Null Space Property for Subgaussian Matrices

This subsection serves as a preamble to the next subsection by providing a version of Theo-
rem 1 for subgaussian matrices instead of Weibull matrices. For tight frames and p = 2, this
is exactly the result of [2]. In fact, we follow the article [2] by introducing the B-restricted
isometry constant δs of order s for A ∈ Cm×n as the smallest δ ≥ 0 such that

(1− δ)‖Bz‖22 ≤ ‖ABz‖22 ≤ (1 + δ)‖Bz‖22 for all s-sparse z ∈ CN .

As in the classical case B = Id, it can be shown that, for any z, z′ ∈ CN such that Bz and Bz′

are disjointly supported, we have

|〈ABz, ABz′〉| ≤ δt‖Bz‖2‖Bz′‖2, t := card(supp(z) ∪ supp(z′)).

As explained in [2], with high probability on the draw of a subgaussian matrix A ∈ Cm×n,
the B-restricted isometry constant δ2s can be made smaller than a prescribed threshold δ∗
provided m ≥ c s ln(eN/s), where the constant c depends on δ∗. A variant of Theorem 1 then
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follows from the fact that making the threshold δ∗ small enough implies the validity of the
estimates (6). When σmax = σmin and p = 2, this was proved with δ∗ = 0.08 in [2] using cone
and tube constraints formalism introduced in [3]. The argument below provides an alternative
approach based on the robust null space property. As in [2], no serious attempt was made to
reduce the threshold δ∗ further. This could be achieved by adapting elaborate techniques used
in the case B = Id, such as the ones of [13].

Proposition 8. Given B ∈ Cn×N , if the B-restricted isometry constant δ2s of a measurement
matrix A ∈ Cm×n satisfies

δ2s <
σmin

9σmax
,

then the matrices A and B† satisfy the `2-robust null space property of order s relative to the
`2-norm on Cm and with constants 0 < ρ < 1 and τ > 0 depending only on δ2s.

Proof. Let v ∈ Cn, and let S = S0 denote an index set of s largest absolute entries of B†v. Let
us further introduce the index sets S1 of next s largest absolute entries, S2 of next s largest
absolute entries, etc. It is classical to observe that

‖(B†v)Sk
‖2 ≤

‖(B†v)Sk−1
‖1√

s
, k ≥ 1,

so that a summation gives

(21)
∑
k≥1
‖(B†v)Sk

‖2 ≤
‖B†v‖1√

s
.

We now use the properties of the B-restricted isometry constant to derive

‖B(B†v)S0‖22 ≤
1

1− δs
‖AB(B†v)S0‖22 =

1

1− δs
〈AB(B†v)S0 , ABB

†v −AB(B†v)S0
〉

=
1

1− δs
〈AB(B†v)S0 , Av〉 −

1

1− δs

∑
k≥1
〈AB(B†v)S0 , AB(B†v)Sk

〉

≤ 1

1− δs
‖AB(B†v)S0‖2‖Av‖2 +

1

1− δs

∑
k≥1

δ2s‖B(B†v)S0‖2‖B(B†v)Sk
‖2

≤
√

1 + δs
1− δs

‖B(B†v)S0‖2‖Av‖2 +
δ2s

1− δs
‖B(B†v)S0‖2

∑
k≥1

σmax‖(B†v)Sk
‖2.

Using (21) and simplifying by ‖B(B†v)S0‖2 gives

‖B(B†v)S0‖2 ≤
√

1 + δs
1− δs

‖Av‖2 +
δ2s

1− δs
σmax

‖B†v‖1√
s

.

In view of Lemma 7 with s′ = 4s, we finally obtain

‖(B†v)S‖2 ≤
2
√

1 + δs
σmin(1− δs)

‖Av‖2 +
(2σmax

σmin

δ2s
1− δs

+
1

4

)‖B†v‖1√
s

.
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According to Lemma 6 and Theorem 5, it only remains to verify that

ρ′ :=
2σmax

σmin

δ2s
1− δs

+
1

4
<

1

2
.

In view of δs ≤ δ2s and of σmax ≥ σmin, this is guaranteed by δ2s < σmin/(9σmax).

3.4 Proof of the Robust Null Space Property for Weibull Matrices

The previous arguments do not cover Weibull matrices, since these matrices do not satisfy
the restricted isometry property with the optimal number of measurements. Indeed, with
r = 1 and B = Id, it was observed in [1] that the restricted isometry property necessitates
m ≥ c s ln2(eN/s). Nonetheless, the robust null space property extends to Weibull matrices,
as proved in Proposition 10 below. The justification is based on the results of [8], which are
applicable since a symmetric Weibull random matrix ξ is pregaussian in the sense that there
exist constants b, c > 0 such that

Pr(|ξ| ≥ t) ≤ b exp(−ct), t ≥ 0.

The key idea of [8] was to modify the restricted isometry property by replacing the inner norm
by the `1-norm and by allowing the outer norm to depend on the probability distributions of
the entries of A. The results, adapted to the present situation, are summarized in the lemma
below. Actually, only the case B = Id was considered in [8], but the following generalization is
simple enough to be left out — it duplicates the steps of [8], namely concentration inequality
and covering arguments for (22), application of Khintchine’s inequality (see e.g. [11]) for (24).

Lemma 9. Let B ∈ Cn×N and δ∗ > 0 be given. If A ∈ Rm×n is a Weibull random matrix
with exponent r ≥ 1, then there exist constants c1, c2 > 0 depending only on δ∗ such that the
property

(22) (1− δ∗) �Bz� ≤ ‖ABz‖1 ≤ (1 + δ∗) �Bz�, all s-sparse z ∈ CN ,

holds with probability at least 1 − 2 exp(−c1m), as long as m ≥ c2 s ln(eN/s). The outer norm
is defined by

(23) � v� := m

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣ n∑
j=1

tjvj

∣∣∣∣fr(t1) · · · fr(tn) dt1 · · · dtn, v ∈ Cn,

where fr denotes the probability density function of the entries of A. This norm is comparable
to the Euclidean norm: if µr and σr denote the first absolute moment and the variance of fr,
then, for all v ∈ Cn,

(24)
µrm√

8
‖v‖2 ≤ �v� ≤ σrm ‖v‖2, hence

√
m

4
‖v‖2 ≤ �v� ≤

√
m ‖v‖2.
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With this lemma at hand, we can now state and prove the main result of this subsection.
The proof follows the arguments of [8, Theorem 5.1], which established (in the case B = Id)
that the modified restricted isometry property (22) and the equivalence of norms (24) together
imply the `2-robust null space property — in fact, only the ideal case of exactly sparse vectors
measured with perfect accuracy was formally treated, while stability and robustness were
stated without proof there.

Proposition 10. Let B ∈ Cn×N , n ≤ N , be a matrix with smallest and largest singular
values σmin and σmax. If A ∈ Cm×n is a Weibull random matrix with exponent r ≥ 1, then with
probability at least 1 − 2 exp(−c1m), the matrices A and B† satisfy the `2-robust null space
property of order s with constants 0 < ρ < 1 and τ > 0, as long as m ≥ c2 s ln(eN/s). The
constants ρ and c1 are universal, while τ depends on σmin and c2 depends on σmax/σmin.

Proof. Let us set

t :=
(15σmax

σmin

)2
s and δ∗ :=

1

9
.

Under the hypotheses of Proposition 10, Lemma 9 guarantees that

(25) (1− δ∗) �Bz� ≤ ‖ABz‖1 ≤ (1 + δ∗) �Bz � for all t-sparse z ∈ CN .

Let us now consider a vector v ∈ CN , and let S denote an index set of s largest absolute entries
of B†v. Let us further introduce the index sets T0 ⊇ S of t largest absolute entries of B†v, T1
of next t largest absolute entries, etc. We observe that

(26)
∑
k≥1
‖(B†v)Tk‖2 ≤

‖B†v‖1√
t

.

We use properties (25), (24), and (26) to derive

�B(B†v)T0� ≤
1

1− δ∗
‖AB(B†v)T0‖1 =

1

1− δ∗
‖ABB†v −AB(B†v)T0‖1

≤ 1

1− δ∗

[
‖Av‖1 +

∑
k≥1
‖AB(B†v)Tk‖1

]

≤ 1

1− δ∗

[
‖Av‖1 +

∑
k≥1

(1 + δ∗) �B(B†v)Tk �
]

≤ 1

1− δ∗

[
‖Av‖1 + (1 + δ∗)

∑
k≥1

√
m‖B(B†v)Tk‖2

]

≤ 1

1− δ∗

[
‖Av‖1 + (1 + δ∗)

√
m
∑
k≥1

σmax‖(B†v)Tk‖2
]

≤ 1

1− δ∗

[
‖Av‖1 + (1 + δ∗)

√
mσmax

‖B†v‖1√
t

]
.

12



Using (24) once again, we arrive at

‖B(B†v)T0‖2 ≤
4

1− δ∗
‖Av‖1√

m
+

4(1 + δ∗)

1− δ∗
σmax

‖B†v‖1√
t

.

In view of Lemma 7 with t taking the role of both s and s′, we obtain

‖(B†v)T0‖2 ≤
1

σmin
‖B(B†v)T0‖2 +

1

2

‖B†v‖1√
t

≤ 4

σmin(1− δ∗)
‖Av‖1√

m
+
(4(1 + δ∗)

1− δ∗

√
s

t

σmax

σmin
+

1

2

√
s

t

)‖B†v‖1√
s

.

Substituting the values of t and δ∗, while using ‖(B†v)S‖2 ≤ ‖(B†v)T0‖2, we conclude

‖(B†v)S‖2 ≤ ρ′
‖B†v‖1√

s
+ τ ′
‖Av‖1√

m
with ρ′ ≈ 1/3 < 1/2 and τ ′ = 4.5/σmin.

Taking ‖Av‖1/
√
m ≤ ‖Av‖2 into account, Lemma 6 finally implies the `2-robust null space

property relative to the `2-norm.

Remark. The proof actually shows the stronger statement that Weibull matrices satisfy the
`2-robust null space property relative to the norm ‖ · ‖1/

√
m.

Remark. These arguments would also apply to subgaussian matrices. The arguments of the
previous subsection and of the present subsection would both lead to sufficient conditions in
terms of restricted isometry constants that read δt < δ∗ with

t = c1 s, δ∗ = c2
σmax

σmin
, and t = c1

(σmax

σmin

)2
s, δ∗ = c2,

respectively. Both conditions are met when m/ ln(eN/m) ≥ c(δ∗) t. It is possible to show that
c(δ∗) = c3/δ

2
∗ in the subgaussian case, while the same behavior is expected in the Weibull

case. If so, the two sufficient conditions are not essentially different, since they both require
the number of measurement to satisfy

m

ln(eN/m)
≈ c1 c3

c22

(σmax

σmin

)2
s.

4 Equality-Constrained `1-Minimization

This section is devoted to the proof of Theorem 2. The deterministic arguments showing that
the estimate (7) is a consequence of the robust null space property and the quotient property
combined are presented in Subsection 4.1. The probabilistic arguments showing that Weibull
matrices satisfy the quotient property are presented in Subsection 4.3, after some auxiliary
lemmas are collected in Subsection 4.2.
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4.1 Sufficiency of the Robust Null Space and Quotient Properties

The result below outlines the relevance of the `1-quotient property when generalizing esti-
mates (5) to random matrices that are not Gaussian. The arguments are essentially contained
in [15], although they were not isolated because the restricted isometry property was assumed
throughout. For our purpose, it is crucial to replace this assumption by the weaker robust null
space property, since Weibull matrices do not satisfy the restricted isometry property in the
optimal regime m � s ln(eN/s).

Theorem 11. Given q ≥ 1, suppose that the matrix A ∈ Cm×N satisfies the `1-quotient prop-
erty with constant d > 0 relative to a norm ‖ · ‖ on Cm, as well as the `q-robust null space
property of order s = c s∗ with constants 0 < ρ < 1 and τ > 0 relative to the norm s

1/q−1/2
∗ ‖ · ‖.

Then, for any 1 ≤ p ≤ q, the bounds

‖x−∆1(Ax + e)‖p ≤
C

s1−1/p
σs(x)1 +Ds

1/p−1/2
∗ ‖e‖

hold for all x ∈ CN and all e ∈ Cm. The constants C,D > 0 depend only on ρ, τ , c, and d.

This theorem is a consequence of the following two lemmas and of the observation that the
`q-robust null space property of order s = c s∗ relative to s1/q−1/2∗ ‖ · ‖ implies the `p-robust null
space property of order s = c s∗ relative to s1/p−1/2∗ ‖ · ‖ for any p ≤ q.

Lemma 12. Given q ≥ 1, suppose that A ∈ Cm×N satisfies the `1-quotient property with
constant d > 0 relative to a norm ‖ · ‖, as well as the `q-robust null space property of order
s = c s∗ with constant ρ > 0 and τ > 0 relative to the norm s

1/q−1/2
∗ ‖ · ‖. Then A also satisfies

the simultaneous (`1, `q)-quotient property with constants d, d′ > 0 relative to ‖·‖, in the sense
that

for all e ∈ Cm, there exists v ∈ CN with Av = e and

{
‖v‖q ≤ d′ s1/q−1/2∗ ‖e‖,
‖v‖1 ≤ d s1/2∗ ‖e‖.

Proof. Let us consider a vector e ∈ Cm. By the `1-quotient property, there exists v ∈ CN such
that Av = e and ‖v‖1 ≤ d s1/2∗ ‖e‖. We shall prove that ‖v‖q ≤ d′ s1/q−1/2∗ ‖e‖ for some constant
d′ > 0. For an index set S of s largest absolute entries of v, we have

‖vS‖q = σs(v)q ≤
1

s1−1/q
‖v‖1.

Moreover, in view of the `q-robust null space property of order s, we have

‖vS‖q ≤
ρ

s1−1/q
‖vS‖1 + τs1/q−1/2‖Av‖ ≤ ρ

s1−1/q
‖v‖1 + τ ′s

1/q−1/2
∗ ‖e‖.

It follows that
‖v‖q ≤ ‖vS‖q + ‖vS‖q ≤

1 + ρ

s1−1/q
‖v‖1 + τ ′s

1/q−1/2
∗ ‖e‖.

The estimate ‖v‖1 ≤ d s1/2∗ ‖e‖ finally yields the required result.
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The next lemma involves the notion of instance optimality, recalled in (16), taken for B′ = Id.

Lemma 13. Given q ≥ 1, suppose that the matrices A ∈ Cm×N satisfy the simultaneous
(`1, `q)-quotient property relative to a norm ‖ · ‖, and that a reconstruction map ∆ : Cm → CN

makes the pair (A,∆) mixed (`q, `1)-instance optimal of order c s∗ with constant C > 0. Then,
for s ≤ c s∗, the bound

‖x−∆(Ax + e)‖q ≤
C

s1−1/q
σs(x)1 +Ds

1/q−1/2
∗ ‖e‖, D = Cc−1/2d+ c1/2−1/qd′,

holds for all x ∈ CN and all e ∈ Cm.

Proof. For e ∈ Cm, the simultaneous (`1, `q)-quotient property yields the existence of v ∈ CN

such that Av = e and

(27) ‖v‖q ≤ d′ s1/q−1/2∗ ‖e‖, ‖v‖1 ≤ d s1/2∗ ‖e‖.

Next, for x ∈ CN , the instance optimality of order s = c s∗ yields

‖x−∆(Ax + e)‖q = ‖x−∆(A(x + v))‖q ≤ ‖x + v −∆(A(x + v))‖q + ‖v‖q

≤ C

s1−1/q
σs(x + v)1 + ‖v‖q ≤

C

s1−1/q
(
σs(x)1 + ‖v‖1

)
+ ‖v‖q.

Substituting (27) into the latter gives the required result for s = c s∗, and the result for s ≤ c s∗
follows by monotonicity.

4.2 Auxiliary Lemmas

In order to derive Theorem 2 from Theorem 11, it remains to prove that Weibull random
matrices satisfy the `1-quotient property, since the `2-robust null space property was already
established in Proposition 10. The proof requires some preliminary results presented in this
section. The first result is a rephrasing of the quotient property in a more amenable form. This
observation was implicitly used in the two articles [15, 5] concerning stability and robustness
of the equality-constrained `1-minimization. It only differs in the fact that the norm on CN is
not specified here. A proof is included for completeness.

Lemma 14. Given p ≥ 1, the matrices A ∈ Cm×N satisfies the `p-quotient property with
constant d relative to a norm ‖ · ‖ on Cm if and only if

(28) ‖u‖∗ := max
‖e‖=1

|〈e,u〉| ≤ d s1/p−1/2∗ ‖A∗u‖p∗ for all u ∈ Cm,

where s∗ = m/ ln(eN/m) and where p∗ := p/(p− 1) denotes the conjugate exponent of p.
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Proof. Suppose first that the `p-quotient property holds. We consider u ∈ Cm, and we write
‖u‖∗ = |〈e,u〉| with ‖e‖ = 1. By the `p-quotient property, there exists v ∈ CN such that Av = e

and ‖v‖p ≤ d s1/p−1/2∗ . We then derive

‖u‖∗ = |〈e,u〉| = |〈Av,u〉| = |〈v, A∗u〉| ≤ ‖v‖p‖A∗u‖p∗ ≤ d s1/p−1/2∗ ‖A∗u‖p∗ .

This shows the validity of (28).
Suppose conversely that (28) holds. We assume first that p > 1. For a nonzero e ∈ Cm, let
v ∈ CN be a minimizer of ‖z‖p subject to Az = e.3 Our goal is to show that ‖v‖p ≤ ds1/p−1/2∗ ‖e‖.
We fix a vector u ∈ kerA for a while. Given τ = te−iθ with t > 0 small enough to have v+τu 6= 0,
we consider the vector wτ ∈ CN whose entries are given by

wτj :=
sgn(uj + τvj) |uj + τvj |p−1

‖v + τu‖p−1p

, j ∈ [N ].

We notice that 〈wτ ,v + τu〉 = ‖v + τu‖p and that ‖wτ‖p∗ = 1. We also notice that the vector
w := limτ→0w

τ is well-defined and independent of u, thanks to the assumption p > 1. It
satisfies 〈w,v〉 = ‖v‖p with ‖w‖p∗ = 1. The definition of v yields

<〈wτ ,v〉 ≤ ‖v‖p ≤ ‖v + τu‖p = <〈wτ ,v + τu〉,

so that <〈wτ , e−iθu〉 ≥ 0. Taking the limit as t tends to zero, we obtain independently of θ
that eiθ<〈w,u〉 ≥ 0, hence 〈w,u〉 = 0. Since this is true for all u ∈ kerA, we deduce that
w ∈ (kerA)⊥ = imA∗. Therefore we can write w = A∗y for some y ∈ Cm. According to (28),
we have ‖y‖∗ ≤ ds1/p−1/2∗ . It follows that

‖v‖p = 〈w,v〉 = 〈A∗y,v〉 = 〈y, Av〉 = 〈y, e〉 ≤ ‖y‖∗‖e‖ ≤ ds1/p−1/2∗ ‖e‖.

This establishes the `p-quotient property in the case p > 1. We use some limiting arguments
for the case p = 1. Precisely, we consider a sequence of numbers pn > 1 converging to 1. For
each n, in view of ‖A∗e‖∞ ≤ ‖A∗e‖p∗n , the property (28) for p = 1 implies a similar property for
p = pn provided d is changed to d′ := ds

1/p∗n
∗ . Given e ∈ Cm, the previous argument yields a

vector vn ∈ CN with Avn = e and ‖vn‖pn ≤ d′s
1/pn−1/2
∗ ‖e‖ = ds

1/2
∗ ‖e‖. Since the sequence (vn)

is bounded in `∞-norm, it has a convergent subsequence. Denoting by v ∈ CN its limit, we
obtain Av = e and ‖v‖1 ≤ ds1/2∗ ‖e‖ by letting n tend to infinity. This settles the case p = 1.

Remark. For a real matrix A ∈ Rm×N , the property (28) is equivalent, up to modification of
the constant d, to the real version

‖u‖∗ ≤ d s1/p−1/2‖A∗u‖p∗ for all u ∈ Rm.

As a matter of fact, it is this real version of the quotient property that is established below.
3 One can consider such a minimizer, since (28) implies kerA∗ = {0}, i.e., imA = (kerA∗)⊥ = Cm.
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Next, we review some results from the article [10] of Gluskin and Kwapień, which deals with
sums of independent random variables with logarithmically concave tails. To express these
results, we need the norm defined, for r ≥ 1, for an integer k ≥ 1, and for a vector u ∈ RN by

‖u‖(k) := max
{
γrk

1/r‖uk‖r∗ , k1/2‖u− uk‖2
}
, γr :=

(1

r

)1/r( 1

r∗

)1/r∗
, r∗ :=

r

r − 1
,

where uk denotes a best k-term approximation to u. It is in fact the quantity

F (t,u) := max{k ≥ 1 : ‖u‖(k) ≤ t}

that is involved in the following lemma.

Lemma 15. Let (ξi)
∞
i=1 be a sequence of independent symmetric Weibull random variables

with exponent r ≥ 1 satisfying

Pr(|ξi| ≥ t) = exp(−tr), t ≥ 0.

There exist constants αr, βr > 0 such that, for any u ∈ RN and any t ≥ ‖u‖(1),

exp(−F (αrt,u)) ≤ Pr
(∣∣∣ ∞∑

i=1

uiξi

∣∣∣ > t
)
≤ exp(−F (βrt,u)).

We shall only use a consequence of the lower bound. For 1 ≤ r ≤ 2, we remark that γr ≥ 1/2

and that ‖uk‖2 ≤ k1/2−1/r
∗‖uk‖r∗ . Thus, for any u ∈ RN ,

‖u‖(k) ≥
1

2
max

{
k1/2‖uk‖2, k1/2‖u− uk‖2

}
≥ k1/2

2
√

2

(
‖uk‖22 + ‖u− uk‖22

)1/2
=
k1/2

2
√

2
‖u‖2.

It follows that

F (t,u) ≤ max
{
k ≥ 1 :

k1/2

2
√

2
‖u‖2 ≤ t

}
≤ 8t2

‖u‖22
.

Therefore, for 1 ≤ r ≤ 2, the lower bound yields the following estimate, valid for t ≥ ‖u‖2,

(29) Pr
(∣∣∣ ∞∑

i=1

uiξi

∣∣∣ > t
)
≥ exp

(
− 8α2

rt
2

‖u‖22

)
.

The final auxiliary result, although not explicitly stated, appears in [8] as an intermediate
step towards the derivation of Lemma 9. It is formulated for Weibull random matrices below,
but it holds for pregaussian random matrices in general.

Lemma 16. Let δ∗ > 0 be given. If A′ ∈ Rm×s is a Weibull random matrix with exponent
r ≥ 1 and if � ·� is the norm defined in (23), then there exist constants c1, c2 > 0 such that the
property

(1− δ∗) � z� ≤ ‖A′z‖1 ≤ (1 + δ∗) � z�, all z ∈ Cs,

holds with probability at least 1− 2 exp(−c1m), as long as m ≥ c2 s.
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4.3 Proof of the Quotient Property for Weibull Matrices

We are now in a position to prove the `1-quotient property for Weibull random matrices. The
following proposition, combined with Proposition 10 and Theorem 11, implies Theorem 2.

Proposition 17. A Weibull random matrix A ∈ Rm×N with exponent 1 ≤ r ≤ 2 satisfies
the `1-quotient property with constant d = 16αr/

√
Γ(1 + 2/r) relative to the `2-norm with

probability at least 1− 3 exp(−C1

√
mN) provided N ≥ C2m. The constant C1 > 0 is universal,

while the constant C2 > 0 depends on αr.

Remark. According to Remark 4.2, we have to prove that ‖e‖2 ≤ d
√
s∗‖A∗e‖∞ for all e ∈ Rm.

We shall prove below the stronger result that ‖e‖2 ≤ d
√
s∗|||A∗e||| for the norm defined on RN

by

|||z||| := 1

2h

2h∑
`=1

‖zT`‖∞

relatively to a fixed partition T1, . . . , T2h of {1, . . . , N}. The integer h is chosen so that h ≤ N/4,
and the partition T1, . . . , T2h is chosen so that the size t` of each T` satisfies⌊N

2h

⌋
≤ t` ≤ 2

⌊N
2h

⌋
, hence

N

3h
≤ t` ≤

N

h
.

Besides the property |||z||| ≤ ‖z‖∞, another key feature of the above norm is the existence, for
any z ∈ RN , of a subset H of {1, . . . , 2h} of cardinality h such that

‖zT`‖∞ ≤ 2|||z||| for all ` ∈ H.

The introduction of this norm, taken from [14], is essential to reduce the cardinality of the
ε-net in (30) below. It allows to relax the condition N ≥ m ln2(m) found in [15] for Gaussian
matrices. It also allows to correct the arguments of [5] for Bernoulli matrices. There, an ε-net
was chosen relative to a norm depending on the random matrix, so calling upon probability
estimates valid for fixed vectors do not apply to the elements of such an ε-net.

Proof. We want to prove that, for all e ∈ Rm,

‖e‖2 ≤ d
√
s∗|||A∗e|||.

We start by considering individual vectors e ∈ Rm, for which we show that the probabilities
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Pr(‖e‖2 > d′
√
s∗|||A∗e|||), d′ = d/2, are exponentially small. Fixing e ∈ Rm, we first observe that

Pr
(
‖e‖2 > d′

√
s∗|||A∗e|||

)
≤ Pr

(
‖(A∗e)T`‖∞ <

2‖e‖2
d′
√
s∗

for all ` in some H ⊆ [2h], card(H) = h

)
≤

∑
H⊆[2h],card(H)=h

Pr

(
max
j∈T`
|(A∗e)j | <

2‖e‖2
d′
√
s∗

for all ` ∈ H
)

=
∑

H⊆[2h],card(H)=h

Pr

(
|(A∗e)j | <

2‖e‖2
d′
√
s∗

for all j ∈ ∪`∈HT`
)

=
∑

H⊆[2h],card(H)=h

∏
j∈∪`∈HT`

Pr

(
|(A∗e)j | <

2‖e‖2
d′
√
s∗

)
.

The last equality follows from the independence of the (A∗e)j , j ∈ ∪`∈HT`, which are given by

(A∗e)j =

m∑
i=1

ai,jei =

m∑
i=1

√
Γ(1 + 2/r) ei√

m
ξi,j , ξi,j :=

√
m√

Γ(1 + 2/r)
ai,j .

Since N ≥ C2m, choosing the constant C2 large enough makes an application of (29) possible.
We obtain

Pr

(∣∣∣∣(A∗e)j

∣∣∣∣ < 2‖e‖2
d′
√
s∗

)
= 1− Pr

( ∣∣∣∣∣
m∑
i=1

√
Γ(1 + 2/r) ei√

m
ξi,j

∣∣∣∣∣ ≥ 2‖e‖2
d′
√
s∗

)
≤ 1− exp

(
− 32α2

rm‖e‖22
d′2s∗Γ(1 + 2/r)‖e‖22

)
= 1− exp

(
− 32α2

r ln(eN/m)

d′2Γ(1 + 2/r)

)
= 1−

(
m

eN

)1/2

≤ exp

(
−
√

m

eN

)
,

where we have made use of the value d′ = 8αr/
√

Γ(1 + 2/r). It follows that

Pr
(
‖e‖2 > d′

√
s∗|||A∗e|||

)
≤

∑
H⊆[2h],card(H)=h

exp

(
−
√

m

eN

)card(∪`∈HT`)
≤
(

2h

h

)
exp

(
−
√

m

eN

)N/3

=

(
2h

h

)
exp

(
−
√
mN

3
√
e

)
.

Next, we use covering arguments. For 0 < ε < 1 to be chosen later, we introduce an ε-covering
{e1, . . . , ek} of the unit sphere of `m2 relative to `2 with cardinality k ≤ (1 + 2/ε)m ≤ (3/ε)m, see
e.g. [12, Chapter 3]. Let us suppose that there exists e ∈ Rm with ‖e‖2 > d

√
s∗|||A∗e|||. Without

loss of generality, we assume that ‖e‖2 = 1, so that ‖e−ei‖2 ≤ ε for some i ∈ [k]. We then have

d
√
s∗|||A∗ei||| ≤ d

√
s∗|||A∗e|||+ d

√
s∗|||A∗(e− ei)||| ≤ ‖e‖2 +

d
√
s∗

2h

2h∑
`=1

‖(A∗(e− ei))T`‖∞

≤ 1 +
d
√
s∗

2h

2h∑
`=1

‖(A∗(e− ei))T`‖1 = 1 +
d
√
s∗

2h
‖A∗(e− ei)‖1.
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Since N ≥ C2m, choosing the constant C2 large enough makes it possible to apply Lemma 16
for δ∗ = 1 and for the renormalized matrix A′ =

√
m/N A∗ ∈ RN×m by changing m to N

and s to m. Using the adjusted version of (24), we derive that, with probability at least
1− 2 exp(−c1N),

‖A∗(e− ei)‖1 =

√
N

m
‖A′(e− ei)‖1 ≤

√
N

m
(1 + δ∗) � e− ei� ≤

√
N

m
2
√
N‖e− ei‖2 ≤

2N√
m
ε.

In this situation, we obtain

d
√
s∗|||A∗ei||| ≤ 1 +

dN

h

√
s∗
m
ε ≤ 1 +

dN

h
ε =

(
1 +

dN

h
ε

)
‖ei‖2.

Therefore, we have d′
√
s∗|||A∗ei||| ≤ ‖ei‖2 once we have made the choice

(30) ε :=
h

dN
.

The previous considerations show that

Pr
(
‖e‖2 > d

√
s∗|||A∗e|||, some e ∈ Rm

)
≤ 2 exp(−c1N) + Pr

(
‖ei‖2 > d′

√
s∗|||A∗ei|||, some i ∈ [k]

)
≤ 2 exp(−c1N) + k

(
2h

h

)
exp

(
−
√
mN

3
√
e

)
≤ 2 exp(−c1N) +

(
3

ε

)m
4h exp

(
−
√
mN

5

)
= 2 exp(−c1N) + exp

(
m ln

(
3

ε

)
+ h ln(4)−

√
mN

5

)
= 2 exp(−c1N) + exp

(
m ln

(
3dN

h

)
+ h ln(4)−

√
mN

5

)
.

Choosing h =
√
mN/c with c = 15/ ln(4) ensures that h ≤ N/4. Since N ≥ C2m, choosing the

constant C2 large enough to have ln(3dc
√
C2)/

√
C2 ≤ 1/15 also ensures that

exp

(
m ln

(
3dN

h

)
+ h ln(4)−

√
mN

5

)
= exp

(
−
[
−

ln(3dc
√
N/m)√

N/m
− ln(4)

c
+

1

5

]√
mN

)
≤ exp

(
−
[
− ln(3dc

√
C2)√

C2
− 1

15
+

1

5

]√
mN

)
≤ exp

(
−
√
mN

15

)
.

We finally deduce that

Pr
(
‖e‖2 > d

√
s∗|||A∗e|||, some e ∈ Rm

)
≤ 2 exp(−c1N) + exp

(
−
√
mN

15

)
≤ 3 exp(−C1

√
mN),

where C1 = min{c1, 1/15}.

Acknowledgements: I thank Paweł Hitczenko for bringing the article [10] to my attention.

20



References

[1] R. ADAMCZAK, A. LITVAK, A. PAJOR, AND N. TOMCZAK–JAEGERMANN, Restricted
isometry property of matrices with independent columns and neighborly polytopes by ran-
dom sampling, Constructive Approximation, to appear.
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