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Abstract. Many metagenomic studies compare hundreds to thousands of environmental and
health-related samples by extracting and sequencing their 16S rRNA amplicons and measuring
their similarity using beta-diversity metrics. However, one of the first steps - to classify the oper-
ational taxonomic units within the sample - can be a computationally time-consuming task since
most methods rely on computing the taxonomic assignment of each individual read out of tens to
hundreds of thousands of reads. We introduce Quikr: a QUadratic, K-mer based, Iterative, Re-
construction method which computes a vector of taxonomic assignments and their proportions in
the sample using an optimization technique motivated from the mathematical theory of compres-
sive sensing. On both simulated and actual biological data, we demonstrate that Quikr typically
has less error and is typically orders of magnitude faster than the most commonly utilized taxo-
nomic assignment technique (the Ribosomal Database Project’s Näıve Bayesian Classifier). Fur-
thermore, the technique is shown to be unaffected by the presence of chimeras thereby allowing
for the circumvention of the time-intensive step of chimera filtering. The Quikr computational
package (in MATLAB, Octave, Python, and C) for the Linux and Mac platforms is available at
http://sourceforge.net/projects/quikr/. Contact: koslicki.1@mbi.osu.edu

1. Introduction

Reconstructing the taxonomic composition of a bacterial community taken from an environmen-
tal sample (be it an ocean, soil, or human associated sample) is critical for understanding the
role that such a community might play in affecting change in that environment. A popular re-
construction approach ([14], [28], [18], [10], [29]) is to utilize 16S rRNA amplicon sequencing (like
Roche’s 454 technology) to produce many (∼ 400, 000 to ∼ 1, 000, 000) moderate length (∼ 400bp
to ∼ 700bp) reads of specific variable regions of the 16S rRNA gene and then individually classify
these reads using a custom database with BLAST or in a Bayesian framework like the Ribosomal
Database Project’s (RDP) Näıve Bayesian Classifier (NBC) [29]. RDP’s NBC is widely used due
to its speed but it can still take several days to assign millions of reads on a desktop computer,
thereby alienating users who do not have access to large computer clusters.

We introduce a method that enables desktop analysis: we take a novel approach by reconstructing
all taxonomic concentrations of a bacterial community simultaneously (as opposed to read-by-read
classification). This allows for orders of magnitude decrease in execution time while maintaining
comparable (and often better) reconstruction fidelity. This method, based on ideas from compres-
sive sensing, was inspired by and tangentially related to [2] wherein sparsity-promoting algorithms
were utilized to analyze mixtures of dye-terminator reads resulting from Sanger sequencing. Here,
however, we take a k-mer based approach that is designed for high-throughput sequencing tech-
nologies. This is similar in spirit to the k-mer based approach in [21] but herein we utilize a
distribution estimation procedure based on compressive sensing. Put briefly, our method measures
the frequency of k-mers (for a fixed k ∼ 6) in a database of 16S rRNA genes for known bacteria,
calculates the frequency of k-mers in the given sample, and then reconstructs the concentrations

Date: June 25, 2013.
This work was initiated when D.K. was with Drexel University.
D.K. supported in part by the NSF under agreement No. 0931642.
Research supported by NSF grant DMS-1120622.

1

koslicki.1@mbi.osu.edu


2 DAVID KOSLICKI, SIMON FOUCART, AND GAIL ROSEN

of the bacteria in the sample by solving an underdetermined system of linear equations under a
sparsity assumption. To solve this system, we employ MATLAB’s [1] iterative implementation of
typical nonnegative least squares and hence we refer to this method as Quikr : QUadratic, Iterative,
K-mer based Reconstruction. We point out that Quikr has not yet been optimized for performance
but still demonstrates orders of magnitude speed improvement over RDP’s NBC.

2. Methods

2.1. k-mer Training Matrix. The training step consists of converting an input database of 16S
rRNA sequences into a k-mer training matrix. For a fixed k-mer size, we calculate the frequency
of each k-mer in each database sequence. Hence, given a database of 16S rRNA sequences D =
{d1, . . . , dM}, the (i, j)th entry of the k-mer training matrix A(k) is the frequency of the ith k-mer
(in lexicographic order) in the jth sequence dj .

Herein, we consider two different databases of 16S rRNA sequences. The first database, Dsmall,
is the same as the training database for RDP’s NBC version 7. This database consists of 10,046
sequences and will allow for direct comparison of Quikr to RDP’s NBC.

The second database, Dlarge, consists of the 275,727 sequences that remained after applying
TaxCollector [13] to the entire RDP 16S rRNA database 10.28. Applying TaxCollector had the
net effect of labeling each sequence with taxonomic information obtained from NCBI ([25], [6]),
discarding duplicate sequences, and discarding sequences that were missing genus labels. Training
the RDP’s NBC with the database Dlarge would lead to prohibitively long classification times (over
17 minutes per read on a 2.0 GHz Intel E7-4820 processor) and so demonstrates how Quikr can
incorporate much more known information than RDP’s NBC.

Forming the k-mer training matrix for Dsmall and Dlarge took approximately 15 seconds and 15
minutes respectively on a 2.0 GHz Intel E7-4820 processor.

2.2. Sample k-mer Frequencies. Given a sample dataset of 16S rRNA reads, we calculate the
frequency of all k-mers in the entire sample. We refer to this vector s(k) as the sample k-mer
frequency vector. Note that the calculation of s(k) is an easily parallelizable problem that can be
computed very efficiently in an online fashion.

2.3. Sparsity Promoting Quadratic Optimization. We assume that the given environmental
sample only contains bacteria that exist in the database D = {d1, . . . , dM} being utilized. Hence
we can represent the composition of the sample as a vector x with nonnegative entries summing
to one (i.e. a probability vector) where xi is the concentration of the organism with 16S rRNA
sequence di. However, as will be demonstrated in section 3.5, the Quikr method still performs well
when the sample does contain novel bacteria not in the database being utilized.

We consider the idealized situation, in which sample noise and errors introduced by short reads
are ignored. The problem at hand is then to reconstruct the bacterial concentrations x by solving
the underdetermined linear system

(1) A(k)x = s(k).

Under the plausible assumption that relatively few bacteria from the database D are actually
present in the given sample (that is, x is a sparse vector), we can solve equation (1) by modifying
some techniques from compressive sensing. We use a variant of basis-pursuit denoising [8] which
reduces to a nonnegative least squares problem. The details regarding this sparsity promoting,
iterative, quadratic optimization procedure are contained in the Appendix A.2.

Occasionally, Quikr experiences convergence issues. However, as detailed in the Appendix, fil-
tering out the shortest sequences from a given sample solved this issue in every situation we en-
countered.
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2.4. Reconstruction Metrics. There are a variety of metrics employed in the literature to asses
bacterial community reconstruction fidelity (for example, see [26], [2], [9], [24], and [29]). We
denote the actual and predicted concentrations of the bacteria as probability vectors x and x∗

respectively. The reconstruction metric primarily employed herein is the `1 distance between x
and x∗: ||x− x∗||`1 . This quantity takes values between 0 and 2 (with perfect reconstruction being
||x−x∗||`1 = 0) and is commonly referred to as “total error” (as it is the total of the absolute errors).
We also use precision, sensitivity, specificity, and accuracy; these error metrics vary between 0 and
1 (with higher values reflecting better reconstruction fidelity) . The definitions of these quantities
are contained in the Appendix B.

Note that the correlation between x and x∗ is not an effective reconstruction metric because
the sparsity of x and x∗ and the high number of true negatives typically make corr(x, x∗) :=
x>x∗/(||x||2||x∗||2) too close to the optimal value 1.

The term reconstruction fidelity will be used to communicate generically how well x∗ approxi-
mates x.

2.5. Simulated Data. To test the performance of the Quikr method, the shotgun/amplicon read
simulator Grinder [3] was used to generate a large variety of simulated 454 pyrosequencing datasets.
These datasets were designed to mimic reads generated by Roche’s GS FLX and FLX+ amplicon
systems, so read-length distributions were set to be normally distributed with a mean of 400bp or
700bp and a standard deviation of 50bp or 100bp. The primers B27F, B357F, and BU968F were
chosen to target the V1-V3, V3-V5, and V6-V9 variable regions respectively. Only forward primers
were utilized since amplicon sequencing allows for filtering on sequencing direction. Three different
diversity values were chosen to be 102, 103, and 104 and abundance was modeled by a power-law or
exponential distribution with parameters 0.705 and 1 respectively. Since most sequencing errors in
these systems are due to homopolymer errors, such errors were modled by using Balzer’s model [5].
Chimera percentages were set at 0%, 10%, and 30%. Since only amplicon sequencing is considered,
no copy or length bias was employed.

In all, 216 different simulated datasets were generated with a total of over 172 million reads,
resulting in over 78 billion bases.

2.6. Mock Communities. To benchmark the Quikr method on real biological data, we exam-
ined the mock microbial communities developed in [16]. These communities contain staggered
concentrations of 16S rRNA genes for each of 21 different organisms that span a diverse range of
properties (GC content, genome size, etc.). This mock microbial community was then sequenced
independently at four different institutions with primers designed to target the V1-V3, V3-V5, and
V6-V9 variable regions for a total of 12 different 454 datasets with an average read length of 439bp
and standard deviation 38bp. Detail regarding the precise conditions under which this data was
obtained appears in [16, pages 499-500].

2.7. Human Microbiome Data. To further benchmark the Quikr method on real biological
data, we applied the Quikr method to the Human Microbiome Project’s [27] trimmed sequences
resulting from SRA study id SRP002395. This dataset consists of approximately 72 million reads
over 5,034 samples targeting the V1-V3 and V6-V9 variables regions.

3. Results

3.1. Speed Comparison. We performed all benchmarks against RDP’s NBC since this is consid-
ered to be the fastest 16S rRNA classifier to date [20]. Figure 1 shows a log-log plot of the number
of reads analyzed versus time for RDP’s NBC version 10.28 with training set 7 (this is the same
as database Dsmall, see section 2.1) and Quikr with k = 6 using the database Dsmall. Note the
significant improvement in speed: it takes Quikr well less than 1 minute to analyze over 1 million
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Figure 1. Log-Log plot of number of reads versus time (in seconds) for both RDP’s
NBC and Quikr.

reads. While RDP’s NBC computational complexity in the number of reads N is approximately
O(N), on this data Quikr is approximately O(N1/5).

3.2. Simulated Data Results. The Quikr method was applied to all 216 simulated datasets using
k-mer sizes in the range k = 1, . . . , 6 for both databases Dsmall and Dlarge. We observed that at
the genus level the mean `1 error decreased roughly linearly (linear regression R2 = 0.953) as a
function of k-mer size. However, the total algorithm time increased exponentially. This behavior
is to be expected due to the exponential increase in number of k-mers as a function of k. These
patterns were observed at all taxonomic ranks with both training databases. We recommend using
the k-mer size k = 6 as this provides a good trade-off between reconstruction fidelity and execution
time.

For comparison purposes, we also classified the simulated data using the popular Ribosomal
Database Project’s Näıve Bayesian classifier [29] version 10.28 with training set 7 (this is the
same training data as the database Dsmall). Figure 2 compares the timing, mean `1 error at various
taxonomic ranks, as well as precision, sensitivity, specificity, and accuracy at the genus level between
Quikr (using k-mer size k = 6) and RDP’s NBC.

As part (a) of figure 2 shows, Quikr is orders of magnitude faster than RDP’s NBC no matter
which training database is used. Indeed, using Dlarge, Quikr took an average of 1730 seconds per
dataset (or 520 reads per second). Using Dsmall, Quikr took an average of only 26.4 seconds per
dataset (or 34,091 reads per second). Compare this to RDP’s NBC taking an average of 23,978
seconds per dataset (or 38 reads per second).

Part (b) in figure 2 demonstrates that both methods show an increase in mean `1 error as one
moves to lower taxonomic ranks. At the genus level and using the training database Dlarge, Quikr
shows a 46.5% improvement in `1 error over RDP’s NBC. Using the training database Dsmall, Quikr
has comparable error to RDP’s NBC down to the family level. Using this smaller database, Quikr
results in more error than RDP’s NBC at the genus level.

Part (c) in figure 2 shows that when using Dlarge, Quikr has comparable specificity and accuracy,
and only slightly lower averages for precision and sensitivity when compared to RDP’s NBC at the
genus level. This pattern continues when using the database Dsmall except here Quikr is much less
sensitive than RDP’s NBC but shows comparable precision, specificity, and accuracy.

These results demonstrate that when using the training database Dsmall, Quikr is an extremely
fast method that gives a good high-level characterization of a given sample. When using the training
database Dlarge, Quikr is a fast and very accurate classification method even down to the genus
level.
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Figure 2. Comparison of Quikr to RDP’s NBC on simulated data. Throughout,
RDP’s NBC version 10.28 with training set 7 was utilized. (a) Algorithm execution
time for RDP’s NBC and Quikr trained using Dlarge and Dsmall. Whiskers denote
range of the data, vertical black bars designate the median, and the boxes demarcate
quantiles. (b) `1 error averaged over all 216 simulated datasets versus taxonomic
rank for RDP’s NBC and Quikr trained using Dsmall and Dlarge. (c) Histogram
densities for other error metrics at the genus level for RDP’s NBC and when Quikr
was trained using Dsmall and Dlarge. The horizontal black bars represent the mean.
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3.3. Mock Communities Results. We analyzed the 12 mock communities with the Quikr method
for k-mer size k = 6 with both training databases Dlarge and Dsmall, as well as the RDP’s NBC
version 10.28 with training set 7 (which is the same as database Dsmall). Figure 3 compares the
timing, mean `1 error at various taxonomic ranks, as well as the remaining error metrics at the
genus level between Quikr and RDP’s NBC. Similarly to the simulated data in section 3.2, with
training database Dlarge, Quikr is on average much faster than RDP’s NBC, and significantly faster
when using the training database Dsmall (see part (a) of figure 3). As part (b) of figure 3 shows, the
`1 errors of both methods are comparable. Furthermore, when using the training database Dlarge,
Quikr has less error than RDP’s NBC at the genus level. Lastly, when Quikr uses the training data-
base Dlarge, both methods have comparable precision, sensitivity, specificity, and accuracy (note
Quikr is slightly more precise, specific, and accurate). When using Dsmall, Quikr is significantly
less sensitive than RDP’s NBC, but the other error metrics give similar values.

Figure 4 shows the consensus/mean predicted phyla over all 12 mock communities for both the
Quikr method (using database Dsmall) and RDP’s NBC. The correlation between predicted and
actual concentrations for Quikr is 0.9724 versus RDP’s NBC correlation of 0.9700. The concen-
trations for each phyla as predicted by Quikr are closer on average to the actual concentrations
than that of RDP’s NBC at the cost of a false positive phylum of Tenericutes. However, the mock
communities contained 18S rRNA of candida albicans and the k-mer frequencies of this species is
closer to the average k-mer frequencies of the Tenericutes than any other phyla. Future plans for
Quikr include developing a measure for novel taxa so as to address this issue of potential false
positives.

This demonstrates again that when using the training database Dsmall, Quikr is an extremely fast
method that gives a good high-level characterization of a given sample. When using the training
database Dlarge, Quikr is a fast and very accurate classification technique.

3.4. Human Microbiome Project (HMP) Results. To demonstrate that Quikr is fit for uti-
lization on a desktop computer, we analyzed the 5,034 samples of HMP data on an iMac with a
3.4 GHz Intel i-7 processor. Utilizing the default training database Dsmall (which corresponds to
RDP’s training set 7), Quikr took 7.6 hours to analyze the entire HMP data set. Re-training with
the Greengenes [11] 91%-OTU database of 5,878 sequences, Quikr took only 4.8 hours to analyze
the entire HMP data set. The results of analyzing the HMP data with the Grenegenes database
were then analyzed in QIIME [7] to produce a PCoA plot which is included in figure 6. This plot
can be compared to figure 1a) in [15] reproduced here as figure 6 (c). To quantify the variability of
a particular category (body site in this case), QIIME [7] includes several methods, such as Adonis
and ANOSIM, which can asses the statistical significance of groupings in a PCoA plot as well as
indicate how much of the variation is explained by such groupings. Since we did not have the file
that generated figure 6 (c) and are only demonstrating the concept of applying Quikr for generat-
ing fast PCoA plots, we did not investigate further such quantitative comparisons. The results are
qualitatively similar enough in their clustering and distinguishing of body sites to conclude that
Quikr is effective in facilitating the transformation of raw reads into an accurate PCoA plot in less
than a workday on a typical scientist’s desktop computer.

3.5. Cross-Validation. To gauge how well the Quikr method will perform when the given sample
contains 16S rRNA not in the database (simulating novelty), we performed a 5-fold cross-validation.
Throughout the cross-validation, the k-mer size was fixed at k = 6. The database Dlarge described

in section 2.1 was partitioned into 5 disjoint sets and 1/5th was set aside as testing data with the
remaining 4/5ths used to form a new k-mer matrix as in section 2.1. Grinder [3] parameters were
then chosen to generate a test sample from the testing data. In particular, these parameters were
chosen as follows: primers targeting the V1-V3 variable regions, read lengths normally distributed
with mean 400bp and standard deviation 50bp, 800,000 total reads, exponential abundance model,
diversity of 100 species, homopolymer error model as in Balzer [5], and 10% chimera percentage.
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Figure 3. Comparison of Quikr to RDP’s NBC using the mock communities.
Throughout, RDP’s NBC version 10.28 with training set 7 was utilized. (a) Al-
gorithm execution time for RDP’s NBC and Quikr trained using Dlarge and Dsmall.
Whiskers denote range of the data, vertical black bars designate the median, and
the boxes demarcate quantiles. (b) `1 error averaged over all the mock communi-
ties versus taxonomic rank for RDP’s NBC and for Quikr trained using Dsmall and
Dlarge. (c) Histogram densities for other error metrics at the genus level for RDP’s
NBC and Quikr trained using Dsmall and Dlarge. Horizontal black bars represent the
mean.
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Figure 4. Actual phyla concentration versus consensus predicted concentration
(mean over all 12 samples) for the reconstruction of the mock communities via
RDP’s NBC and Quikr (with Dsmall). The mock communities contained 18S rRNA
for candida albicans whose k-mer frequency vector was closest to the mean Tenericute
k-mer frequency vector than any other phyla.

The mean of each reconstruction metrics was then taken over the choice of which 1/5th was the
testing data. Lastly, an average was taken over 10 iterates of this procedure. RDP’s NBC was also
utilized to classify the test samples.

Table 1. Results of 10 Iterates of the 5-fold Cross-Validation Procedure at the
Genus Level (smaller values are better)

Quikr RDP’s NBC
Mean `1 error ± variance 0.835± 0.00354 1.209± 0.0792

Table 1 summarizes the results of this procedure for the `1 error metric. Since Quikr has a smaller
mean `1 error and tighter variance, this demonstrates that even if the given sample contains novel
sequences not present in the database, the Quikr method will still give high reconstruction fidelity
down to the genus level. Similar results were observed for the remaining error metrics.

3.6. Chimeras. The presence of chimeras in an amplicon sample can significantly affect down-
stream analysis when using classification algorithms such as Bayesian classifiers [4], and is possibly
the culprit for over-estimates of the so-called “rare biosphere” [12]. Identifying and removing
chimeras is a computationally intensive and only partially solved problem ([12], [16], [23], [17]). It
is therefore a significant advantage of the Quikr method that it is completely unaffected by the
presence of chimeras. Quikr’s unaffectedness by chimeras is due to the k-mer frequency of a chimera
being well-estimated by the weighted sum of the k-mer frequencies of the constituent sequences
that generated the chimera.

To present experimental evidence of this invariance, we selected Grinder [3] parameters to be the
same as in section 3.5, but varied the percentage of chimeras from 0% to 100% in 10% increments,
with 10 simulations being performed at each increment. An ANOVA analysis resulted in a p-value
of p = .927, hence there is no statistically significant evidence that the slope of a linear regression
deviates from zero. Figure 5 illustrates this fact by plotting the mean `1 error and standard
deviation over the 10 simulations versus percent chimeras. Hence, it can be concluded that it is
unnecessary to filter for chimeras before using the Quikr method.
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Figure 5. Mean `1 error at the genus level for the Quikr method versus percentage
of chimeras. Error bars depict standard deviation over 10 simulations.

4. Discussion

Quikr represents a new paradigm in algorithms for bacterial community reconstruction. By
leveraging ideas from compressive sensing, an entire sample can be analyzed quickly and accurately.
Depending on how it is trained, Quikr can be used as either an extremely rapid, almost constant
time, high-level community profiling tool or else (using a larger training database) a fast, extremely
accurate technique. Besides improvements in speed, other advantages include the ability to utilize
massive training databases (like Dlarge) that would be much too large for standard techniques (like
RDP’s NBC). Furthermore, Quikr is unaffected by the presence of chimeras, so the time-consuming
chimera-removal step in standard analytic pipelines can be completely circumvented.

The Quikr computational package (in MATLAB, Octave, Python and C) for the Linux and Mac
platforms is available at
http://sourceforge.net/projects/quikr/.
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Appendix A. Quikr Method Technical Details

A.1. Mathematical Formulation. Given the alphabet A = {A,C, T,G}, let An denote the set
of all words v of length |v| = n on A, and let A∗ =

⋃
n≥0A

n be the set of all finite words on A.

Given a database D = {d1, . . . , dM} of sequences di ∈ A∗ and a set S = {s1, . . . , st} of sample
sequences (the reads to be classified), we assume that for each sl there is a unique j with sl = dj .
This uniqueness is justified by the use of sequencing the highly variable 16S rRNA. We also make
the assumption that the composition of the bacterial community is represented by the probability
vector x ∈ RM satisfying

xi =
1

t

t∑
l=1

1di(sl), i = 1, . . . ,M,(2)
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where 1di(sl) equals 1 if sl = di and 0 otherwise. This approximation is reasonable when the sample
sequences are numerous and well distributed (i.e. for samples with high enough coverage, in the
biological sense).

Fix a k-mer size and endow Ak = {v1, . . . , v4k} with the lexicographic order. Let occv(w)
represent the number of occurrences (with overlap) of the subword v in the word w. That is, for
w, v ∈ An, let

occv(w) = |{j : wjwj+1 · · ·wj+|v|−1 = v}|.(3)

For j = 1, . . . ,M and i = 1, . . . , 4k, define the k-mer training matrix entrywise as

A
(k)
i,j =

occvi(dj)

|dj | − k + 1
.(4)

The matrix A(k) satisfies A
(k)
i,j ≥ 0 and is column-normalized, i.e.

4k∑
i=1

A
(k)
i,j = 1 for all j = 1, . . . ,M.(5)

Define the sample k-mer frequency vector entrywise for i = 1, . . . , 4k as

s
(k)
i =

1

t

t∑
l=1

occvi(sl)

|sl| − k + 1
.(6)

Our two assumptions imply that

A(k)x = s(k).(7)

We will try to recover the probability vector x satisfying xj ≥ 0 for all j = 1, . . . ,M and∑M
j=1 xj = 1 from information in the form of equation (7). Given that a bacterial community is

typically distributed as a sparse vector x (a small percentage of all extant bacteria are actually
present in a given sample), we pursue sparsity-promoting minimizations involving the `1-norm. In
particular, we consider the following optimization problems.

minimize
z∈RM

||z||1 subject to A(k)z = s(k),(BP)

minimize
z∈RM

||z||1 subject to A(k)z = s(k) and z ≥ 0,(BP≥0)

minimize
z∈RM

||z||21 + λ2||A(k)z − s(k)||22 subject to z ≥ 0,(REG2
1)

It can be demonstrated, thanks to (5), that (BP) and (BP≥0) are equivalent in the sense that x
is a solution of (BP) if and only if it is a solution of (BP≥0), and that the latter is approached by
solutions of (REG2

1) when λ→∞.
We shall solve (REG2

1) since it has the notable advantage of being transformed into a nonnegative
least squares problem. Indeed, with

Ã(k) :=

[
1 · · · 1
λA(k)

]
, s̃(k) :=

[
0

λs(k)

]
,

the minimization (REG2
1) is equivalent to

minimize
z∈RM

||Ã(k)z − s̃(k)||22 subject to z ≥ 0.(NNLSQ)
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A.2. Algorithmic Implementation. To solve (NNLSQ) we utilized MATLAB’s [1] implemen-
tation of lsqnonneg() which in turn is an implementation of the iterative algorithm described in
[19]. Throughout, we used λ = 10, 000. We did observe that when using Dlarge to form A(k), for

some inputs s(k) the algorithm took much longer to converge as it iterated through the inner loop
(see [19, page 161, (23.10)]). This is most likely due to many of the columns of A(k) being highly
correlated (as our database was unfiltered, there remained many highly similar strains of the same
species). However, since the algorithm execution time was still quicker or comparable to RDP’s
NBC, we do not consider this a disadvantage. Furthermore, one can simply increase the tolerance
in lsqnonneg() or limit the number of iterations to speed convergence. We set the number of
iterations of the inner loop to be at most 10,000. Furthermore, the inclusion of short sequences
in a given sample can cause convergence issues. Removing these sequences (say, every sequence
shorter than two standard deviations away from the mean sequence length in a sample) solved this
convergence issue in every case we encountered.

To calculate the matrices A(k) and the vector s(k) we used a custom SML [22] subword counting
program written by Christopher Cramer and compiled for Linux using MLton [30]. To further

speed the calculation of the sample k-mer frequency vector s(k), we took advantage of the following
approximation:

ŝ
(k)
i :=

∑t
j=1 occvi(sj)∑4k

l=1

∑t
j=1 occvl(sj)

=

∑t
j=1 occvi(sj)∑t

l=1 |sl| − k + 1
≈ 1

t

t∑
j=1

occvi(sj)

|sj | − k + 1
= s

(k)
i

where the last approximation is true provided the lengths |sj | are reasonably similar (which they
are for Roche’s 454 technology).

All computations were performed on a single cluster of 32 Intel Xeon E7-4820 CPU’s at 2.00GHz.

Appendix B. Assessment of Reconstruction

There are a variety of metrics employed in the literature to asses bacterial community reconstruc-
tion fidelity (for example, see [26], [2], [9], [24], [29]). We detail some of them here. Throughout the

following, x ∈ RM represents the probability vector (i.e. xi ≥ 0 and
∑M

i=1 xi = 1) of true bacterial
concentrations and x∗ ∈ RM represents the probability vector of estimated bacterial concentrations.
The `1 error (or total error) is defined by

||x− x∗||`1 =

M∑
i=1

|xi − x∗i |.

The `1 error ranges between 0 and 2, with perfect reconstruction for ||x− x∗||`1 = 0.
The following reconstruction metrics all depend on a notion of true/false positive and true/false

negative. Thus a threshold must be defined as to what is considered to be a “true zero”. A threshold
was set at 10−4; hence if an entry xi or x∗i is less than 10−4, it is considered to be a zero. We
introduce the approximate support of a probability vector x ∈ RM as supp(x) = {i s.t. xi > 10−4}.

For the following, we suppress the dependence on x and x∗ for notational simplicity and use a
superscript c to denote set complement. True/false positives and true/false negatives are defined
as

TP = |supp(x) ∩ supp(x∗) |,
FP = |supp(x)c ∩ supp(x∗) |,
TN = |supp(x)c ∩ supp(x∗)c|,
FN = |supp(x) ∩ supp(x∗)c|,
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respectively. Accuracy, precision, sensitivity, and specificity are now defined as:

Precision =
TP

TP + FP
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Accuracy =
TP + TN

TP + TN + FP + FN
.

Appendix C. Read-by-read Analysis

It is possible to adapt the Quikr method to a read-by-read analysis. However, the execution
time for the Quikr method depends predominantly on the k-mer size and not on the number of
reads in the given sample. Implemented in a read-by-read fashion (using each read to generate a

sample k-mer frequency vector s(k)), Quikr analyzes approximately 2 reads per second for k-mer size
k = 6 when using the training database Dsmall. This currently unoptimized approach was used to re-
analyze the mock communities described in the main text. Compared to the whole-sample approach
detailed in the main text’s Methods section, the read-by-read implementation demonstrated almost
identical error profiles: averaging over all error metrics at the genus level, there was only a 5.72%
improvement with the read-by-read versus the whole-sample method. However, the read-by-read
analysis was on average 17,046 times slower and so on par with RDP’s NBC. It is expected that
future optimization of the read-by-read implementation will allow this approach to become viable.
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(a) PCoA 1 vs. 2 (b) PCoA 1 vs. 3

(c) Figure 1a) from [15].

Figure 6. (a)-(b) QIIME (weighted Unifrac) analysis using the Greengenes 91%
OTU database, which took ∼6 hours for Quikr+QIIME complete analysis. Color
legend: Gut (Black), Oral (Green), Throat (Light Blue), Skin (Orange), Nasal (Bold
Blue), and Urogenital (Yellow). (c) Figure 1a) from [15]
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