Reading Seminar on Compressive Sensing,
Extensions, and Applications

Schedule

During Fall 2015, the seminar meets on Thursdays at 4pm in Blocker 628.

  • 1 Oct: Overview of the Mathematics of Compressive Sensing - Part 1, presented by Simon Foucart. (slides)
  • 8 Oct: Overview of the Mathematics of Compressive Sensing - Part 2, presented by Simon Foucart.
  • 15 Oct: Overview of the Mathematics of Compressive Sensing - Part 3, presented by Simon Foucart.
  • 22 Oct: Overview of the Mathematics of Compressive Sensing - Part 4, presented by Simon Foucart.

Paper Bank

Any appropriate suggestion from the participants, as well as

  • A. Aldroubi, C. Cabrelli, U. Molter, and S. Tang. Dynamical sampling. (arXiv)
  • D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp. Living on the edge: phase transitions in convex programs with random data (arXiv)
  • E. Arias-Castro, E. Candès, and M. Davenport. On the fundamental limits of adaptive sensing. (arXiv)
  • K. Audenaert. A generalisation of Mirsky's singular value inequalities. (arXiv)
  • A. Bandeira, D. Mixon, and J. Moreira. A conditional construction of restricted isometries. (arXiv)
  • T. Bendory, S. Dekel, and A. Feuer: Exact recovery of Dirac ensembles from the projection onto spaces of spherical harmonics. (arXiv)
  • J. Blanchard and J. Tanner. GPU accelerated greedy algorithms for compressed sensing. (doi)
  • J. Bourgain. An improved estimate in the restricted isometry problem. (doi)
  • E. Candès. Mathematics of sparsity (and a few other things). (link)
  • Y. Chang, J. Gray, and C. Tomlin. Exact reconstruction of gene regulatory networks using compressive sensing. (link)
  • J. Chiu and L. Demanet, Matrix probing and its conditioning. (arXiv)
  • A. Cohen, M. Davenport, and D. Leviatan. On the stability and accuracy of least squares approximations. (arXiv)
  • J. Dick, F. Kuo, and I. Sloan. High-dimensional integration - the quasi-Monte Carlo way. (doi)
  • M. Figueiredo and R. Nowak. Sparse Estimation with Strongly Correlated Variables using Ordered Weighted L1 Regularization. (arXiv)
  • S. Friedland, Q. Li, and D. Schonfeld. Compressive Sensing of Sparse Tensors. (arXiv)
  • L. Gao, J. Liang, C. Li, and L. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. (doi)
  • M. Gavish and D. Donoho. The optimal hard threshold for singular values is 4/sqrt(3). (arXiv)
  • C. Hedge, P. Indyk, and L. Schmidt. Approximation algorithms for model-based compressive sensing. (arXiv)
  • M. Iwen, A. Viswanathan, and Y. Wang. Robust sparse phase retrieval made easy. (arXiv)
  • J.-P. Kahane. Variantes sur un théorème de Candès, Romberg et Tao. (arXiv)
  • G. Lecué and S. Mendelson. Sparse recovery under weak moment assumptions. (arXiv)
  • R. Mendoza-Smith and J. Tanner. Expander l0-decoding. (arXiv)
  • Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach. (arXiv)
  • Y. Plan and R. Vershynin. The generalized Lasso with non-linear observations. (arXiv)
  • E. Ryu and S. Boyd. Extensions of Gauss Quadrature Via Linear Programming. (doi)
  • I. Sloan and H. Woźniakowski. When are Quasi-Monte Carlo algorithms efficient for high dimensional integrals? (doi)
  • Y. Soh and V. Chandrasekaran. High-dimensional change-point estimation: combining filtering with convex optimization. (arXiv)
  • G. Tang, B. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. (arXiv)
  • A. Tillmann and M. Pfetsch. The computational complexity of the restricted isometry property, the nullspace property, and related concepts in Compressed Sensing. (arXiv)
  • J. Tropp. Convex recovery of a structured signal from independent random linear measurements. (arXiv)
  • J. Tropp. User-friendly tail bounds for sums of random matrices. (arXiv)
  • R. Vershynin. Estimation in high dimensions: a geometric perspective. (arXiv)
  • I. Waldspurger, A. d'Aspremont, and S. Mallat. Phase recovery, MaxCut and complex semidefinite programming. (arXiv)
  • F. Zhou, W. Nielson, Y. Xia, and V. Ozolins. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. (doi)