
Lecture 0: Review

This opening lecture is devised to refresh your memory of linear algebra. There are some
deliberate blanks in the reasoning, try to fill them all. If you still feel that the pointers are too
sketchy, please refer to Chapters 0 and 1 of the textbook for more detailed arguments.

1 Range and null space

Denote by Mm×n := Mm×n(C) the set of all matrices with m rows and n columns. Denote
by Mm×n(R) the subset of Mm×n composed of matrices with only real entries. Denote by
Mn := Mn×n the set of all square matrices of size n × n, and by Mn(R) the subset of Mn

composed of matrices with only real entries.

For A ∈ Mm×n, define its range

ranA := {Ax, x ∈ Cm},

and its null space
kerA := {x ∈ Cn : Ax = 0}.

Verify that these are linear subspaces of Cm and Cn, respectively. Define the rank and the
nullity of A by

rk A := dim(ranA), nul A := dim(kerA).

They are deduced form one another by the rank-nullity theorem (prove it)

rk A+ nul A = n.

Recall that A ∈ Mm×n is injective (one-to-one, nonsingular) if kerA = {0}, and surjective if
ranA = Cm. Note that a square matrix A is injective (or surjective) iff it is both injective and
surjective, i.e., iff it is bijective. Bijective matrices are also called invertible matrices, because
they are characterized by the existence of a unique square matrix B (the inverse of A, denoted
A−1) such that AB = BA = I.

2 Trace and determinant

The trace and determinants are functions taking square matrices and returning scalars. The
trace of A ∈ Mn is the sum of its diagonal elements, i.e.,

trA :=
n�

i=1

ai,i where A = [ai,j ]
n
i,j=1.
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Notice that the trace is linear (i.e., tr (λA+ µB) = λtr (A) + µtr (B)) and that (prove it)

tr (AB) = tr (BA) whenever A ∈ Mm×n and B ∈ Mn×m.

As for the determinant, it can be defined in several equivalent ways:

1. As a function of the columns of a marix, it is the only function f : Cn × · · ·×Cn → C that
is linear with respect to each columns (f(. . . ,λx+µy, . . .) = λf(. . . , x, . . .)+µf(. . . , y, . . .)),
alternating (f(. . . , x, . . . , y, . . .) = −f(. . . , y, . . . , x, . . .)), and unit-normalized (f(I) = 1).
Use this to derive the identity

det(AB) = det(A) det(B) for all A,B ∈ Mn.

2. detA =
�

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n),

where Sn is the set of n! permutations of {1, . . . , n} and sgn(σ) = (−1)s, s = number
of pairwise interchanges composing σ (hence the computation rules for 2 × 2 and 3 × 3

determinants).
Use this to prove that

detA� = detA for all A ∈ Mn.

3. Laplace expansion with respect to a row or a column, e.g. with respect to the ith row

detA =
n�

j=1

(−1)i+jai,j detAi,j ,

where Ai,j is the submatrix of A obtained by deleting the ith row and the jth column.
The matrix B ∈ Mn with entries bi,j := (−1)i+j detAi,j is called the comatrix of A —
note that B� is also called the adjoint of A (classical adjoint, not to be confused with
hermitian adjoint). Use Laplace expansion to prove that AB� = (detA)I. Deduce that
A ∈ Mn is invertible iff detA �= 0, in which case give an expression for the inverse of A.

3 Eigenvalues and eigenvectors

Given a square matrix A ∈ Mn, if there exist λ ∈ C and x ∈ Cn, x �= 0, such that

Ax = λx,

then λ is called an eigenvalue of A and x is called an eigenvector corresponding to the eigen-
value λ. The set of all eigenvectors corresponding to an eigenvalue λ is called the eigenspace
corresponding to the eigenvalue λ. Verify that an eigenspace is indeed a linear space. Note
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that λ is an eigenvalue of A iff det(A− λI) = 0, i.e., iff λ is a zero of the characteristic polyno-
mial of A defined by

pA(x) := det(A− xI).

Observe that pA is a polynomial of the form

pA(x) = (−1)nxn + (−1)n−1tr (A)xn−1 + · · ·+ det(A).

Since this polynomial can also be written in factorized form as (λ1 − x) · · · (λn − x), where
{λ1, . . . ,λn} is the set of eigenvalues of A (complex and possibly repeated), we have

tr (A) = λ1 + · · ·+ λn, det(A) = λ1 · · ·λn.

Verify that the existence of n linearly independent eigenvectors v1, . . . , vn ∈ Cn corresponding
to eigenvalues λ1, . . . ,λn of A ∈ Mn (which occurs in particular if A has n distinct eigenvalues)
is equivalent to the existence of a invertible matrix V ∈ Mn and of a diagonal matrix D ∈ Mn

such that
A = V DV −1.

(What are the relations between the v�is, λi’s and V , D?) In this case, we say that the matrix
A is diagonalizable. More generally, two matrices A and B are called equivalent if there
exists an invertible matrix V such that A = V BV −1. Note that two similar matrices have the
same characteristic polynomial, hence the same eigenvalues (counting multiplicities), and in
particular the same trace and determinant.

It is useful to know that a commuting family of diagonalizable matrices is simultaneously
diagonalizable in the sense that each matrix in the family is similar to a diagonal matrix
via one and the same similarity matrix V . This will be proved in Lecture 2. Another proof
strategy relies on the following observation.

Lemma 1. If {Ai, i ∈ I} is a commuting family of matrices in Mn, then there exists x ∈ Cn

which is an eigenvector for every Ai, i ∈ I.

Proof. We proceed by induction on n. For n = 1, there is nothing to do. Let us now assume
that the results holds up to an integer n − 1, n ≥ 2, and let us prove that it also holds for n.
In a commuting family of matrices in Mn, we pick a matrix A which is not a multiple of I.
Let λ ∈ C be an eigenvector for A and let Eλ := {x ∈ Cn : Ax = λx} be the corresponding
eigenspace, which has dimension k < n. We can easily observe that Eλ is stable under the
action of any Ai (i.e., Ai(Eλ) ⊆ Eλ) for every i ∈ I. It follows that

Ai = V

�
�Ai X

0 X

�
V −1 for some invertible V ∈ Mn.

We can easily observe that the family { �Ai, i ∈ I} is a commuting family in Mk, and the induc-
tion hypothesis applies to yield the existence of an eigenvector �x ∈ Ck common to every �Ai.
Then x := V [�x, 0]� is an eigenvector common to every Ai. This finishes the inductive proof.
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4 Exercises

Ex.1: Answer the in-line exercises.

Ex.2: We recall that rk A∗ = rk A, where A∗ ∈ Mn×m denotes the adjoint of a matrix A ∈
Mm×n. In general, is it true that nul A∗ = nul A? Establish that kerA = kerA∗A,
deduce that nul A = nul A∗A and that rk A = rk A∗A = rk A∗ = rk AA∗, and finally
conclude that ranA = ranAA∗.

Ex.3: Calculate trA∗A and observe that A = 0 iff trA∗A = 0.

Ex.4: For A,B ∈ Mn, prove that AB = I implies BA = I. Is this true if A and B are not

square? [Hint: consider the matrices C and C�, where C =

�
1 −1/2 −1/2

0
√
3/2 −

√
3/2

�
.]

Ex.5: Consider the subset of Mn(R) defined by

G := {A ∈ Mn(R) : detA = ±1 and ai,j ∈ Z for all 1 ≤ i, j ≤ n}.

Prove that I ∈ G, that A,B ∈ G ⇒ AB ∈ G and that A ∈ G ⇒ A−1 ∈ G (in other words, G
is a multiplicative group).

Ex.6: Exercise 5 p. 37.

Ex.7: Given a polynomial P (x) = cdxd + · · ·+ c1x+ c0 and a matrix A ∈ Mn, prove that if λ is
an eigenvalue of A, then P (λ) is an eigenvalue of P (A) := cdAd + · · ·+ c1A+ c0I. Prove
also that if λ �= 0, then λ−1 is an eigenvalue of A−1.

Ex.8: Exercise 3 p. 54.

Ex.9: Determine the eigenvalues and eigenvectors of the matrix

A =





1 t · · · t

t 1 t
...

t · · · . . . t

t · · · t 1




,

and diagonalize it.
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Lecture 1: Schur’s Unitary Triangularization Theorem

This lecture introduces the notion of unitary equivalence and presents Schur’s theorem and
some of its consequences. It roughly corresponds to Sections 2.1, 2.2, and 2.4 of the textbook.

1 Unitary matrices

Definition 1. A matrix U ∈ Mn is called unitary if

UU∗ = I (= U∗U).

If U is a real matrix (in which case U∗ is just U�), then U is called an orthogonal matrix.

Observation: If U, V ∈ Mn are unitary, then so are Ū , U�, U∗ (= U−1), UV .
Observation: If U is a unitary matrix, then

| detU | = 1.

Examples: Matrices of reflection and of rotations are unitary (in fact, orthogonal) matrices.
For instance, in 3D-space,

reflection along the z-axis: U =




1 0 0

0 1 0

0 0 −1



 , detU = −1,

rotation along the z-axis: U =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



 , detU = 1.

That these matrices are unitary is best seen using one of the alternate characterizations listed
below.

Theorem 2. Given U ∈ Mn, the following statements are equivalent:

(i) U is unitary,

(ii) U preserves the Hermitian norm, i.e.,

�Ux� = �x� for all x ∈ Cn.

(iii) the columns U1, . . . , Un of U form an orthonormal system, i.e.,

�Ui, Uj� = δi,j , in other words U∗
j Ui =

�
1 if i = j,

0 if i �= j.
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Proof. (i) ⇒ (ii). If U∗U = I, then, for any x ∈ Cn,

�Ux�22 = �Ux,Ux� = �U∗Ux, x� = �x, x� = �x�22.

(ii) ⇒ (iii). Let (e1, e2, . . . , en) denote the canonical basis of Cn. Assume that U preserves the
Hermitian norm of every vector. We obtain, for j ∈ {1, . . . , n},

�Uj , Uj� = �Uj�22 = �Uej�22 = �ej�22 = 1.

Moreover, for i, j ∈ {1, . . . , n} with i �= j, we have, for any complex number λ of modulus 1,

��λUi, Uj� =
1

2

�
�λUi + Uj�22 − �Ui�22 − �Uj�22

�
=

1

2

�
�U(λei + ej)�22 − �U(ei)�22 − �U(ej)�22

�

=
1

2

�
�λei + ej�22 − �ei�22 − �ej�22

�
= 0.

This does imply that �Ui, Uj� = 0 (argue for instance that |�λUi, Uj�| = ��λUi, Uj� for a properly
chosen λ ∈ C with |λ| = 1).
(iii) ⇒ (i). Observe that the (i, j)th entry of U∗U is U∗

i Uj to realize that (iii) directly translates
into U∗U = I.

According to (iii), a unitary matrix can be interpreted as the matrix of an orthonormal basis in
another orthonormal basis. In terms of linear maps represented by matrices A, the change of
orthonormal bases therefore corresponds to the transformation A �→ UAU∗ for some unitary
matrix U . This transformation defines the unitary equivalence.

Definition 3. Two matrices A,B ∈ Mn are called unitary equivalent if there exists a unitary
matrix U ∈ Mn such that

B = UAU∗.

Observation: If A,B ∈ Mn are unitary equivalent, then
�

1≤i,j≤n

|ai,j |2 =
�

1≤i,j≤n

|bi,j |2.

Indeed, recall form Lect.1-Ex.3 that
�

1≤i,j≤n |ai,j |2 = tr (A∗A) and
�

1≤i,j≤n |bi,j |2 = tr (B∗B),
and then write

tr
�
B∗B

�
= tr

�
(UAU∗)∗(UAU∗)

�
= tr

�
UA∗U∗UAU∗� = tr

�
UA∗AU∗� = tr

�
U∗UA∗A

�

= tr
�
A∗A

�
.
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2 Statement of Schur’s theorem and some of its consequences

Schur’s unitary triangularization theorem says that every matrix is unitarily equivalent to a
triangular matrix. Precisely, it reads as follows.

Theorem 4. Given A ∈ Mn with eigenvalues λ1, . . . ,λn, counting multiplicities, there exists
a unitary matrix U ∈ Mn such that

A = U





λ1 x · · · x

0 λ2
. . . ...

... . . . . . . x

0 · · · 0 λn




U∗.

Note that such a decomposition is far from unique (see Example 2.3.2 p.80-81). Let us now
state a few consequences from Schur’s theorem. First, Cayley–Hamilton theorem says that
every square matrix annihilates its own characteristic polynomial.

Theorem 5. Given A ∈ Mn, one has
pA(A) = 0.

The second consequence of Schur’s theorem says that every matrix is similar to a block-
diagonal matrix where each block is upper triangular and has a constant diagonal. This
is an important step in a possible proof of Jordan canonical form.

Theorem 6. Given A ∈ Mn with distinct eigenvalues λ1, . . . ,λk, there is an invertible matrix
S ∈ Mn such that

A = S





T1 0 · · · 0

0 T2
. . . ...

... . . . . . . 0

0 · · · 0 Tk




S−1, where Ti has the form Ti =





λi x · · · x

0 λi
. . . ...

... . . . . . . x

0 · · · 0 λi




.

The arguments for Theorems 5 and 6 (see next section) do not use the unitary equivalence
stated in Schur’s theorem, but merely the equivalence. The unitary equivalence is nonetheless
crucial for the final consequence of Schur’s theorem, which says that there are diagonalizable
matrices arbitrary close to any matrix (in other words, the set of diagonalizable matrices is
dense in Mn).

Theorem 7. Given A ∈ Mn and ε > 0, there exists a diagonalizable matrix �A ∈ Mn such that
�

1≤i,j≤n

|ai,j − �ai,j |2 < ε.
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3 Proofs
Proof of Theorem 4. We proceed by induction on n ≥ 1. For n = 1, there is nothing to do.
Suppose now the result true up to an integer n − 1, n ≥ 2. Let A ∈ Mn with eigenvalues
λ1, . . . ,λn, counting multiplicities. Consider an eigenvector v1 associated to the eigenvalue
λ1. We may assume that �v1�2 = 1. We use it to form an orthonormal basis (v1, v2, . . . , vn).
The matrix A is equivalent to the matrix of the linear map x �→ Ax relative to the basis
(v1, v2, . . . , vn), i.e.,

(1) A = V





λ1 x · · · x

0
... �A
0




V −1,

where V =
�
v1 · · · vn

�
is the matrix of the system (v1, v2, . . . , vn) relative to the canonical basis.

Since this is a unitary matrix, the equivalence of (1) is in fact a unitary equivalence. Note
that pA(x) = (λ1 − x)p �A(x), so that the eigenvalues of �A ∈ Mn−1, counting multiplicities, are
λ2, . . . ,λn. We use the induction hypothesis to find a unitary matrix �W ∈ Mn−1 such that

�A = �W





λ2 x · · · x

0
. . . . . . ...

... . . . . . . x

0 · · · 0 λn




�W ∗, i.e., �W ∗ �A�W =





λ2 x · · · x

0
. . . . . . ...

... . . . . . . x

0 · · · 0 λn




.

Now observe that




1 0 · · · 0

0
... �W
0





∗ 



λ1 x · · · x

0
... �A
0









1 0 · · · 0

0
... �W
0




=





1 0 · · · 0

0
... �W ∗

0









λ1 x · · · x

0
... �A�W
0





=





λ1 x · · · x

0
... �W ∗ �A�W
0




=





λ1 x · · · x

0 λ2 · · · x
...

... . . . ...
0 0 · · · λn




.

Since W :=

�
1 0

0 �W

�
is a unitary matrix, this reads

(2)





λ1 x · · · x

0
... �A
0




= W





λ1 x · · · x

0 λ2 · · · x
...

... . . . ...
0 0 · · · λn




W ∗.

Putting the unitary equivalences (1) and (2) together shows the result of Theorem 4 (with
U = VW ) for the integer n. This concludes the inductive proof.
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Now that Schur’s theorem is established, we may prove the consequences stated in Section 2.

Proof of Theorem 5. First attempt, valid when A is diagonalizable. In this case, there is a
basis (v1, . . . , vn) of eigenvectors associated to (not necessarily distinct) eigenvalues λ1, . . . ,λn.
It is enough to show that the matrix pA(A) vanishes on each basis vector vi, 1 ≤ i ≤ n. Note
that

pA(A) = (λ1I −A) · · · (λnI −A) = [(λ1I −A) · · · (λi−1I −A)(λi+1I −A) · · · (λnI −A)](λiI −A),

because (λiI −A) commutes with all (λjI −A). Then the expected results follows from

pA(A)(vi) = [· · · ](λiI −A)(vi) = [· · · ](0) = 0.

Final proof. Let λ1, . . . ,λn be the eigenvalues of A ∈ Mn, counting multiplicities. According
to Schur’s theorem, we can write

A = STS−1, where T =





λ1 x · · · x

0 λ2 · · · x
...

... . . . ...
0 0 · · · λn




.

Since P (A) = SP (T )S−1 for any polynomial P , we have in particular pA(A) = SpA(T )S−1, so
it is enough to show that pA(T ) = 0. We compute

pA(T ) = (λ1I − T )(λ2I − T ) · · · (λnI − T )

=





0 x x · · · x

0 x x · · · x

0 0
...

... X

0 0









x x x · · · x

0 0 x · · · x

0 0
...

... X

0 0




· · ·





x x

X
...

...
x x

0 · · · 0 x x

0 · · · 0 0 0




.

Using repeatedly the observation about multiplication of block-triangular matrices that



0 x x

0 x x

0 0 x








x x x

0 0 x

0 0 x



 =




0 0 x

0 0 x

0 0 x



 ,

the zero-block on the top left propagates until we obtain pA(T ) = 0 — a rigorous proof of this
propagation statement should proceed by induction.

To establish the next consequence of Schur’s theorem, we will use the following result.

Lemma 8. If A ∈ Mm and B ∈ Mn are two matrices with no eigenvalue in common, then the
matrices �

A M

0 B

�
and

�
A 0

0 B

�

are equivalent for any choice of M ∈ Mm×n.
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Proof. For X ∈ Mm×n, consider the matrices S and S−1 given by

S =

�
I X

0 I

�
and S−1 =

�
I −X

0 I

�
.

We compute

S−1

�
A 0

0 B

�
S =

�
A AX −XB

0 B

�
.

The result will follow as soon as we can find X ∈ Mm×n such that AX − XB = M for our
given M ∈ Mm×n. If we denote by F the linear map

F : X ∈ Mm×n �→ AX −XB ∈ Mm×n,

it is enough to show that F is surjective. But since F is a linear map from Mm×n into itself,
it is therefore enough to show that F is injective, i.e., that

(3) AX −XB = 0
?

=⇒ X = 0.

To see why this is true, let us consider X ∈ Mm×n such that AX = XB, and observe that

A2X = A(AX) = A(XB) = (AX)B = (XB)B = XB2,

A3X = A(A2X) = A(XB2) = (AX)B2 = (XB)B2 = XB3,

etc., so that P (A)X = XP (B) for any polynomial P . If we choose P = pA as the characteristic
polynomial of A, Cayley–Hamilton theorem implies

(4) 0 = XpA(B).

Denoting by λ1, . . . ,λn the eigenvalues of A, we have pA(B) = (λ1I−B) · · · (λnI−B). Note that
each factor (λiI − B) is invertible, since none of the λi is an eigenvalue of B, so that pA(B) is
itself invertible. We can now conclude from (4) that X = 0. This establishes (3), and finishes
the proof.

We could have given a less conceptual proof of Lemma 8 in case both A and B are upper
triangular (see exercises), which is actually what the proof presented below requires.

Proof of Theorem 6. For A ∈ Mn, we sort its eigenvalues as λ1, . . . ,λ1;λ2, . . . ,λ2;. . .;λk, . . . ,λk,
counting multiplicities. Schur’s theorem guarantees that A is similar to the matrix





T1 X · · · X

0 T2
. . . ...

... . . . . . . X

0 · · · 0 Tk




where Ti =





λi x · · · x

0 λi
. . . ...

... . . . . . . x

0 · · · 0 λi




.
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We now use the Lemma 8 repeatedly in the chain of equivalences

A ∼





T1 X · · · · · · X

0 T2 X · · · X
... 0 T3

. . . ...
...

... . . . . . . X

0 0 · · · 0 Tk





∼





T1 0 · · · · · · 0

0 T2 X · · · X
... 0 T3

. . . ...
...

... . . . . . . X

0 0 · · · 0 Tk





=





T1 0

0 T2 X

T3 · · · X

0
... . . . ...
0 · · · Tk





∼





T1 0

0 T2 0

T3 · · · X

0
... . . . ...
0 · · · Tk




=





T1 0 0

0 T2 0 X

0 0 T3

0
. . . X

0 Tk




∼





T1 0 0

0 T2 0 0

0 0 T3

0
. . . 0

0 Tk




∼ · · ·

∼





T1 0 · · · 0

0 T2
. . . ...

... . . . . . . 0

0 · · · 0 Tk





This is the announced result.
Proof of Theorem 7. Let us sort the eigenvalues of A as λ1 ≥ · · · ≥ λn. According to Schur’s
theorem, there exists a unitary matrix U ∈ Mn such that

A = U





λ1 x · · · x

0 λ2
. . . ...

... . . . . . . x

0 · · · 0 λn




U∗.

If �λi := λi + iη and η > 0 is small enough to guarantee that �λ1, . . . , �λn are all distinct, we set

�A = U





�λ1 x · · · x

0 �λ2
. . . ...

... . . . . . . x

0 · · · 0 �λn




U∗.

In this case, the eigenvalues of �A (i.e., �λ1, . . . , �λn) are all distinct, hence �A is diagonalizable.
We now notice that �

1≤i,j≤n

|ai,j − �ai,j |2 = tr
�
(A− �A)∗(A− �A)

�
.

But since A − �A is unitarily equivalent of the diagonal matrix diag[λ1 − �λ1, . . . ,λn − �λn], this
quantity equals

�
1≤i≤n |λi − �λi|2. It follows that

�

1≤i,j≤n

|ai,j − �ai,j |2 =
�

1≤i≤n

i2η2 < ε,

provided η is chosen small enough to have η2 < ε/
�

i i
2.
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4 Exercises

Ex.1: Is the sum of unitary matrices also unitary?

Ex.2: Exercise 2 p. 71.

Ex.3: When is a diagonal matrix unitary?

Ex.4: Exercise 12 p. 72.

Ex.5: Given A ∈ Mn with eigenvalues λ1, . . . ,λn, counting multiplicities, prove that there
exists a unitary matrix U ∈ Mn such that

A = U





λ1 0 · · · 0

x λ2
. . . ...

... . . . . . . 0

x · · · x λn




U∗.

Ex.6: Prove that a matrix U ∈ Mn is unitary iff it preserves the Hermitian inner product,
i.e., iff �Ux,Uy� = �x, y� for all x, y ∈ Cn.

Ex.7: Given a matrix A ∈ Mn with eigenvalues λ1, . . . ,λn, counting multiplicities, and given
a polynomial P (x) = cdxd + · · · + c1x + c0, prove that the eigenvalues of P (A) are
P (λ1), . . . , P (λn), counting multiplicities.
(Note: this is not quite the same as Exercise 7 from Lecture 1.)

Ex.8: Exercise 5 p. 97.

Ex.9: For any matrix A ∈ Mn, prove that

det(exp(A)) = exp(tr (A)).

(The exponential of a matrix is defined as the convergent series exp(A) =
�

k≥0
1
k!A

k.)

Ex.10: Given an invertible matrix A ∈ Mn, show that its inverse A−1 can be expressed as a
polynomial of degree ≤ n− 1 in A.

Ex.11: Without using Cayley-Hamilton theorem, prove that if T ∈ Mm and �T ∈ Mn are two
upper triangular matrices with no eigenvalue in common, then the matrices

�
T M

0 �T

�
and

�
T 0

0 �T

�

are equivalent for any choice of M ∈ Mm×n.
[Hint: Observe that you need to show TX = X �T =⇒ X = 0. Start by considering the
element in the lower left corner of the matrix TX = X �T to show that xm,1 = 0, then
consider the diagonal i − j = m − 2 (the one just above the lower left corner) of the
matrix TX = X �T to show that xm−1,1 = 0 and xm,2 = 0, etc.]
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Lecture 2: Spectral Theorems

This lecture introduces normal matrices. The spectral theorem will inform us that normal
matrices are exactly the unitarily diagonalizable matrices. As a consequence, we will deduce
the classical spectral theorem for Hermitian matrices. The case of commuting families of
matrices will also be studied. All of this corresponds to section 2.5 of the textbook.

1 Normal matrices

Definition 1. A matrix A ∈ Mn is called a normal matrix if

AA∗ = A∗A.

Observation: The set of normal matrices includes all the Hermitian matrices (A∗ = A), the
skew-Hermitian matrices (A∗ = −A), and the unitary matrices (AA∗ = A∗A = I). It also

contains other matrices, e.g.

�
1 −1

1 1

�
, but not all matrices, e.g.

�
1 1

0 1

�
.

Here is an alternate characterization of normal matrices.

Theorem 2. A matrix A ∈ Mn is normal iff

�Ax�2 = �A∗x�2 for all x ∈ Cn.

Proof. If A is normal, then for any x ∈ Cn,

�Ax�22 = �Ax,Ax� = �x,A∗Ax� = �x,AA∗x� = �A∗x,A∗x� = �A∗x�22.

Conversely, suppose that �Ax� = �A∗x� for all x ∈ Cn. For any x, y ∈ Cn and for λ ∈ C with
|λ| = 1 chosen so that �(λ�x, (A∗A − AA∗)y�) = |�x, (A∗A − AA∗)y�|, we expand both sides of
�A(λx+ y)�22 = �A∗(λx+ y)�22 to obtain

�Ax�22 + �Ay�22 + 2�(λ�Ax,Ay�) = �A∗x�22 + �A∗y�22 + 2�(λ�A∗x,A∗y�).

Using the facts that �Ax�22 = �A∗x�22 and �Ay�22 = �A∗y�22, we derive

0 = �(λ�Ax,Ay� − λ�A∗x,A∗y�) = �(λ�x,A∗Ay� − λ�x,AA∗y�) = �(λ�x, (A∗A−AA∗)y�)
= |�x, (A∗A−AA∗)y�|.

Since this is true for any x ∈ Cn, we deduce (A∗A − AA∗)y = 0, which holds for any y ∈ Cn,
meaning that A∗A−AA∗ = 0, as desired.
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Before proceeding to the next section, we isolate the following two results.

Lemma 3. Normality is preserved under unitary equivalence.

Proof. Left to the reader.

Lemma 4. A triangular matrix is normal if and only if it is diagonal.

Proof. It is easy to observe that a diagonal matrix is normal. We now wish to prove that if a
triangular matrix T ∈ Mn is normal, then it is necessarily diagonal. We proceed by induction
on n. For n = 1, there is nothing to do. Let us now assume that the result holds up to an
integer n− 1, n ≥ 2, and let us prove that it also holds for n. Given T ∈ Mn, we decompose it
into blocks and compute the products TT ∗ and T ∗T as follows

T =





t1,1 z∗

0 �T




, TT ∗ =





|t1,1|2 + �z�22 x

x �T �T ∗




, T ∗T =





|t1,1|2 x

x zz∗ + �T ∗ �T




.

Since TT ∗ = T ∗T , equality in the top-left block implies z = 0, and in turn equality in the
bottom-right block yields �T �T ∗ = �T ∗ �T . The matrix �T ∈ Mn−1 is triangular and normal, so it
must be diagonal by the induction hypothesis. Taking z = 0 into account, we now see that T

is itself diagonal. This finishes the proof by induction.

2 Spectral theorem

The spectral theorem for normal matrices basically states that a matrix A is normal iff it
is unitarily diagonalizable — i.e., there exist a unitary matrix U and a diagonal matrix D

such that A = UDU∗. It is important to remark that the latter is equivalent to saying that
there exists an orthonormal basis (the columns of U ) of eigenvectors of A (the corresponding
eigenvalues being the diagonal elements of D). Additionally, the following result provides an
easy-to-check necessary and sufficient condition for normality.

Theorem 5. Given A ∈ Mn, the following statements are equivalent:

(i) A is normal,

(ii) A is unitarily diagonalizable,

(iii)
�

1≤i,j≤n

|ai,j |2 =
�

1≤i≤n

|λi|2, where λ1, . . . ,λn are the eigenvalues of A, counting multiplicities.
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Proof. (i) ⇔ (ii). By Schur’s theorem, A is unitarily equivalent to a triangular matrix T . Then

A is normal ⇐⇒
Lem.3

T is normal ⇐⇒
Lem.4

T diagonal ⇐⇒ A is unitarily diagonalizable.

(ii) ⇒ (iii). Suppose that A is unitarily equivalent to a diagonal matrix D. Note that the
diagonal entries of D are the eigenvalues λ1, . . . ,λn of A. Then

�

1≤i,j≤n

|ai,j |2 = tr (A∗A) = tr (D∗D) =
�

1≤i≤n

|λi|2.

(iii) ⇒ (ii). By Schur’s theorem, A is unitarily equivalent to a triangular matrix T . Therefore,

(1)
�

1≤i,j≤n

|ai,j |2 = tr (A∗A) = tr (D∗D) =
�

1≤i,j≤n

|ti,j |2.

On the other hand, we have

(2)
�

1≤i≤n

|λi|2 =
�

1≤i≤n

|ti,i|2,

because the diagonal entries of T are the eigenvalues λ1, . . . ,λn of A. Thus, the equality
between (1) and (2) imply that ti,j = 0 whenever i �= j, i.e., that T is a diagonal matrix. Hence,
A is unitarily diagonalizable.

As a simple corollary, we obtain the important spectral theorem for Hermitian matrices.

Theorem 6. If a matrix A ∈ Mn is Hermitian, then A is unitarily diagonalizable and its
eigenvalues are real.

Proof. The first part of the statement holds since Hermitian matrices are normal matrices.
For the second part, note that if A = UDU∗ for a unitary matrix U and a diagonal matrix D,
then A∗ = UDU∗, so if A is Hermitian, then D = D, i.e., the eigenvalues of A are real.

3 Commuting families

In this section, we investigate families of matrices {Ai, i ∈ I} ⊆ Mn such that AiAj = AjAi

for all i, j ∈ I. These are called commuting families. Any family of diagonal matrices is a
commuting family, and in fact so is any family of the type SDiS−1 where S is an invertible
matrix and the Di, i ∈ I, are diagonal matrices. The following result is a converse of this
statement.

Theorem 7. A commuting family F ⊆ Mn of diagonalizable matrices is simultaneously diag-
onalizable, i.e., there exists an invertible S ∈ Mn such that S−1AS is diagonal for all A ∈ F .
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Proof. We proceed by induction on n. For n = 1, there is nothing to do. Let us now assume
that the result holds up to an integer n − 1, n ≥ 2, and let us prove that it also holds for n.
Considering a commuting family F ⊆ Mn of diagonalizable matrices, we may assume that
there is a matrix M ∈ F with at least two eigenvalues (otherwise F contains only multiples of
the identity matrix, and the result is clear). Therefore, for some invertible matrix M ∈ Mn,

M � := S−1MS =




λ1I 0 0

0
. . . 0

0 0 λkI



 where λ1, . . . ,λk are all distinct.

For any A ∈ F , the equality AM = MA gives A�M � = M �A�, where A� := S−1AS, hence



λ1A�

1,1 · · · λnA�
1,n

... . . . ...
λ1A�

n,1 · · · λnA�
n,n



 =




λ1A�

1,1 · · · λ1A�
1,n

... . . . ...
λnA�

n,1 · · · λnA�
n,n.





By looking at the off-diagonal elements, we conclude that A�
i,j = 0 whenever i �= j. Therefore,

every A ∈ F satisfies

S−1AS =




A�

1,1 0 0

0
. . . 0

0 0 A�
n,n



 .

We now observe that each F �
i := {A�

i,i, A ∈ F} is a commuting family of diagonal matrices with
size smaller than n — the commutativity is easy to check, and the diagonalizibility follows
from Theorem 1.3.10 in the textbook. By applying the induction hypothesis to each F �

i , we
find invertible matrices Si such that S−1

i A�
i,iSi =: Di is diagonal for each i ∈ [1 : k]. We finally

obtain, for every A ∈ F ,



S−1
1 0 0

0
. . . 0

0 0 S−1
n



S−1AS




S1 0 0

0
. . . 0

0 0 Sn



 =




D1 0 0

0
. . . 0

0 0 Dn



 ,

so that every A ∈ F is diagonalizable through a common invertible matrix. This finishes the
proof by induction.

The following theorem is a version of Schur’s theorem for commuting matrices.

Theorem 8. A commuting family F ⊆ Mn of matrices is simultaneously unitarily triangular-
izable, i.e., there exists a unitary U ∈ Mn such that U∗AU is upper triangular for all A ∈ F .

Proof. We proceed by induction on n. For n = 1, there is nothing to do. Let us now assume
that the result holds up to an integer n − 1, n ≥ 2, and let us prove that it also holds for n.
Given a commuting family F ∈ Mn, Lemma 1 from Lecture 0 guarantees that F possesses a
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common eigenvector, which can be assumed to be �2-normalized. Call this vector v1 and form
an orthonormal basis v = (v1, v2, . . . , vn). Each A ∈ F is unitarily equivalent to the matrix of
x ∈ Cn �→ Ax ∈ Cn relative to the basis v, i.e..

A ∼
unit.





a x

0 �A




, A ∈ F .

By looking at the product AB and BA for all A,B ∈ F , we see that �A �B = �B �A for all A,B ∈ F .
Thus, the family �F := { �A,A ∈ F} is a commuting family of matrices of size n − 1. By the
induction hypothesis, the family �F is simultaneously unitarily triangularizable. We can then
infer that the family F is itself simultaneously unitarily triangularizable (see the argument
in the proof of Schur’s theorem). This finishes the proof by induction.

Theorem 9. A commuting family F ⊆ Mn of normal matrices is simultaneously unitarily
diagonalizable, i.e., there exists a unitary U ∈ Mn such that U∗AU is diagonal for all A ∈ F .

Proof. By Theorem 8, there exists a unitary matrix U ∈ Mn such that TA := U∗AU is upper
triangular for all A ∈ F . Then, for each A ∈ F , TA is normal (by Lemma 3) and in turn
diagonal (by 4). This is the desired result.

An aside: Fuglede’s theorem

Let A and B be two square matrices. Suppose that A and B commute and that A is a normal
matrix. Prove that A∗ and B commute — this is (a special case of) Fuglede’s theorem. Deduce
that the product of two commuting normal matrices is also normal.

One needs to prove that A∗B −BA∗ = 0, knowing that AB = BA and AA∗ = A∗A. Recall that
a square matrix C is zero if and only if tr[CC∗] = 0. Here one has

tr[(A∗B −BA∗)(A∗B −BA∗)∗] = tr[(A∗B −BA∗)(B∗A−AB∗)]

= tr[A∗BB∗A]− tr[A∗BAB∗]− tr[BA∗B∗A] + tr[BA∗AB∗].

To conclude, it is enough to remark that

tr[A∗BAB∗] = tr[A∗ABB∗] = tr[AA∗BB∗] = tr[A∗BB∗A],

tr[BA∗AB∗] = tr[BAA∗B∗] = tr[ABA∗B∗] = tr[BA∗B∗A].

Now assume furthermore that B is normal (i.e. BB∗ = B∗B). Using what has just been done,
it is possible to derive that AB is normal, since

(AB)(AB)∗ = ABB∗A∗ = AB∗BA∗ = B∗AA∗B = B∗A∗AB = (AB)∗(AB).

5



4 Exercises

Ex.1: What can be said about the diagonal entries of Hermitian and skew-Hermitian matri-
ces?

Ex.2: Prove that a matrix A ∈ Mn is normal iff �Ax,Ay� = �A∗x,A∗y� for all x, y ∈ Cn.

Ex.3: Prove that if two matrices A,B ∈ Mn commute and have no common eigenvalues, then
the difference A−B is invertible.

Ex.4: Prove Lemma 3.

Ex.5: Exercise 8 p. 109.

Ex.6: Prove that the product of two commuting normal matrices is also a normal matrix.
Show that the product of two normal matrices can be normal even even if the two
matrices do not commute. In general, is it true that the product of two normal matrices
(not necessarily commuting) is normal?

Ex.7: Exercise 14 p. 109.

Ex.8: Exercise 20 p. 109.

Ex.9: Exercise 24 p. 110.

Ex.10: What would a spectral theorem for skew-Hermitian matrices look like? Could it be
deduced from the spectral theorem for Hermitian matrices?

Ex.11: Generalize Fuglede’s theorem by showing that if M and N are two normal matrices
such that MB = BN for some matrix B, then M∗B = BN∗.
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Lecture 3: QR-Factorization

This lecture introduces the Gram–Schmidt orthonormalization process and the associated
QR-factorization of matrices. It also outlines some applications of this factorization. This
corresponds to section 2.6 of the textbook. In addition, supplementary information on other
algorithms used to produce QR-factorizations is given.

1 Gram–Schmidt orthonormalization process

Consider n linearly independent vectors u1, . . . , un in Cm. Observe that we necessarily have
m ≥ n. We wish to ‘orthonormalize’ them, i.e., to create vectors v1, . . . , vn such that

(v1, . . . , vk) is an orthonormal basis for Vk := span[u1, . . . , uk] for all 1k ∈ [1 : n].

It is always possible to find such vectors, and in fact they are uniquely determined if the
additional condition �vk, uk� > 0 is imposed. The step-by-step construction is based on the
following scheme.

Suppose that v1, . . . , vk−1 have been obtained; search in Vk for a vector

�vk = uk +
k−1�

i=1

ck,i vi such that �vk ⊥ Vk−1;

the conditions 0 = ��vk, vi� = �uk, vi�+ ck,i, i ∈ [1 : k − 1], impose the choice ck,i = −�uk, vi�;
now that �vk is completely determined, normalize it to obtain the vector vk =

1

��vk�
�vk.

For instance, let us write down explicitly all the steps in the orthonormalization process for
the vectors

u1 = [6, 3, 2]�, u2 = [6, 6, 1]�, u3 = [1, 1, 1]�.

• �v1 = u1, ��v1� =
√
36 + 3 + 4 = 7, v1 = 1/7 [6, 3, 2]�;

• �v2 = u2 + αv1, 0 = ��v2, v1� ⇒ α = −�u2, v1� = −(16 + 18 + 2)/7, α = −8,

�v2 = 1/7 [7 · 6− 8 · 6, 7 · 6− 8 · 3, 7 · 1− 8 · 2]� = 1/7 [−6, 18,−9]� = 3/7 [−2, 6,−3]�,

��v2� = 3/7
√
4 + 36 + 9 = 3, v2 = 1/7 [−2, 6,−3]�;

• �v3 = u3 + βv2 + γv1,
0 = ��v3, v2�,
0 = ��v3, v1�,

⇒ β = −�u3, v2� = −(−2 + 6− 3)/7,

γ = −�u3, v1� = −(6 + 3 + 2)/7,

β = −1/7,

γ = −11/7,

�v3 = 1/49 [49 + 2− 66, 49− 6− 33, 49 + 3− 22]� = 1/49 [−15, 10, 30]� = 5/49 [−3, 2, 6]�,

��v3� = 5/49
√
9 + 4 + 36 = 5/7, v3 = 1/7 [−3, 2, 6]�.
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2 QR-factorization

Theorem 1. For a nonsingular A ∈ Mn, there exists a unique pair of unitary matrix Q ∈ Mn

and upper triangular matrix R ∈ Mn with positive diagonal entries such that

A = QR.

The QR-factorization can be used for the following tasks:

• solving linear systems according to

[Ax = b] ⇐⇒ [Qy = b, y = Rx],

since the system y = Rx is easy to solve [backward substitution], and the system Qy = b

is even easier to solve [take y = Q
∗
b];

• calculate the (modulus of the) determinant and find the inverse [| detA| =
�n

i=1 ri,i,
A

−1 = R
−1

Q
∗];

• find the Cholesky factorization of a positive definite matrix B = A
∗
A ∈ Mn, A ∈ Mn

being nonsingular (we will later see why every positive definite matrix can be factored
in this way), i.e., find a factorization

B = LL
∗
,

where L ∈ Mn is lower triangular with positive diagonal entries [L = R
∗];

• find a Schur’s factorization of a matrix A ∈ Mn via the QR-algorithm defined by

A0 := A, A0 =: Q0R0,

A1 := R0Q0, A1 =: Q1R1,

...
...

Ak := Rk−1Qk−1, A1 =: QkRk,

...
...

Note that Ak is always unitarily equivalent to A. If all the eigenvalues of A have distinct
moduli, then Ak tends to an upper triangular matrix T (which is therefore unitarily
equivalent to A, see Exercise 3). The eigenvalues of A are read on the diagonal of T .

In the general case of nonsingular or nonsquare matrices, the QR-factorization reads:

Theorem 2. For A ∈ Mm×n, m ≥ n, there exists a matrix Q ∈ Mm×n with orthonormal
columns and an upper triangular matrix R ∈ Mn such that

A = QR.

Beware that the QR-factorization of a rectangular matrix A is not always understood with
Q rectangular and R square, but sometimes with Q square and R rectangular, as with the
MATLAB command qr.
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3 Proof of Theorems 1 and 2

Uniqueness: Suppose that A = Q1R1 = Q2R2 where Q1, Q2 are unitary and R1, R2 are upper
triangular with positive diagonal entries. Then

M := R1R
−1
2 = Q

∗
1Q2.

Since M is a unitary (hence normal) matrix which is also upper triangular, it must be diagonal
(see Lemma 4 of Lecture 2). Note also that the diagonal entries of M are positive (because
the upper triangular matrices R1 and R

−1
2 have positive diagonal entries) and of modulus one

(because M is a diagonal unitary matrix). We deduce that M = I, and consequently that

R1 = R2, Q1 = Q2.

Existence: Let us consider a matrix A ∈ Mm×n with m ≥ n, and let u1, . . . , un ∈ Cm denote
its columns. We may assume that u1, . . . , un are linearly independent (otherwise limiting
arguments can be used, see Exercise 4). Then the result is just a matrix interpretation of the
Gram–Schmidt orthonormalization process of m linearly independent vectors in Cn. Indeed,
the Gram–Schmidt algorithm produces orthonormal vectors v1, . . . , vn ∈ Cm such that, for
each j ∈ [1 : n],

(1) uj =
j�

k=1

rk,j vk =
n�

k=1

rk,j vk,

with rk,j = 0 for k > j, in other words, R := [ri,j ]ni,j=1 is an n × n upper triangular matrix.
The n equations (1) reduce, in matrix form, to A = QR, where Q is the m × n matrix whose
columns are the orthonormal vectors v1, . . . , vn.

[To explain the other QR-factorization, let us complete v1, . . . , vn with vm+1, . . . , vn to form an
orthonormal basis (v1, . . . , vm) of Cm. The analogs of the equations (1), i.e., uj =

�m
k=1 rk,j vk

with rk,j = 0 for k > j, read A = QR, where Q is the m ×m orthogonal matrix with columns
v1, . . . , vm and R is an m× n upper triangular matrix.]

To illustrate the matrix interpretation, observe that the orthonormalization carried out in
Section 1 translates into the factorization [identify all the entries]




6 6 1

3 6 1

2 1 1



 =
1

7




6 −2 −3

3 6 2

2 −3 6





� �� �
unitary




7 8 11/7

0 3 1/7

0 0 5/7





� �� �
upper triangular

.
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An aside: other QR-factorization algorithms

The Gram–Schmidt algorithm has the disadvantage that small imprecisions in the calculation
of inner products accumulate quickly and lead to effective loss of orthogonality. Alternative
ways to obtain a QR-factorization are presented below on some examples. They are based on
the following idea and exploits the fact that the computed product of unitary matrices gives a
unitary matrix with acceptable error.

Multiply the (real) matrix A on the left by some orthogonal matrices Qi which ‘eliminate’ some
entries below the main ‘diagonal’, until the result is an upper triangular matrix R, thus

Qk · · ·Q2Q1A = R yields A = QR, with Q = Q
∗
1Q

∗
2 · · ·Q∗

k.

We mainly know two types of unitary transformations, namely rotations and reflexions. There-
fore, the two methods we describe are associated with Givens rotations [preferred when A is
sparse] and Householder reflections [preferred when A is dense].

Givens rotations

The matrix

Ω[i,j] :=





. . . i j

1
... 0

... 0

i · · · cos θ · · · sin θ · · ·

0
... . . . ... 0

j · · · − sin θ · · · cos θ · · ·

0
... 0

... 1
. . .





corresponds to a rotation along the two-dimensional space span[ei, ej ]. The rows of the matrix
Ω[i,j]

A are the same as the rows of A, except for the i-th and j-th rows, which are linear com-
binations of the i-th and j-th rows of A. By choosing θ appropriately, we may introduce a zero

at a prescribed position on one of these rows. Consider for example the matrix A =




6 6 1

3 6 1

2 1 1





of the end of Section 1. We pick Ω[1,2] so that Ω[1,2]
A =




6 6 1

0 × ×
× × ×



. Then we pick Ω[1,3] so that

Ω[1,3]Ω[1,2]
A =




× × ×
0 × ×
0 × ×



. Finally, thanks to the leading zeros in the second and third rows,
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we can pick Ω[2,3] so that Ω[2,3]Ω[1,3]Ω[1,2]
A =




× × ×
0 × ×
0 0 ×



 . The matrix
�
Ω[2,3]Ω[1,3]Ω[1,2]

�∗ is the

unitary matrix required in the factorization of A.

Householder reflections

The reflection in the direction of a vector v transforms v into −v while leaving the space v
⊥

unchanged. It can therefore be expressed through the Hermitian unitary matrix

Hv := I − 2

�v�2 vv
∗
.

Consider the matrix A =




6 6 1

3 6 1

2 1 1



 once again. We may transform u1 = [6, 3, 2]� into 7e1 =

[7, 0, 0]� by way of the reflection in the direction v1 = u1 − 7e1 = [−1, 3, 2]�. The latter is
represented by the matrix

Hv1 = I − 2

�v1�2
v1v

∗
1 = I − 1

7




1 −3 −2

−3 9 6

−2 6 4



 =
1

7




6 3 2

3 −2 −6

2 −6 3



 .

Then the matrix Hv1A has the form




7 × ×
0 × ×
0 × ×



, where the precise expression for the second

column is

Hv1u2 = u2 −
�v1, u2�

7
v1 = u2 − 2v1 =




8

0

−3



 .

To cut the argument short, we may observe at this point that the multiplication of Hv1A

on the left by the permutation matrix P =




1 0 0

0 0 1

0 1 0



 [which can be interpreted as He2−e3]

exchanges the second and third rows, thus gives an upper triangular matrix. In conclusion,
the orthogonal matrix Q has been obtained as

(PHv1)
∗ = H

∗
v1P

∗ = Hv1P =
1

7




6 2 3

3 −6 −2

2 3 −6



 .
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4 Exercises

Ex.1: Prove that a matrix A ∈ Mm×n, m ≤ n, can be factored as A = LP where L ∈ Mm is
lower triangular and P ∈ Mm×n has orthonormal rows.

Ex.2: Prove the uniqueness of the Cholesky factorization of a positive definite matrix.

Ex.3: Exercise 5 p. 117.

Ex.4: Fill in the details of the following argument: for A ∈ Mm×n with m ≥ n, there exists a
sequence of matrices Ak ∈ Mm×n with linearly independent columns such that Ak → A

as k → ∞; each Ak can be written as Ak = QkRk where Qk ∈ Mm×n has orthonormal
columns and Rk ∈ Mn is upper triangular; there exists a subsequence (Qkj ) converging
to a matrix Q ∈ Mm×n with orthonormal columns, and the sequence (Rkj ) converges to
an upper triangular matrix R ∈ Mn; taking the limit when j → ∞ yields A = QR.

Ex.5: Fill in the numerical details in the section on Givens rotations.
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Lecture 4: Jordan Canonical Forms

This lecture introduces the Jordan canonical form of a matrix — we prove that every square
matrix is equivalent to a (essentially) unique Jordan matrix and we give a method to derive
the latter. We also introduce the notion of minimal polynomial and we point out how to obtain
it from the Jordan canonical form. Finally, we make an encounter with companion matrices.

1 Jordan form and an application

Definition 1. A Jordan block is a matrix of the form J1(λ) = λ ∈ C when k = 1 and

Jk(λ) =





λ 1 0 · · · 0

0 λ 1 0
...

0
. . . . . . . . . 0

... . . . . . . λ 1

0 · · · 0 0 λ





� �� �
k






k when k ≥ 2.

Theorem 2. For any A ∈ Mn, there is an invertible matrix S ∈ Mn such that

A = S





Jn1(λ1) 0 · · · 0

0 Jn2(λ2)
. . . ...

... . . . . . . 0

0 · · · 0 Jnk(λk)




S−1 =: SJS−1,

where n1 + n2 + · · · + nk = n. The numbers λ1,λ2, . . . ,λk are the (not necessarily distinct)
eigenvalues of A. The Jordan matrix J is unique up to permutation of the blocks.

Observation: two matrices close to one another can have Jordan forms far apart, for instance
�
1 0

0 1

�
and

�
1 ε

0 1

�
∼

�
1 1

0 1

�
.

Thus, any algorithm determining the Jordan canonical form is inevitably unstable! Try typing
help jordan in MATLAB...

The Jordan form can be useful when solving a system of ordinary differential equations in
the form [x� = Ax, x(0) = x0]. If A = SJS−1 is the Jordan canonical form, then the change of
unknown functions �x = S−1x transforms the original system to [�x� = J�x, �x(0) = �x0]. Writing

J =





Jn1(λ1) 0 · · · 0

0 Jn2(λ2)
. . . ...

... . . . . . . 0

0 · · · 0 Jnk(λk)




and �x =





u(1)
u(2)

...
u(k)




,
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the new system decouples as u�(�) = Jn�(λ�)u(�), � ∈ [1 : k]. Each of these k systems has the form





u�1
u�2
· · ·
u�m




=





λ 1 · · · 0

0 λ
. . . ...

... . . . . . . 1

0 · · · 0 λ









u1
u2
· · ·
um




.

This can be solved by backward substitution: first, use um(t) = λum(t) to derive

um(t) = um(0)eλt.

Then, u�m−1(t) = λum−1(t) + um(t) reads
d

dt
[um−1(t)e−λt] = [u�m−1(t) − λum−1(t)]e−λt = um(0),

so that
um−1(t) = [um−1(0) + um(0)t]eλt.

Next, u�m−2(t) = λum−2(t)+um−1(t) reads
d

dt
[um−2(t)e−λt] = [u�m−2(t)−λum−2(t)]e−λt = um−1(0)+

um(0)t, so that
um−2(t) = [um−2(0) + um−1(0)t+ um(0)t2]eλt,

etc. The whole vector [u1, . . . , um]� can be determined in this fashion.

2 Proof of Theorem 2

Uniqueness: The argument is based on the observation that, for

Nk :=





0 1 0 · · · 0

0 0 1 0
...

0
. . . . . . . . . 0

... . . . . . . 0 1

0 · · · 0 0 0





� �� �
k






k,

we have N �
k = 0 if � ≥ k and

N �
k =

← � →



0 · · · 1 · · · 0

0 0
. . . 1

...

0
. . . . . . . . . 1

... . . . . . . 0
...

0 · · · 0 0 0





has rank k − � if � < k.
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Let µ1 < . . . < µ� be the distinct values of λ1, . . . ,λk. After permutation,

A ∼





Jn1,1(µ1)
. . .

Jn1,h1
(µ1)

. . .
Jn�,1(µ�)

. . .
Jn�,h�

(µ�)





.

We are going to prove that for each µi (say, for µ1) and for each m, the number of blocks Jm(µi)

of size m is uniquely determined by A. From

A− µ1I ∼





Nn1,1

. . .
Nn1,h1

. . .

Full Rank





,

we obtain, for each m ≥ 0,

(A− µ1I)
m ∼





Nm
n1,1

. . .
Nm

n1,h1

. . .

Full Rank





.

Therefore, we derive, for each m ≥ 1,

rank
�
(A− µ1I)

m−1
�
− rank ((A− µ1I)

m) =

�
1 if m ≤ n1,1

0 otherwise

�
+ · · ·+

�
1 if m ≤ n1,h1

0 otherwise

�

= [number of Jordan blocks of size ≥ m] =: j≥m.

Since the numbers j≥m are completely determined by A, so are the numbers jm = j≥m−j≥m+1,
which represent the numbers of Jordan blocks of size = m.

Let us emphasize that the previous argument is also the basis of a method to find the Jordan
canonical form. We illustrate the method on the example

A =




1 2 −1

0 3 −1

0 4 −1



 .
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The eigenvalues of A are the roots of det(xI −A) = (1− x)3 — calculation left to the reader —
hence 1 is the unique eigenvalue of A. Therefore, there are three possibilities for the Jordan
canonical form J of A:

J1 =




1 0 0

0 1 0

0 0 1



 , J2 =




1 1 0

0 1 0

0 0 1



 , J3 =




1 1 0

0 1 1

0 0 1



 .

The observation that rank(J − I) = rank(A − I) = 1 — calculation left to the reader — shows
that J = J2 (since rank(J1 − I) = 0, rank(J2 − I) = 1, rank(J3 − I) = 2).

Existence: Let µ1 < · · · < µ� be the distinct eigenvalues of A. We know (see Lecture 1) that

A ∼





T1 0 · · · 0

0 T2
. . . ...

... . . . . . . 0

0 · · · 0 T�




, where Ti =





µi x · · · x

0 µi
. . . ...

... . . . . . . x

0 · · · 0 µi




.

It is now enough to show that each matrix Ti is equivalent to a Jordan matrix, i.e., that

T =





µ x · · · x

0 µ
. . . ...

... . . . . . . x

0 · · · 0 µ




∈ Mm =⇒ T ∼ J =





Jm1(µ) 0 · · · 0

0 Jm2(µ)
. . . ...

... . . . . . . 0

0 · · · 0 Jmk(µ)




,

with m1 +m2 + · · ·+mk = m, or equivalently that

T =





0 x · · · x

0 0
. . . ...

... . . . . . . x

0 · · · 0 0




∈ Mm =⇒ T ∼ M =





Nm1 0 · · · 0

0 Nm2

. . . ...
... . . . . . . 0

0 · · · 0 Nmk




.

In other words, we want to find vectors

x1, T (x1), · · · , Tm1−1(x1), . . . , xk, T (xk), · · · , Tmk−1(xk)

forming a basis of Cm and with Tm1(x1) = 0, . . . , Tmk(xk) = 0. This is guaranteed by the
following lemma, stated at the level of linear transformations.

Lemma 3. If V is a vector space of dimension m and if T : V → V is a linear map with T p = 0

for some integer p ≥ 1, then there exist integers m1, . . . ,mk ≥ 1 with m1 + · · · +mk = m and
vectors v1, . . . , vk ∈ V such that (v1, T (v1), . . . , Tm1−1(v1), . . . , vk, T (vk), . . . , Tmk−1(vk)) forms a
basis for V and that Tm1(v1) = 0, . . . , Tmk(vk) = 0.
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Proof. We proceed by induction on n ≥ 1. For n = 1, there is nothing to do. Let us now
suppose the result true up to m − 1, m ≥ 2, and let us prove that it holds for the integer
m, too. Note that U := ranT is a vector space of dimension n < m (otherwise T would
be surjective, hence bijective, and T p = 0 would be impossible). Consider the restriction
of T to U , i.e., the linear map �T : x ∈ U �→ Tx ∈ U , and note that �T p = 0. Applying
the induction hypothesis, there exist integers n1, . . . , n� ≥ 1 with n1 + · · · + n� = n and vec-
tors u1, . . . , u� ∈ U such that (u1, �T (u1), . . . , �Tn1−1(u1), . . . , u�, �T (u�), . . . , �Tn�−1(u�)) forms a ba-
sis for U and that �Tn1(u1) = 0, . . . , �Tn�(u�) = 0. Since u1, . . . , u� ∈ U = ranT , there exist
v1, . . . , v� ∈ V such that ui = Tvi. Note that Tni+1(vi) = 0, so that (Tn1(v1), . . . , Tn�(v�))

is a linearly independent system of � vectors in kerT , which has dimension m − n. Com-
plete this system with vectors v�+1, . . . , vm−n ∈ kerT to form a basis for kerT . Now consider
the system (v1, T (v1), . . . , Tn1(v1), . . . , v�, T (v�), . . . , Tn�(v�), v�+1, · · · , vm−n). Observe that this
is a linearly independent system. Observe also that the number of vectors in this system is
n1+1+ · · ·+n�+1+m−n− � = n1+ · · ·+n�+m−n = m, so that the system is in fact a basis
for V . Finally, observe that Tn1+1(v1) = 0, . . . , Tn�+1(v�) = 0, T (v�+1) = 0, . . . , T (vn−m) = 0 to
conclude that the induction hypothesis is true for the integer m. This finishes the proof.

3 Minimal polynomial

Let A ∈ Mn be given. Consider the set of monic (i.e., having a leading coefficient equal to 1)
polynomials p that annihilates A (i.e., such that p(A) = 0). According Cayley–Hamilton’s
theorem, this set contains at least one polynomial, namely the characteristic polynomial pA
(possibly multiplied by (−1)n, depending on the convention). In this set, we can consider a
polynomial of minimal degree. It turns out that there is only one such polynomial.

Theorem 4. Given A ∈ Mn, there exists a unique monic polynomial of minimal degree that
annihilates A. This polynomial, called the minimal polynomial of A and denoted qA, divides
all polynomials that annihilate A.

Proof. Let m be a monic polynomial of minimal degree that annihilates A, and let p be an
arbitrary polynomial that annihilates A. The Euclidean division of p by m reads

p(x) = q(x)m(x) + r(x), deg(r) < deg(m).

Note that p(A) = q(A)m(A)+r(A) = 0 and m(A) = 0 imply r(A) = 0. But since deg(r) < deg(m),
we must have r = 0. This means that m divides p.
Now let �m be another monic polynomial of minimal degree that annihilates A. By the previous
argument, m divides �m and �m divides m, so that m and �m are constant multiples of each other.
Since they are both monic, we deduce that m = �m. This means that a monic polynomial of
minimal degree that annihilates A is unique.

5



Observation: Since the minimal polynomial qA divides the characteristic polynomial pA, if
pA(x) = (x− µ1)n1 · · · (x− µk)nk with n1, . . . , nk ≥ 1, then qA(x) = (x− µ1)m1 · · · (x− µk)mk with
1 ≤ m1 ≤ n1, . . . , 1 ≤ mk ≤ nk. (Note that mi ≥ 1 holds because, if xi �= 0 is an eigenvector
corresponding to µi, then 0 = qA(A)(xi) = qA(µi)xi, hence qA(µi) = 0).

Observation: One can read the minimal polynomial out of the Jordan canonical form (since
equivalent matrices have the same minimal polynomial): the mi are the order of the largest
Jordan block of A corresponding to the eigenvalue µi.

Theorem 5. For a0, a1, . . . , an−1, the matrix

A =





0 0 · · · 0 −a0

1 0
. . . ... −a1

0 1
. . . 0

...
... . . . . . . 0 −an−2

0 · · · 0 1 −an−1





has characteristic polynomial and minimal polynomial given by

pA(x) = qA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

The matrix A is called the companion matrix of the polynomial xn + an−1xn−1 + · · ·+ a1x+ a0.

Proof. We first determine the characteristic polynomial as

pA(x) = det(xI −A) =

�������������

x 0 · · · 0 a0

−1 x
. . . ... a1

0 −1
. . . 0

...
... . . . . . . x an−2

0 · · · 0 −1 x+ an−1

�������������

Expanding along the last column shows that pA(x) equals

(−1)n+1a0·(−1)n−1+(−1)n+2a1·(−1)n−2x+· · ·+(−1)2n−1an−2·(−1)xn−2+(−1)2n(an−1+x)·xn−1

= a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1 + xn,

as expected. To verify that qA = pA, it now suffices to show that qA cannot have degree m < n.
Suppose the contrary, i.e., that qA has the form qA(x) = xm + cm−1xm−1 + . . . + c1x + c0 with
m < n. Then

0 = qA(A)(e1) = (Am + cm−1A
m−1 + . . .+ c1A+ c0I)(e1) = em+1 + cm−1em + · · ·+ c1e2 + c0e1,

which contradicts the linear independence of the basis vectors em+1, em, . . . .e2, e1.
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4 Exercises

Ex.1: Prove that if A ∈ Mn satisfies Ap = 0 for some integer p ≥ 1, then it satisfies An = 0.

Ex.2: Exercise 2 p. 129

Ex.3: Exercise 2 p. 139

Ex.4: Exercise 6 p. 140

Ex.5: Exercise 7 p. 140

Ex.6: Exercise 8 p. 140

Ex.7: Exercise 17 p. 141

Ex.8: Exercise 9 p. 149

Ex.9: Exercise 13 p. 150

7



Lecture 5: Eigenvalues of Hermitians Matrices

This lecture takes a closer look at Hermitian matrices and at their eigenvalues. After a few

generalities about Hermitian matrices, we prove a minimax and maximin characterization of

their eigenvalues, known as Courant–Fischer theorem. We then derive some consequences

of this characterization, such as Weyl theorem for the sum of two Hermitian matrices, an

interlacing theorem for the sum of two Hermitian matrices, and an interlacing theorem for

principal submatrices of Hermitian matrices.

1 Basic properties of Hermitian matrices

We recall that a matrix A ∈ Mn is called Hermitian if A
∗ = A and skew-Hermitian if A

∗ = −A,

and we note that A is Hermitian if and only if iA is skew-Hermitian. We have observed

earlier that the diagonal entries of a Hermitian matrix are real. This can also be viewed as a

particular case of the following result.

Proposition 1. Given A ∈ Mn,

[A is Hermitian] ⇐⇒ [�Ax, x� = x
∗
Ax ∈ R for all x ∈ Cn].

Proof. ⇒ If A is Hermitian, then, for any x ∈ CN
,

�Ax, x� = �x,A∗
x� = �x,Ax� = �Ax, x�,

so that �Ax, x� ∈ R.

⇐ Suppose that �Ax, x� ∈ R for all x ∈ Cn
. For any u, v ∈ CN

, we have

�A(u+ v), u+ v�� �� �
∈R

= �Au, u�� �� �
∈R

+ �Av, v�� �� �
∈R

+�Au, v�+ �Av, u�, so that �Au, v�+ �Av, u� ∈ R.

Taking u = ej and v = ek yields

ak,j + aj,k ∈ R, thus Im(ak,j) = −Im(aj,k),

then taking u = iej and v = ek yields

iak,j − iaj,k ∈ R, thus Re(ak,j) = Re(aj,k).

Altogether, this gives ak,j = aj,k for all j, k ∈ [1 : n], i.e., A = A
∗
.

Proposition 2. Any matrix A ∈ Mn can be uniquely written in the form

A = H + S, where H ∈ Mn is Hermitian and S ∈ Mn is skew-Hermitian,

A = H1 + iH2, where H1, H2 ∈ Mn are both Hermitian.

Proof. If A = H + S with H Hermitian and S skew-Hermitian, then A
∗ = H

∗ + S
∗ = H + S.

By adding and subtracting these two relations, we derive H = (A+A
∗)/2 and S = (A−A

∗)/2,

hence H and S are uniquely determined. Moreover, with H and S given above, it is readily

verified that H is Hermitian, that S is skew-Hermitian, and that A = H + S. For the second

statement, we use the fact that H2 is Hermitian if and only if S := iH2 is skew-Hermitian.
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2 Variational characterizations of eigenvalues

We now recall that, according to the spectral theorem, if A ∈ Mn is Hermitian, there exists

a unitary matrix U ∈ Mn and a real diagonal matrix D such that A = UDU
∗
. The diagonal

entries of D are the eigenvalues of A, which we sort as

λ
↑
1(A) ≤ λ

↑
2(A) ≤ · · · ≤ λ

↑
n(A).

We utilize this notation for the rest of the lecture, although we may sometimes just write λ
↑
j

instead of λ
↑
j (A) when the context is clear. Note also that the columns u1, . . . , un of U form an

orthonormal system and that Auj = λ
↑
j (A)uj for all j ∈ [1 : n]. We start by observing that

(1) λ
↑
1(A)�x�22 ≤ �Ax, x� ≤ λ

↑
n(A)�x�22,

with the leftmost inequality becoming an equality if x = u1 and the rightmost inequality

becoming an equality if x = un. The argument underlying the observation (1) will reappear

several times (sometimes without explanation), so we spell it out here. It is based on the

expansion of x ∈ Cn
on the orthonormal basis (u1, . . . , un), i.e.,

x =
n�

j=1

cjuj with

n�

j=1

c
2
j = �x�22.

We now simply write

(2) �Ax, x�=�
n�

j=1

cjAuj ,

n�

j=1

cjuj�=�
n�

j=1

cjλ
↑
juj ,

n�

j=1

cjuj�=
n�

j=1

λ
↑
jc

2
j=






≥ λ
↑
1

�n
j=1 c

2
j = λ

↑
1�x�22,

≤ λ
↑
n
�n

j=1 c
2
j = λ

↑
n�x�22.

The inequalities (1) (with the cases of equality) can also be expressed as λ
↑
1 = min�x�2=1�Ax, x�

and λ
↑
n = max�x�2=1�Ax, x�, which is known as Rayleigh–Ritz theorem. It is a particular case

of Courant–Fischer theorem stated below.

Theorem 3. For A ∈ Mn and k ∈ [1 : n],

(3) λ
↑
k(A) = min

dim(V )=k
max
x∈V

�x�2=1

�Ax, x� = max
dim(V )=n−k+1

min
x∈V

�x�2=1

�Ax, x�.

Remark. This can also be stated with dim(V ) ≥ k and dim(V ) ≥ n − k + 1, respectively, or

(following the textbook) as

λ
↑
k(A) = min

w1,...,wn−k∈Cn
max

x⊥w1,...,wn−k
�x�2=1

�Ax, x� = max
w1,...,wk∈Cn

min
x⊥w1,...,wk
�x�2=1

�Ax, x�.
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Proof of Theorem 3. We only prove the first equality — the second is left as an exercise. To

begin with, we notice that, with U := span[u1, . . . , uk], we have

min
dim(V )=k

max
x∈V

�x�2=1

�Ax, x� ≤ max
x∈U

�x�2=1

�Ax, x� ≤ λ
↑
k(A),

where the last inequality follows from an argument similar to (2). For the inequality in the

other direction, we remark that our objective is to show that for any k-dimensional linear

subspace V of Cn
, there is x ∈ V with �x�2 = 1 and �Ax, x� ≥ λ

↑
k(A). Considering the subspace

W := span[uk, . . . , un] of dimension n− k + 1, we have

dim(V ∩W ) = dim(V ) + dim(W )− dim(V ∪W ) ≥ k + n− k + 1− n = 1.

Hence we may pick x ∈ V ∪W with �x�2 = 1. The inequality �Ax, x� ≥ λ
↑
k(A) follows from an

argument similar to (2).

We continue with some applications of Courant–Fischer theorem, starting with Weyl theorem.

Theorem 4. Let A,B ∈ Mn be Hermitian matrices. For k ∈ [1 : n],

λ
↑
k(A) + λ

↑
1(B) ≤ λ

↑
k(A+B) ≤ λ

↑
k(A) + λ

↑
n(B).

Proof. We use Courant–Fischer theorem and inequality (1) to write

λ
↑
k(A+B) = min

dim(V )=k
max
x∈V

�x�2=1

�
�(A+B)x, x�

�
= min

dim(V )=k
max
x∈V

�x�2=1

�
�Ax, x�+ �Bx, x�� �� �

≤λ↑
n(B)

�

≤
�

min
dim(V )=k

max
x∈V

�x�2=1

�Ax, x�
�
+ λ

↑
n(B) = λ

↑
k(A) + λ

↑
n(B).

This establishes the rightmost inequality. We actually use this result to prove the leftmost

inequality by replacing A with A+B and B with −B, namely

λ
↑
k(A) = λ

↑
k(A+B + (−B)) ≤ λ

↑
k(A+B) + λ

↑
n(−B) = λ

↑
k(A+B)− λ

↑
1(B).

A rearrangement gives the desired result.

Corollary 5. For Hermitian matrices A,B ∈ Mn, if all the eigenvalues of B are nonnegative

(i.e., �Bx, x� ≥ 0 for all x ∈ Cn
, or in other words B is positive semidefinite), then,

λ
↑
k(A) ≤ λ

↑
k(A+B) for all k ∈ [1 : n].

Weyl theorem turns out to be the particular case k = 1 of Lidskii’s theorem stated below

with the sequences of eigenvalues arranged in nonincreasing order rather than nondecreasing

order.
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Theorem 6. For Hermitian matrices A,B ∈ Mn, if 1 ≤ j1 < . . . < jk ≤ n, then

k�

�=1

λ
↓
j�
(A+B) ≤

k�

�=1

λ
↓
j�
(A) +

k�

�=1

λ
↓
� (B).

Proof. Replacing B by B − λ
↓
k+1(B)I, we may assume that λ

↓
k+1(B) = 0. By the spectral

theorem, there exists a unitary matrix U ∈ Mn such that

B = Udiag
�
λ
↓
1(B), . . . ,λ↓

k(B)
� �� �

≥0

,λ
↓
k+1(B), . . . ,λ↓

n(B)
� �� �

≤0

�
U

∗
.

Let us introduce the Hermitian matrices

B
+ := Udiag

�
λ
↓
1(B), . . . ,λ↓

k(B), 0, . . . , 0
�
U

∗
, B

− := Udiag
�
0, . . . , 0,−λ

↓
k+1(B), . . . ,−λ

↓
n(B)

�
U

∗
.

They have only nonnegative eigenvalues and satisfy B = B
+ −B

−
. According to Corollary 5,

λ
↓
j (A+B

+) ≥ λ
↓
j (A) and λ

↓
j (A+B

+) = λ
↓
j (A+B +B

−) ≥ λ
↓
j (A+B).

It follows that

k�

�=1

�
λ
↓
j�
(A+B)− λ

↓
j�
(A)

�
≤

k�

�=1

�
λ
↓
j�
(A+B

+)− λ
↓
j�
(A)

�
≤

n�

j=1

�
λ
↓
j (A+B

+)− λ
↓
j (A)

�

= tr (A+B
+)− tr (A) = tr (B+) =

k�

�=1

λ
↓
� (B).

This is just a rearrangement of the desired result.

3 Interlacing theorems

The two results of this section locate the eigenvalues of a matrix derived from a matrix A

relatively to the eigenvalues of A. They are both consequences of Courant–Fischer theorem.

Theorem 7. Let A ∈ Mn be a Hermitian matrix and As be an s× s principal submatrix of A,

s ∈ [1 : n]. Then, for k ∈ [1 : s],

λ
↑
k(A) ≤ λ

↑
k(As) ≤ λ

↑
k+n−s(A).

Remark. The terminology of interlacing property is particularly suitable in the case of an

(n− 1)× (n− 1) principal submatrix �A, since we then have

λ
↑
1(A) ≤ λ

↑
1(

�A) ≤ λ
↑
2(A) ≤ λ

↑
2(

�A) ≤ λ
↑
3(A) ≤ · · · ≤ λ

↑
n−1(A) ≤ λ

↑
n−1(

�A) ≤ λ
↑
n(A).

As for the particular case s = 1, it gives

λ
↑
1(A) ≤ aj,j ≤ λ

↑
n(A) for all j ∈ [1 : n],

which is also a consequence of (1) with x = ej .
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Proof of Theorem 7. Suppose that the rows and columns of A kept in As are indexed by a

set S of size s. For a vector x ∈ Cs
, we denote by �x ∈ Cn

the vector whose entries on S

equal those of x and whose entries outside S equal zero. For a linear subspace V of Cs
, we

define �V := {�x, x ∈ V }, which is a subspace of Cn
with dimension equal the dimension of V .

Given k ∈ [1 : s], Courant–Fischer theorem implies that, for all linear subspace V of Cs
with

dim(V ) = k,

max
x∈V

�x�2=1

�Asx, x� = max
x∈V

�x�2=1

�A�x, �x� = max
�x∈�V

��x�2=1

�A�x, �x� ≥ λ
↑
k(A).

Taking the minimum over all k-dimensional subspaces V gives λ
↑
k(As) ≥ λ

↑
k(A). Similarly, for

all linear subspace V of Cs
with dim(V ) = s− k + 1 = n− (k + n− s) + 1,

min
x∈V

�x�2=1

�Asx, x� = min
x∈V

�x�2=1

�A�x, �x� = min
�x∈�V

��x�2=1

�A�x, �x� ≤ λ
↑
k+n−s(A).

Taking the maximum over all (s−k+1)-dimensional subspaces V gives λ
↑
k(As) ≤ λ

↑
k+n−s(A).

Theorem 8. Let A,B ∈ Mn be Hermitian matrices with rank(B) = r. Then, for k ∈ [1 : n−2r],

λ
↑
k(A) ≤ λ

↑
k+r(A+B) ≤ λ

↑
k+2r(A).

Before turning to the proof, we observe that the n×n Hermitian matrices of rank r are exactly

the matrices of the form

(4) B =
r�

j=1

µjvjv
∗
j , µ1, . . . , µr ∈ R \ {0}, (v1, . . . , vr) orthonormal system.

Indeed, by the spectral theorem, the n × n Hermitian matrices of rank r are exactly the

matrices of the form

(5) B = V diag
�
µ1, . . . , µr, 0, . . . , 0

�
V

∗
, µ1, . . . , µr ∈ R \ {0}, V

∗
V = I,

which is just another way of writing (4).

Proof of Theorem 8. Let k ∈ [1 : n − r] and let B ∈ Mn be as in (4). We use Courant–Fischer

theorem to derive

λ
↑
k(A) = max

w1,...,wk∈Cn
min

x⊥w1,...,wk
�x�2=1

�Ax, x� ≤ max
w1,...,wk∈Cn

min
x⊥w1,...,wk,v1,...,vr

�x�2=1

�Ax, x�

≤ max
w1,...,wk∈Cn

min
x⊥w1,...,wk,v1,...,vr

�x�2=1

�(A+B)x, x� ≤ max
w1,...,wk+r∈Cn

min
x⊥w1,...,wk+r

�x�2=1

�(A+B)x, x�

= λ
↑
k+r(A+B).

This establishes the rightmost inequality. This inequality can also be used to establish the

leftmost inequality. Indeed, for k ∈ [1 : k − 2r], we have k + r ∈ [1 : k − r], and it follows that

λ
↑
k+r(A+B) ≤ λ

↑
k+r+r(A+B + (−B)) = λ

↑
k+2r(A).
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4 Exercises

Ex.1: Prove the second inequality in (3).

Ex.2: Verify in details the assertions made in (4) and (5).

Ex.3: Exercise 1 p. 174

Ex.4: Exercise 3 p. 174

Ex.5: Exercise 6 p. 174

Ex.6: Exercise 11 p. 175

Ex.7: Exercise 13 p. 175

Ex.8: Exercise 4 p. 181

Ex.9: Exercise 2 p. 198

Ex.10: Exercise 5 p. 199

Ex.11: Exercise 6 p. 199

Ex.12: Exercise 7 p. 199

Ex.13: Exercise 14 p. 200

Ex.14: Exercise 17 p. 200
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Lecture 6: Matrix Norms and Spectral Radii

After a reminder on norms and inner products, this lecture introduces the notions of matrix
norm and induced matrix norm. Then the relation between matrix norms and spectral radii
is studied, culminating with Gelfand’s formula for the spectral radius.

1 Inner products and vector norms

Definition 1. Let V be a vector space over a field K (K = R or C). A function �·, ·� : V ×V → K
is called an inner product if

(IP1) �x, x� ≥ 0 for all x ∈ V , with equality iff x = 0, [positivity]

(IP2) �λx+ µy, z� = λ�x, z�+ µ�y, z� for all λ, µ ∈ K and x, y, z ∈ V , [linearity]

(IP3) �x, y� = �y, x� for all x, y ∈ V . [Hermitian symmetry]

Observation: If K = R, then (IP3) simply says that �x, y� = �y, x�. This is not the case in the
complex setting, where one has to be careful about complex conjugation. For instance, (IP2)
and (IP3) combine to give, for all λ, µ ∈ C and x, y, z ∈ V ,

�x,λy + µz� = λ�x, y�+ µ�x, z�.

Observation: On V = Cn, there is the classical inner product defined by

(1) �x, y� := y∗x =
n�

j=1

xjyj , x, y ∈ Cn.

On V = Mn, there is the Frobenius inner product defined by

�A,B�F := tr (B∗A) =
n�

k=1

n�

�=1

ak,�bk,�, A,B ∈ Mn.

Cauchy–Schwarz inequality is a fundamental inequality valid in any inner product space. At
this point, we state it in the following form in order to prove that any inner product generates
a normed space.

Theorem 2. If �·, ·� is an inner product on a vector space V , then, for all x, y ∈ V ,

|�x, y�|2 ≤ �x, x��y, y�.

Proof. For x, y ∈ V , choose θ ∈ (−π,π] such that Re�eiθx, y� = |�x, y�|. Consider the function
defined for t ∈ R by

q(t) := �eiθx+ ty, eiθx+ ty� = �eiθx, eiθx�+ 2tRe�eiθx, y�+ t2�y, y� = �x, x�+ 2t|�x, y�|+ t2�y, y�.
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This is a quadratic polynomial with q(t) ≥ 0 for all t ∈ R, so its discriminant satisfies

∆ = (2|�x, y�|)2 − 4�x, x��y, y� ≤ 0,

which directly translates into |�x, y�|2 ≤ �x, x��y, y�, as desired.

The general definition of a norm is given below. A normed space is simply a vector space
endowed with a norm.

Definition 3. Let V be a vector space over a field K (K = R or C). A function � · � : V → R is
called a (vector) norm if

(N1) �x� ≥ 0 for all x ∈ V , with equality iff x = 0, [positivity]

(N2) �λx� = |λ|�x� for all λ ∈ K and x ∈ V , [homogeneity]

(N3) �x+ y� ≤ �x�+ �y� for all x, y ∈ V . [triangle inequality]

As examples, we observe that the expression

�x�∞ := max
j∈[1:n]

|xj |

defines a norm on Kn. The corresponding vector space is denoted as �n∞. The expression

�x�1 := |x1|+ |x2|+ · · ·+ |xn|

defines a norm on Kn. The corresponding vector space is denoted as �n1 . More generally, for
p ≥ 1, the expression

�x�p :=
�
|x1|p + |x2|p + · · ·+ |xn|p

�1/p

defines a norm on Kn. The corresponding vector space is denoted as �np . In the case p = 2, note
that �n2 is the vector space Kn endowed with the inner product (1).

Proposition 4. If V is a vector space endowed with an inner product �·, ·�, then the expression
�x� :=

�
�x, x� defines a norm on V .

Proof. The properties (N1) and (N2) are readily checked. As for (N3), consider x, y ∈ V , and
use Theorem 2 to obtain

�x+ y, x+ y� = �x, x�+ 2Re�x, y�+ �y, y� ≤ �x, x�+ 2|�x, y�|+ �y, y�

≤ �x, x�+ 2
�

�x, x�
�
�y, y�+ �y, y� =

��
�x, x�+

�
�y, y�

�2
,

so that
�
�x+ y, x+ y� ≤

�
�x, x�+

�
�y, y�, i.e., �x+ y� ≤ �x�+ �y�, as expected.
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Now that we know that �x� =
�

�x, x� defines a norm on an inner product space, we can state
Cauchy–Schwarz inequality in the more familiar form

|�x, y�| ≤ �x��y�, x, y ∈ V.

If V is a finite-dimensional space, then all norms on V are equivalent in the following sense
(in fact, this characterizes finite dimension).

Theorem 5. If � · � and � · �� are two norms on a finite-dimensional vector space V , then there
exist constants c, C > 0 such that

c�x� ≤ �x�� ≤ C�x� for all x ∈ V.

Proof. Fixing a basis (v1, . . . , vn) of V , we are going to show that any arbitrary norm � · �� is
equivalent to the norm � · � defined by

�x� = max
j∈[1:n]

|xj |, where x =
n�

j=1

xjvj .

On the one hand, for any x ∈ V , we have

�x�� =
���

n�

j=1

xjvj
���
�
≤

n�

j=1

�xjvj�� =
n�

j=1

|xj |�vj�� ≤ max
j∈[1:n]

|xj |
n�

j=1

�vj�� = C�x�,

where we have set C :=
�n

j=1 �vj��. On the other hand, let us assume that there is no c > 0

such that �x� ≤ (1/c)�x�� for all x ∈ V , so that, for each integer k ≥ 1, we can find x(k) ∈ V

with �x(k)� > k�x(k)��. Since we can assume without loss of generality that �x(k)� = 1, we
have �x(k)�� < 1/k. The sequence

�
x(k)1

�
k≥1

of complex numbers is bounded, so we can extract

a subsequence
�
x(ϕ1(k))
1

�
k≥1

converging to some x1 ∈ C; next, the sequence
�
x(ϕ1(k))
2

�
k≥1

of com-

plex numbers is bounded, so we can extract a subsequence
�
x(ϕ1(ϕ2(k)))
2

�
k≥1

converging to some

x2 ∈ C; etc. Setting ϕ = ϕ1 ◦ · · · ◦ϕn, we end up with subsequences
�
x(ϕ(k))1

�
k≥1

, . . . ,
�
x(ϕ(k))n

�
k≥1

such that x(ϕ(k))j −→
k→∞

xj for each j ∈ [1 : n]. Note that the vectors x(ϕ(k)) :=
�n

j=1 x
(ϕ(k))
j vj and

x =
�n

j=1 xjvj satisfy �x− x(ϕ(k))� = maxj∈[1:n] |xj − x(ϕ(k))j | −→
k→∞

0, therefore

�x�� ≤ �x− x(ϕ(k))�� + �x(ϕ(k))�� ≤ C�x− x(ϕ(k))�+ 1/ϕ(k).

Taking the limit as k → ∞ yields �x�� = 0, hence x = 0, which contradicts

�x� = max
j∈[1:n]

|xj | = max
j∈[1:n]

lim
k→∞

|x(ϕ(k))j | = lim
k→∞

max
j∈[1:n]

|x(ϕ(k))j | = lim
k→∞

�x(ϕ(k))� = lim
k→∞

1 = 1.

This proves the existence of the desired constant c > 0.

3



For instance, we can use Cauchy–Schwarz inequality to derive, for any x ∈ Cn,

�x�1 =
n�

j=1

|xj | =
n�

j=1

1× |xj | ≤
� n�

j=1

12
�1/2� n�

j=1

|xj |2
�1/2

=
√
n�x�2,

and this inequality is best possible because it turns into an equality for x = [1, 1, . . . , 1]�. On
the other hand, for any x ∈ Cn, we have �x�2 ≤ �x�1, since

�x�22 =
n�

j=1

|xj |2 ≤
� n�

j=1

|xj |
�2

= �x�21,

and this inequality is best possible because it turns into an equality for x = [1, 0, . . . , 0]�. We
can more generally compare any �p-norm with any �q-norm. The proof is left as an exercise.

Proposition 6. Given 1 ≤ p < q ≤ ∞, for all x ∈ Kn,

�x�q ≤ �x�p ≤ n1/p−1/q�x�q,

and these inequalities are best possible.

2 Matrix norms

Since Mn is a vector space, it can be endowed with a vector norm. There is one more ingredient
making this norm a matrix norm.

Definition 7. A function |||·||| : Mn → C is called a matrix norm if

(MN1) |||A||| ≥ 0 for all A ∈ Mn, with equality iff x = 0, [positivity]

(MN2) |||λA||| = |λ||||A||| for all λ ∈ C and A ∈ Mn, [homogeneity]

(MN3) |||A+B||| ≤ |||A|||+ |||B||| for all A,B ∈ Mn. [triangle inequality]

(MN4) |||AB||| ≤ |||A||||||B||| for all A,B ∈ Mn. [submultiplicativity]

As an example, we notice that the Frobenius norm defined by

�A�F :=
�

�A,A�F =
�
tr (A∗A), A ∈ Mn,

is a matrix norm. Indeed, for A,B ∈ Mn,

�AB�2F = tr ((AB)∗(AB)) = tr (B∗A∗AB) = tr (BB∗A∗A) = �A∗A,BB∗�F ≤ �A∗A�F �B∗B�F .

Now notice that, with λ1 ≥ · · · ≥ λn ≥ 0 denoting the eigenvalues of the Hermitian matrix
M := A∗A, we have

�A∗A�F = �M�F = tr (M2) =
n�

j=1

λ2
j ≤

� n�

j=1

λj

�2
= tr (M)2 = �A�2F .
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Likewise, we have �B∗B�F ≤ �B�2F . We deduce �AB�2F ≤ �A�2F �B�2F , i.e., �AB�F ≤ �A�F �B�F ,
as desired.

Another important example of matrix norms is given by the norm induced by a vector norm.

Definition 8. If � · � is a vector norm on Cn, then the induced norm on Mn defined by

|||A||| := max
�x�=1

�Ax�

is a matrix norm on Mn.

A consequence of the definition of the induced norm is that �Ax� ≤ |||A|||�x� for any x ∈ Cn.
Let us now verify (MN4) for the induced norm. Given A,B ∈ Mn, we have, for any x ∈ Cn

with �x� = 1,
�ABx� ≤ |||A|||�Bx� ≤ |||A||||||B|||�x� = |||A||||||B|||,

so taking the maximum over x gives the desired inequality |||AB||| ≤ |||A||||||B|||.

There are situations where one can give an explicit expression for induced norms, for instance

|||A|||∞→∞ := max
�x�∞=1

�Ax�∞ = max
k∈[1:n]

n�

�=1

|ak,�|,(2)

|||A|||1→1 := max
�x�1=1

�Ax�1 = max
�∈[1:n]

n�

k=1

|ak,�|.(3)

3 Spectral radius

There is also a (somewhat) explicit expression for the matrix norm induced by the Euclidean
norm. It involves the spectral radius of a matrix M ∈ Mn defined as

ρ(M) := max
�
|λ|,λ eigenvalue of M

�
.

Proposition 9. For any A ∈ Mn,

|||A|||2→2 := max
�x�2=1

�Ax�2 =
�
ρ(A∗A).

Moreover, if A ∈ Mn is Hermitian, then

|||A|||2→2 = ρ(A).

Proof. Note that ρ(A∗A) = λ↓
1, where λ↓

1 ≥ · · · ≥ λ↓
n ≥ 0 be the eigenvalues of A∗A. Then

|||A|||22→2 = max
�x�2=1

�Ax�22 = max
�x�2=1

�Ax,Ax� = max
�x�2=1

�A∗Ax, x� = λ↓
1,
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where the last equality is a characterization of the largest eigenvalue given in Lecture 5.
This implies the first result. For the second result, if A is Hermitian, then λ↓

1, · · · ,λ
↓
n are the

eigenvalues of A∗A = A2, that is, µ2
1, . . . , µ

2
n where µ1, . . . , µn are the eigenvalues of A. In

particular,
�
λ↓
1 is the largest values among the |µj |, i.e., the spectral radius of A.

We now examine the relation between spectral radius and the other matrix norms. We start
with the following observations.

Lemma 10. If |||·||| is a matrix norm on Mn, then, for any A ∈ Mn,

ρ(A) ≤ |||A|||.

Proof. Let λ be an eigenvalue of A, and let x �= 0 be a corresponding eigenvector. From
Ax = λx, we have

AX = λX, where X :=
�

x . . . x
�
∈ Mn \ {0}.

It follows that
|λ||||X||| = |||λX||| = |||AX||| ≤ |||A||||||X|||,

and simplifying by |||X|||(> 0) gives |λ| ≤ |||A|||. Taking the maximum over all eigenvalues λ

gives the result.

Lemma 11. Given A ∈ Mn and ε > 0, there exists a matrix norm |||·||| such that

|||A||| ≤ ρ(A) + ε.

Proof. The Jordan canonical form of A is

A = S





Jn1(λ1) 0 · · · 0

0 Jn2(λ2)
. . . ...

... . . . . . . 0

0 · · · 0 Jnk(λk)




S−1,

where S ∈ Mn is an invertible matrix, λ1, . . . ,λk are the eigenvalues of A, and n1+· · ·+nk = n.
Setting

D(η) =





Dn1(η) 0 · · · 0

0 Dn2(η)
. . . ...

... . . . . . . 0

0 · · · 0 Dnk(η)




, where Dm(η) =





η 0 · · · 0

0 η2
. . . ...

... . . . . . . 0

0 · · · 0 ηm




,

we calculate (since the multiplication on the left by Dm(1/ε) multiplies the ith row by 1/εi and
the multiplication on the right by Dm(η) multiplies the jth column by εj)
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D(1/ε)S−1ASD(ε) =





Bn1(λ1, ε) 0 · · · 0

0 Bn2(λ2, ε)
. . . ...

... . . . . . . 0

0 · · · 0 Bnk(λk, ε)




,

where

Bm(λ, ε) = Dm(1/ε)Jm(λ)Dm(ε) =





λ ε 0 · · · 0

0 λ ε 0
...

0
. . . . . . . . . 0

... . . . . . . λ ε

0 · · · 0 0 λ





.

Let us now define a matrix norm (the necessary verifications are left as an exercise) by

(4) |||M ||| := |||D(1/ε)S−1MSD(ε)|||1→1, M ∈ Mn.

According to (3), we conclude that

|||A||| = max
�∈[1:n]

�
|λ�|+ ε) = ρ(A) + ε.

Lemmas 10 and 11 can be combined to give the following expression for the spectral norm of
a matrix A ∈ Mn:

ρ(A) = inf
�
|||A|||, |||·||| is a matrix norm on Mn

�
.

The spectral radius can also be expressed via Gelfand’s formula below.

Theorem 12. Given any matrix norm |||·||| on Mn,

ρ(A) = lim
k→∞

|||Ak|||1/k, A ∈ Mn.

Proof. Given k ≥ 0, we use Lemma 10 to write

ρ(A)k = ρ(Ak) ≤ |||Ak|||, i.e., ρ(A) ≤ |||Ak|||1/k.

Taking the limit as k → ∞ gives ρ(A) ≤ limk→∞ |||Ak|||1/k. To establish the reverse inequality,
we need to prove that, for any ε > 0, there is K ≥ 0 such that |||Ak|||1/k ≤ ρ(A) + ε for all
k ≥ K. From Lemma 11, we know that there exists a matrix norm � · � on Mn such that
�A� ≤ ρ(A) + ε/2. Moreover, by the equivalence of the norms on Mn, we know that there
exists some constant C > 0 such that |||M ||| ≤ C�M� for all M ∈ Mn. Then, for any k ≥ 0,

|||Ak||| ≤ C�Ak� ≤ C�A�k ≤ C(ρ(A) + ε/2)k,

|||Ak|||1/k ≤ C1/k(ρ(A) + ε/2) −→
k→∞

ρ(A) + ε/2.

The latter implies the existence of K ≥ 0 such that |||Ak|||1/k ≤ ρ(A)+ε for k ≥ K, as desired.
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4 Exercises

Ex.1: Prove that � · �p indeed defines a norm for p ≥ 1, and prove Proposition 6. You will need
Hölder’s inequality (Cauchy–Schwarz inequality): given u1, . . . , un ≥ 0, v1, . . . , vn ≥ 0,
and p, q ∈ [1,∞] with 1/p+ 1/q = 1,

n�

j=1

ujvj ≤
� n�

j=1

upj

�1/p� n�

j=1

vqj

�1/q
.

Ex.2: Exercise 1 p. 262

Ex.3: Exercise 6 p. 263

Ex.4: If V is a real inner product space, prove the polarization formula

�x, y� = 1

4

�
�x+ y�2 − �x− y�2

�
, x, y ∈ V.

If V is a complex inner product space, prove the polarization formula

�x, y� = 1

4

�
�x+ y�2 − �x− y�2 + i�x+ iy�2 − i�x− iy�2

�
, x, y ∈ V.

Ex.5: Exercise 7 p. 263

Ex.6: Exercise 8 p. 263

Ex.7: Exercises 4 and 10 p. 263

Ex.8: Exercise 1 p. 267

Ex.9: Prove that �x�p −→
p→∞

�x�∞ for any x ∈ Kn.

Ex.10: Exercise 2 p. 267

Ex.11: Exercise 4 p. 267

Ex.12: Exercise 3 p. 311

Ex.13: Exercise 5 p. 311

Ex.14: Exercise 7 p. 311 (hence verify (4))

Ex.15: Exercises 10 and 16 p. 312-313

Ex.16: Exercise 11 p. 312

Ex.17: Exercise 15 p. 313

Ex.18: Exercise 19 p. 313

Ex.19: Exercise 20 p. 313

Ex.20: Exercise 21 p. 313
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Lecture 7: Positive (Semi)Definite Matrices

This short lecture introduces the notions of positive definite and semidefinite matrices. Two
characterizations are given and the existence and uniqueness of square roots for positive
semidefinite matrices is proved. Gram matrices are also briefly mentioned along the way.

1 Definitions and characterizations

Definition 1. A positive definite (resp. semidefinite) matrix is a Hermitian matrix A ∈ Mn

satisfying
�Ax, x� > 0 (resp. ≥ 0) for all x ∈ Cn \ {0}.

We write A � 0 (resp.A � 0) to designate a positive definite (resp. semidefinite) matrix A.

Before giving verifiable characterizations of positive definiteness (resp. semidefiniteness), we
make a few observations (stated with �, but also valid for � provided > is replaced by ≥ 0):

1. If A,B � 0 and if t > 0, then A+B � 0 and tA � 0.

2. The eigenvalues of a positive definite matrix are > 0. Indeed, if (λ, x) is an eigenpair, then
λ�x�22 = �λx, x� = �Ax, x� > 0. We derive in particular that tr (A) > 0 and det(A) > 0 for A � 0.

3. The diagonal entries of a positive definite matrix are >0, since ai,i = �Aei, ei� for all i ∈ [1:n].

4. A principal submatrix of A � 0 satisfies AS � 0. Indeed, if the rows and columns of A

kept in AS are indexed by a set S, then for x ∈ Ccard(S), �ASx, x� = �A�x, �x� > 0, where �x ∈ Cn

denotes the vector whose entries on S equal those of x and whose entries outside S equal zero.

5. If A � 0, then |ai,j |2 < ai,iaj,j for all i, j ∈ [1 : n]. This is a consequence of the fact that�
ai,i ai,j
ai,j aj,j

�
is a principal submatrix of A, so it has positive determinant, i.e., ai,iaj,j−|ai,j |2 > 0.

The characterizations of positive definite matrices stated below are also valid for positive
semidefinite matrices, provided > is replaced by ≥ 0.

Theorem 2. For an Hermitian matrix A ∈ Mn,

[A � 0] ⇐⇒ [det(A1) > 0, det(A2) > 0, . . . , det(An) > 0] ⇐⇒ [all eigenvalues of A are > 0],

where A1 := A[1:1], A2 := A[1:2], . . . , An−1 := A[1:n−1], An := A[1:n] are the leading principal
submatrices of A.
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Proof. The first implication follows from Observation 4.
For the second implication, assuming that the determinants of all leading principal submatri-
ces are positive, we prove by induction on k ∈ [1 : n] that all the eigenvalues of Ak are positive
— the desired result being the case k = n. For k = 1, this is true because λ↑

1(A1) = det(A1) > 0.
Next, let us suppose the induction hypothesis true up to k − 1, k ≥ 2. By the interlacing prop-
erty, we have

λ↑
1(Ak) ≤ λ↑

1(Ak−1) ≤ λ↑
2(Ak) ≤ λ↑

2(Ak−1) ≤ · · · ≤ λ↑
n−1(Ak) ≤ λ↑

n−1(Ak−1) ≤ λ↑
n(Ak),

and by the induction hypothesis, we have λ↑
n−1(Ak−1) ≥ · · · ≥ λ↑

1(Ak−1) > 0. It follows that
λ↑
n(Ak) ≥ · · · ≥ λ↑

2(Ak) > 0. In turn, we derive

λ↑
1(Ak) =

det(Ak)

λ↑
n(Ak) · · ·λ↑

2(Ak)
=

> 0

> 0
> 0.

This shows that all the eigenvalues of Ak are positive. The inductive proof is now complete.
For the third implication, we invoke the spectral theorem for Hermitian matrices to write

A = Udiag[λ1, . . . ,λn]U
∗, with UU∗ = I = U∗U.

The assumption that λj > 0 for all j ∈ [1 : n] implies, for x ∈ Cn \ {0}, that

�Ax, x� = �Udiag[λ1, . . . ,λn]U
∗x, x� = �diag[λ1, . . . ,λn]U

∗x, U∗x� =
n�

j=1

λj |(U∗x)j |2 > 0,

where the strict inequality holds because U∗x �= 0. This proves that A � 0.

2 Square roots of positive semidefinite matrices

Theorem 3. For a positive semidefinite matrix A ∈ Mn, there exists a unique positive
semidefinite matrix B ∈ Mn such that B2 = A.

Proof. The existence follows from the spectral theorem. Indeed, we have

A = Udiag[λ1, . . . ,λn]U
∗, with UU∗ = I = U∗U,

and we know that λj ≥ 0 for all j ∈ [1 : n] — see Observation 2 or Theorem 2. We then set

B := Udiag[
�
λ1, . . . ,

�
λn]U

∗,

and it is clear that B2 = A. As for the uniqueness, let us consider a positive semidefinite
matrix C ∈ Mn such that C2 = A and let us prove that C = B. Let p be a polynomial
such that p(λ1) =

√
λ1, . . . , p(λn) =

√
λn — if µ1, . . . , µk are the distinct eigenvalues of A, take
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p(x) =
�k

j=1

�
λj

�
i �=j [(x−µi)/(µj −µi)]. Note that C and A = C2 commute, hence C and p(A)

commute. Observing that

p(A) = Up
�
diag[λ1, . . . ,λn]

�
U∗ = Udiag[p(λ1), . . . , p(λn)]U

∗ = Udiag[
�
λ1, . . . ,

�
λn]U

∗ = B,

this means that C and B commute. Then, by the spectral theorem for commuting Hermitian
matrices, there exists a unitary V ∈ Mn such that

B = V diag[β1, . . . ,βn]V
∗ and C = V diag[γ1, . . . , γn]V

∗.

The equality B2 = C2 gives β2
j = γ2j for all j ∈ [1 : n], and since βj ≥ 0 and γj ≥ 0 (because

B � 0 and C � 0), we derive that βj = γj for all j ∈ [1 : n], i.e., B = C.

The next statement establishes a relation between positive semidefinite matrices and Gram
matrices. The Gram matrix G of a system of vectors (c1, . . . , cn) ∈ Cm is defined by

Gi,j = �cj , ci�.

It can alternatively be written as G = C∗C, where C =
�
c1 · · · cn

�
.

Theorem 4. Given A ∈ Mn and m ≥ n,

[A � 0] ⇐⇒ [A = C∗C for some C ∈ Mm×n].

Proof. ⇒ It suffices to take C :=

�
B

0

�
, where B is the square root of A from Theorem 3.

⇐ It is clear that C∗C is Hermitian and that, for x ∈ Cn, �C∗Cx, x� = �Cx,Cx� ≥ 0.

3 Exercises

Ex.1: Exercise 2 p. 400

Ex.2: Exercise 3 p. 400

Ex.3: Exercise 5 p. 400

Ex.4: Exercise 2 p. 408

Ex.5: Exercise 3 p. 408

Ex.6: Exercise 12 p. 409

Ex.7: Exercise 14 p. 410

Ex.8: Verify that the Gram matrix of a system of vectors is invertible (hence positive definite)
if and only if the system of vectors is linearly independent.
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Lecture 8: Variations on Geršgorin Theorem

In this lecture, we intend to locate the eigenvalues of a matrix without calculating them.
Gešgorin theorem, as well as the more elaborate Ostrovsky theorem, informs us that the
eigenvalues belong to the union of certain disks in the complex plane. This is used to show
the invertibility of some diagonal dominant matrices.

1 Gešgorin theorem

The first piece of information on the set of eigenvalues of a matrix — called the spectrum —
is given below.

Theorem 1. For any A ∈ Mn,

(1) sp(A) ⊆
n�

i=1

�
z ∈ C : |z − ai,i| ≤

n�

j=1,j �=i

|ai,j |
�
.

The disks D(ai,i, Ri) :=
�
z ∈ C : |z − ai,i| ≤ Ri

�
centered at ai,i and of radius Ri :=

�
j �=i |ai,j |

are called the Geršgorin disks, and their union is called the Geršgorin region.

Proof. Let λ be an eigenvalue of A. We need to prove that there exists i ∈ [1 : n] such that
|λ− ai,i| ≤

�
j �=i |ai,j |. Considering an eigenvector x �= 0 associated to λ, we have Ax = λx, i.e.,�n

j=1 ai,jxj = λxi for all i ∈ [1 : n]. It follows that

|λ− ai,i||xi| =
���
�

j �=i

ai,jxj
��� ≤

�

j �=i

|ai,j ||xj | ≤
�

j �=i

|ai,j |�x�∞.

Choosing i ∈ [1 : n] with |xi| = �x�∞ and simplifying by �x�∞ > 0 yields the conclusion.

Applying the Theorem 1 to A� (not to A∗!), which has the same spectrum as A, gives

(2) sp(A) ⊆
n�

j=1

D(aj,j , Cj), where Cj :=
n�

i=1,i �=j

|ai,j |.

As an example, consider the matrix

(3) A =




1 1/2 1/3

2 1 2/3

3 3/2 1



 .

From (1) and (2), we obtain

sp(A) ⊆ D(1, 5/6) ∪ D(1, 8/3) ∪ D(1, 9/2) = D(1, 9/2),

sp(A) ⊆ D(1, 5) ∪ D(1, 2) ∪ D(1, 4/3) = D(1, 5).
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Since A �→ SAS−1 is another operation that preserves the spectrum, taking S = diag[d1, . . . , dn]

for some d1, . . . , dn > 0 in (1) gives

sp(A) ⊆
n�

i=1

�
z ∈ C : |z − ai,i| ≤ di

n�

j=1,j �=i

1

dj
|ai,j |

�
.

For instance, we notice that the matrix of (3) can be written as

(4) A =




1 0 0

0 2 0

0 0 3








1 1 1

1 1 1

1 1 1








1 0 0

0 1/2 0

0 0 1/3



 .

We then deduce from Theorem 1 that

sp(A) ⊆ D(1, 2).

Note that (4) also reveals the eigenvalues of A: 0 (of multiplicity 2) and 3 (of multiplicity 1).
This example shows that the eigenvalues can lie on the boundary of the Geršgorin region.

If the Geršgorin disks are all distinct, we can say that each one of them contains exactly one
eigenvalue. More generally, we establish (not too rigorously) below that, if k Geršgorin disks
form a connected region C disjoint from the region R formed by the remaining n − k disks,
then C contains exactly k eigenvalues of A.

t' 
:<

( scf,,
:

.\)

Indeed, notice that the Geršgorin disks D(ai,i, Ri) corresponding to A contain the Geršgorin
disks D(ai,i, tRi) corresponding to At := (1 − t)diag(A) + tA for any t ∈ [0, 1]. Notice also that
At has k eigenvalues in C when t = 0 (namely the centers of the k disks forming C) and that
these eigenvalues are continuous functions of t, since Weyl theorem yields

|λ↓
i (At)− λ↓

i (At�)| ≤ ρ
�
At −At�

�
= ρ

�
(t− t�)(A− diag(A))

�
= |t− t�|ρ

�
A− diag(A)

�
.

Thus, when t increases to 1, the k eigenvalues of At cannot ‘escape’ C and no eigenvalue in R
can ‘enter’ C either. Therefore, there are exactly k eigenvalues of A1 = A in C.
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2 Diagonal dominance

A matrix A ∈ Mn is called diagonally dominant with respect to the rows if the dominant entry
in each row is the diagonal entry, in the sense that

|ai,i| ≥
�

j �=i

|ai,j | for all i ∈ [1 : n].

It is called strictly diagonally dominant with respect to the rows if the previous inequalities
are strict, i.e.,

|ai,i| >
�

j �=i

|ai,j | for all i ∈ [1 : n].

Diagonal dominance and strict diagonal dominance with respect to the columns are defined
in an obvious way. Using (1) or (2), we easily see that the spectrum of a strictly diagonally
dominant matrix does not contain the origin, so that this matrix is invertible. This is not
necessarily true for merely diagonally dominant matrices, as shown by the counterexample�
1 1

1 1

�
, but it remains with an additional mild condition.

Theorem 2. If A ∈ Mn is a diagonally dominant matrix without any zero entry and if there
is at least one index i such that |ai,i| >

�
j �=i |ai,j |, then A is invertible.

Proof. Suppose that A is not invertible, i.e., that there exists x ∈ Cn \ {0} such that Ax = 0.
This means that

�n
j=1 ai,jxj = 0 for all i ∈ [1 : n]. It follows that

|ai,i||xi| =
���
�

j �=i

ai,jxj
��� ≤

�

j �=i

|ai,j ||xj | ≤
(∗)

�

j �=i

|ai,j |�x�∞ ≤ |ai,i|�x�∞.

If the index i is chosen so that |xi| = �x�∞, then all the inequalities above turn into equalities.
In particular, equality in (∗) yields |ai,j ||xj | = |ai,j |�x�∞ for all j ∈ [1 : n] and since all |ai,j | are
nonzero, we deduce that |xj | = �x�∞ for all j ∈ [1 : n]. Next, if the index i is chosen so that
|ai,i| >

�
j �=i |ai,j |, we obtain

|ai,i|�x�∞ = |ai,i||xi| =
���
�

j �=i

ai,jxj
��� ≤

�

j �=i

|ai,j ||xj | ≤
�

j �=i

|ai,j |�x�∞ < |ai,i|�x�∞,

which is impossible. We conclude that A is invertible.

3 Ostrovsky theorem

Theorem 3. For any A ∈ Mn and any t ∈ [0, 1],

(5) sp(A) ⊆
n�

i=1

�
z ∈ C : |z − ai,i| ≤ R1−t

i Ct
i

�
,

where Ri :=
�

j �=i

|ai,j | and Ci :=
�

j �=i

|aj,i|.
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Remark. Choosing t = 0, we retrieve (1) and choosing t = 1, we retrieve (2). At first sight,
we could nonetheless believe that Theorem 3 is not strictly stronger than (1) and (2) together,
because each R1−t

i Ct
i is minimized either at t = 0 or t = 1, but this belief is incorrect. Indeed,

applying Ostrovsky theorem to the matrix (3) yields

sp(A) ⊆ D
�
1, (5/6)1−t5t

�
∪D

�
1, (8/3)1−t2t

�
∪D

�
1, (9/2)1−t(4/3)t

�

= D
�
1,max{(5/6)1−t5t, (8/3)1−t2t, (9/2)1−t(4/3)t}

�
.

This disk is as small as possible after minimizing over t ∈ [0, 1] the logarithm of its radius

max{(1− t) ln(5/6) + t ln(5), (1− t) ln(8/3) + t ln(2), (1− t) ln(9/2) + t ln(4/3)},

which is a piecewise linear function. The picture shows that the minimum is not taken at
t = 0 nor at t = 1.

s-{

sJ
t1.
:t

s{

N
)

bod
sd

Proof of Theorem 3. Let (λ, x) be an eigenpair for A. The equality Ax = λx translates into�n
j=1 ai,jxj = λxi for all i ∈ [1 : n]. It follows that

|λ− ai,i||xi| =
���
�

j �=i

ai,jxj
��� ≤

�

j �=i

|ai,j ||xj | =
�

j �=i

|ai,j |1−t|ai,j |t|xj |.

From Hölder’s inequality, which states that, for u1, . . . , um, v1, . . . , vm ≥ 0 and for p, q ≥ 1

satisfying 1/p+ 1/q = 1,
m�

j=1

ujvj ≤
� m�

j=1

upj

�1/p� m�

j=1

vqj

�1/q
,

applied with uj = |ai,j |1−t, vj = |ai,j |t|xj |, p = 1/(1− t), and q = 1/t, we derive

(6) |λ− ai,i||xi| ≤
��

j �=i

|ai,j |
�1−t��

j �=i

|ai,j ||xj |1/t
�t

= R1−t
i

��

j �=i

|ai,j ||xj |1/t
�t
.

Now suppose that (5) does not hold, i.e., that there is an eigenvalues with |λ − ai,i| > R1−t
i Ct

i

for all i ∈ [1 : n]. In connection with (6), we obtain (provided |xi| > 0)

R1−t
i Ct

i |xi| < R1−t
i

��

j �=i

|ai,j ||xj |1/t
�t
, hence Ci|xi|1/t <

�

j �=i

|ai,j ||xj |1/t.

Choosing the index i such that |xi| = �x�∞ > 0 yields

Ci�x�1/t∞ = Ci|xi|1/t <
��

j �=i

|ai,j |
�
�x�1/t∞ = Ci�x�1/t∞ ,

which is absurd. We conclude that (5) holds.
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4 Exercises

Ex.1: Exercise 2 p. 351

Ex.2: Exercise 3 p. 351

Ex.3: Exercise 5 p. 351

Ex.4: Exercise 9 p. 352
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