




















Generating Functions

1 Definition and first examples

Generating functions offer a convenient way to carry the totality of the information about a
sequence in a condensed form. Precisely, the (ordinary) generating function of the sequence
(an)n≥0 is defined as the formal power series

∞�

n=0

anz
n.

For instance, the power series of the constant sequence (1)n≥0 is
�∞

n=0 z
n = 1/(1 − z). From

there, k successive differentiations lead to the generating of the sequence
��n+k

k

��

n≥0
:

∞�

n=0

�
n+ k

k

�
zn =

1

(1− z)k+1
.

A more striking illustration concerns the number pn of partitions of an integer n, i.e., the
number of ways to write it as the sum of an nondecreasing sequence. For instance, p4 = 5,
since 4 can be written as 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 3 = 2 + 2 = 4. Although there is no
simple form for the sequence (pn), its generating function admits a nice expression (uncovered
by Euler), namely

∞�

n=0

pnz
n =

∞�

k=1

1

1− zk
.

This can be understood by looking at the coefficient of zn in the right-hand side expressed as

(1 + z + z2 + · · · )(1 + z2 + z4 + · · · )(1 + z3 + z6 + · · · ) · · · .

Indeed, the coefficient of zn is the number of ways to write

n = n1 + 2n2 + 3n3 + · · · = (1 + · · ·+ 1) + (2 + · · ·+ 2) + (3 + · · ·+ 3) + · · · ,

which is precisely pn.

2 Two classics: Fibonacci and Catalan

Sometimes, the cumbersome determination of the general term of a sequence can be shortcut
by an argument exploiting generating functions. As a first example, consider the Fibonacci
numbers defined by F0 = 1, F1 = 1, and

(1) Fn+2 = Fn+1 + Fn for n ≥ 0.

Let f(z) :=
�∞

n=0 Fnzn denote the generating function of (Fn)n≥0. Multiplying (1) by zn+2 and
summing over all n ≥ 0, we obtain

f(z)− F0 − F1z = zf(z)− F0z + z2f(z), i.e., f(z) =
z

1− z − z2
.
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Since 1 − z − z2 = (1 − φz)(1 + z/φ), where φ = (1 +
√
5)/2, we derive the partial fraction

decomposition (remember to multiply through by 1 − φz and to take the value z = 1/φ, next
to multiply through by 1 + z/φ and to take the value z = −φ)

z

1− z − z2
=

1/
√
5

1− φz
− 1/

√
5

1 + z/φ
.

Calling upon known power series expansions, we deduce

f(z) =
1√
5

∞�

n=0

(φz)n − 1√
5

∞�

n=0

(−z/φ)n =
∞�

n=0

φn − (−1/φ)n√
5

zn.

By identifying the coefficients of zn, we conclude that

Fn =
φn − (−1/φ)n√

5
.

As a second example, consider the Catalan numbers Cn defined (among many alternative
definitions) as the numbers of binary trees that possess n branching nodes (hence n+1 leaves).
Starting from C0 = 1, they obey the recurrence relation

(2) Cn+1 =
�

i+j=n

CiCj , n ≥ 0.

This translates the fact that a binary tree with n + 1 branching nodes is decomposed, when
the root is removed, as two binary trees with i and j branching nodes satisfying i + j = n.
Let f(z) :=

�∞
n=0Cnzn be the generating function of the Catalan numbers. Multiplying (2) by

zn+1 and summing over all n ≥ 0 leads to

f(z)− 1 =
∞�

n=0




�

i+j=n

CiCj



 zn+1 = z

� ∞�

i=0

Ciz
i

�


∞�

j=0

Cjz
j



 = zf(z)2.

Solving this quadratic equation in f(z) gives (note that the second solution is rejected in view
of its value at z = 0)

f(z) =
1−

√
1− 4z

2z
.

Calling upon known power series expansions, we deduce

f(z) =
1

2z

�
−

∞�

n=1

(1/2)(−1/2)(−3/2) · · · (1/2− n+ 1)

n!
(−4z)n

�
=

∞�

n=1

2n−1 1 · 3 · · · · · (2n− 3)

n!
zn−1

=
∞�

n=0

2n
1 · 3 · · · · · (2n− 1)

(n+ 1)n!
zn =

∞�

n=0

1 · 2 · 3 · · · · · (2n− 1) · (2n)
(n+ 1)n!n!

zn =
∞�

n=0

1

n+ 1

�
2n

n

�
zn.

By identifying the coefficients of zn, we conclude that

Cn =
1

n+ 1

�
2n

n

�
.
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3 Stirling numbers

The Stirling numbers of the second kind, denoted
�n
k

�
, count the number of ways to partition

[1 : n] into k nonempty blocks. For instance,
�4
3

�
= 6, since {1, 2, 3, 4} can be partitioned as

{1} ∪ {2} ∪ {3, 4}, {1} ∪ {3} ∪ {2, 4}, {1} ∪ {4} ∪ {2, 3}, {2} ∪ {3} ∪ {1, 4}, {2} ∪ {4} ∪ {1, 3}, and
{3} ∪ {4} ∪ {1, 2}. Note that

�n
k

�
= 0 for k > n and for k ≤ 0 (unless n = 0, in which case

the convention
�0
0

�
= 1 is used). The Stirling numbers of the second kind obey the recurrence

relation

(3)
�
n+ 1

k

�
=

�
n

k − 1

�
+ k

�
n

k

�
.

This translates the fact that, when partitioning [1 : n + 1] into k blocks, the element n + 1

either forms a block on its own, leading to k− 1 blocks that partition [1 : n], or it joins one of k
blocks that partition [1 : n]. For k ≥ 0, consider the generating function fk(z) :=

�∞
n=0

�n
k

�
zn.

With k ≥ 1, multiplying (3) by zn+1 and summing over all n ≥ 0 leads to

fk(z) = zfk−1(z) + kzfk(z), i.e., fk(z) =
z

1− kz
fk−1(z).

In view of f0(z) = 1, we obtain by immediate induction

fk(z) =
zk

(1− z)(1− 2z) · · · (1− kz)
.

The partial fraction decomposition of the latter is

fk(z) = c0 +
c1

1− z
+ · · ·+ ck

1− kz
.

We have c0 = limn→∞ fk(z) = (−1)k/k! and, for j ∈ [1 : k],

cj = [fk(z)(1− jz)]|z=1/j =
(1/j)k

(1− 1/j) · · · (1− (j − 1)/j)(1− (j + 1)/j) · · · (1− k/j)
=

(−1)k−j

j!(k − j)!
.

In conjunction with

fk(z) =
k�

j=0

cj
1− jz

=
k�

j=0

cj

∞�

n=0

(jz)n =
∞�

n=0

k�

j=0

cjj
nzn,

we conclude that �
n

k

�
=

k�

j=0

(−1)k−j

j!(k − j)!
jn =

k�

j=0

(−1)k−j

k!

�
k

j

�
jn.

The Stirling numbers of the first kind, denoted
�n
k

�
, count the number of partitions of [1 : n]

with k cycles. For instance,
�3
2

�
= 3, since (1)(32), (2)(13), and (3)(12) are the three permuta-

tions of {1, 2, 3} with two cycles. Note that
�n
k

�
= 0 for k > n and for k ≤ 0 (unless n = 0, in
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which case the convention
�0
0

�
= 1 is used). The Stirling numbers of the first kind obey the

recurrence relation

(4)
�
n+ 1

k

�
=

�
n

k − 1

�
+ n

�
n

k

�
.

This translates the fact that, when considering a partition of [1 : n + 1] with k cycles, the
element n + 1 either forms a cycle on its own, leading to a permutation of [1 : n] with k − 1

cycles, or it incorporates (at one of n possible positions) one of k cycles making a partition of
[1 : n]. For k ≥ 0, consider now the exponential generating function of

��n
k

��
n≥0

given by

fk(z) :=
∞�

n=0

�
n

k

�
zn

n!
.

Multiplying (4) by zn/n! and summing over all n ≥ 0 leads to

f �
k(z) = fk−1(z) + zf �

k(z), i.e., f �
k(z) =

fk−1(z)

1− z
.

In view of f0(z) = 1, we obtain by immediate induction

(5) fk(z) =
1

k!
lnk

�
1

1− z

�
.

4 Exercises

Ex.1: Find the sequence (an)n≥0 given by a0 = 1 and an =
1−

�n−1
k=1 akan−k

2
for n ≥ 1.

Ex.2: Find the number of different ways a convex polygon with n + 2 sides can be cut into
triangles by connecting vertices with straight lines.

Ex.3: Prove that the number of partitions of an integer into odd positive integers equals the
number of its partitions into distinct positive integers.

Ex.4: It follows from the definition of the Stirling numbers of the first kind that
�n

k=0

�n
k

�
= n!.

Recover this fact from the expression (5) of the exponential generating function.

Ex.5: The positive differences of the four numbers 0, 2, 5, 6 are the numbers 1, 2, 3, 4, 5, 6, each
taken exactly once. Prove that this phenomenon cannot occur if there are more than
four numbers.
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Complex Analysis

1 The field of complex numbers

The set of complex numbers is denoted by C. The cartesian representation of z ∈ C is z = x+iy

with x, y ∈ R and i2 = −1. The real and imaginary parts of z are Re (z) = x and Im (z) = y,

respectively. Addition and multiplication of complex numbers (defined in a predictable way)

satisfy all the properties we would have expected — meaning that C is a field. The polar

representation of z ∈ C is z = reiθ with r ≥ 0 and θ ∈ R. We call r = |z| the modulus

of z and θ = arg(z) — not necessarily unique — an argument of z. We have r =
�
x2 + y2

and tan(θ) = y/x. De Moivre’s theorem states that (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ),

or in simplified form, that (eiθ)n = einθ — this uses Euler formula eiϕ = cos(ϕ) + i sin(ϕ).

Note also the identities cos(θ) = (eiθ + e−iθ)/2 and sin(θ) = (eiθ − e−iθ)/(2i). In general, one

has Re (z) = (z + z̄)/2, Im (z) = (z − z̄)/(2i), and |z|2 = zz̄. Here z̄ = x − iy = re−iθ
is the

complex conjugate of z. The fundamental theorem of algebra ensures that every nonconstant

polynomial p(z) = anzn + · · · + a1z + a0 has a complex roots (in turn, that every polynomial

with complex coefficients has all its roots in C, i.e., C is algebraically closed).

A possible argument goes along those lines: pick z0 ∈ C such that |p(z0)| = minz∈C |p(z)| and

suppose |p(z0)| > 0; write that p equals its Taylor polynomial at z0, i.e., p(z0)+
�n

j=k bj(z− z0)j

where bk �= 0; note that
�n

j=k+1 |bj |ρj < |bk|ρk < |p(z0)| for ρ > 0 sufficiently small; observe

that p(z0) + bk(z − z0)k describes k times the circle {|ζ − p(z0)| = |bk|ρk} when z describes the

circle {|z − z0| = ρ}, hence there exists z1 with |z1 − z0| = ρ such that p(z0) + bk(z1 − z0)k lies

between 0 and p(z0), so that |p(z0) + bk(z1 − z0)k| = |p(z0)|− |bk|ρk; derive a contradiction from

|p(z1)| ≤ |p(z0) + bk(z1 − z0)
k|+ |

n�

j=k+1

bj(z1 − z0)
j | ≤ |p(z0)|− |bk|ρk +

n�

j=k+1

|bj |ρj < |p(z0)|.

Another possible argument involves Cauchy formula for holomorphic functions (see below):

suppose that p does not vanish on C, so that q = 1/p is holomorphic on C; for R > 0 sufficiently

large to have |p(z)| ≥ (|an| − |an−1|/|z| − · · · |a0|/|z|n)|z|n ≥ |an||z|n/2 whenever |z| = R, a

contradiction follows from

0 < |q(0)| =
����
1

2πi

�

|z|=R

q(z)dz

z

���� ≤
1

2π

�

|z|=R

dz

|z||p(z)| ≤
1

2π

�

|z|=R

2 dz

|an|Rn+1
=

2

|an|Rn
−→
R→∞

0.

2 Holomorphic functions

A function f defined on an open subset of C is differentiable at z0 if one can make sense of

f �(z) = lim
z→z0

f(z)− f(z0)

z − z0
.

In particular, the limit is independent of how z0 is approached. If the function f of the variable

z = x+ iy is differentiable at z0 = x0 + iy0, then it satisfies the Cauchy–Riemann equations

∂Re f

∂x
(x0, y0) =

∂Im f

∂y
(x0, y0) and

∂Re f

∂y
(x0, y0) = −∂Im f

∂x
(x0, y0).

A converse holds provided the first-order partial derivatives are continuous.
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A function f is called holomorphic at z0 if it is differentiable in some neighborhood of z0 (i.e.,

whenever |z − z0| < r for some r > 0). Every power series
�∞

n=0 cn(z − z0)n with radius of

convergence R > 0 defines a holomorphic function on {|z − z0| < R}. Conversely, every holo-

morphic function is analytic, i.e., locally representable by powers series (hence holomorphic

and analytic are synonymous terms for complex functions). This fact shows that holomorphic

functions are infinitely differentiable and that their zeros are isolated (unless the function

vanishes everywhere).

Let G be a simply connected open region, let γ be a simple closed path oriented counterclock-

wise and contained in G, and let z0 ∈ C be inside γ. If f is holomorphic in G, then it satisfies

Cauchy integral formulas

(1)

�

γ
f(z)dz = 0,

�

γ

f(z)dz

z − z0
= 2πif(z0),

�

γ

f(z)dz

(z − z0)n
= 2πif (n)(z0) for all integer n ≥ 0.

Cauchy formula implies Liouville’s theorem, which states that a function f holomorphic and

bounded on C is constant. Indeed, if γ is the circular contour oriented counterclockwise with

center 0 and radius R large enough so that |z − z0|, |z − z1| ≥ R/2, then, for all z0, z1 ∈ C,

|f(z0)− f(z1)| =
����
1

2πi

�

γ
f(z)

�
1

z − z0
− 1

z − z1

�
dz

���� =
����
z0 − z1
2πi

�

γ

f(z)

(z − z0)(z − z1)
dz

����

≤ |z0 − z1|
2π

�

γ

max(|f |)
(R/2)2

dz =
4|z0 − z1|max(|f |)

R
−→
R→∞

0.

Cauchy formula also implies the maximum principle, which sates that, if f is homomorphic

on {|z − z0| ≤ r}, then

max
|z−z0|≤r

|f(z)| = max
|z−z0|=r

|f(z)|.

3 Meromorphic functions

If a function is holomorphic on an annulus A = {r < |z − z0| < R} for some R > r ≥ 0, then f

has a unique Laurent expansion at z0 of the form

f(z) =
∞�

n=−∞
cn(z − z0)

n, z ∈ A.

A function f holomorphic in some punctured neighborhood of z0 (i.e., an annulus where r = 0)

but not at z0 is said to have an isolated singularity at z0. These can be of three different

kinds: removable singularity if cn = 0 for all n < 0 (for instance sin(z)/z at z0 = 0), poles if

c−m �= 0 and cn = 0 for all n < −m, in which case m is called the order of the pole (for instance

rational functions at z0 equal to a zero of the denominator), and essential singularities if

inf{n : cn �= 0} = −∞. A function which is holomorphic in an open subset G of C except

possibly for poles is said to be meromorphic in G.
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Let G be a a simply connected open region and let γ be a simple closed path oriented counter-

clockwise and contained in G. Cauchy residue theorem states that, if f is meromorphic in G

with all its poles z1, . . . , zN inside γ, then

�

γ
f(z)dz = 2πi

N�

k=1

Res(f, zk),

where the residue Res(f, zk) of f at zk is defined as the coefficient c−1 of (z − zk)−1
in the

Laurent expansion of f at zk. It follows that, if f is holomorphic on G and does not vanish

on γ, then the number of zeros of f inside γ equals
1

2πi

�

γ

f �(z)

f(z)
dz. From here, we can deduce

Rouché’s theorem which states that, if f and g are holomorphic in G and if |f(z)| > |g(z)| on γ,

then f and f + g have the same number of zeros (counting multiplicity) inside γ.

4 Exercises

Ex.1: Find the set of all z ∈ Cn
such that |z|+ |z + 1| = 2.

Ex.2: Prove the identity

cosn(θ) =
1

2n

n�

k=0

�
n

k

�
cos((n− 2k)θ).

Ex.3: Prove the necessity of the Cauchy–Riemann equations.

Ex.4: Establish the fundamental integral

�

γ(z0,r)
(z − z0)

ndz =

�
0 if n �= −1,

2πi if n = −1,

where γ(z0, r) denotes the circular contour oriented counterclockwise with center z0 and

radius r. Derive (informally) formulas (1) with γ = γ(z0, r) for analytic functions.

Ex.5: Use the maximum principle to prove Schwarz lemma: if f is holomorphic on {|z| = 1},

if M := max
|ζ|=1

|f(ζ)|, and if f(0) = 0, then |f(z)| ≤ M |z| whenever |z| ≤ 1.

Ex.6: Use Cauchy residue theorem to evaluate

�

γ

dz

1 + z4
,

where γ is the semicircle {|z| = R, Im (z) ≥ 0} ∪ [−R,R] oriented counterclockwise.

Deduce the value of the integral � ∞

0

dx

1 + x4
.
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Classical Inequalities

Arithmetic-geometric means: The arithmetic mean (a+ b)/2 of two nonnegative numbers

a and b is always larger than or equal to its geometric mean
√
ab, with equality if and only if

a = b. This can be seen from a + b − 2
√
ab = (

√
a −

√
b)2 ≥ 0. The inequality generalizes to

more than two numbers: for all a1, a2, . . . , an ≥ 0,

a1 + a2 + · · ·+ an
n

≥ n
√
a1a2 · · · an,

with equality if and only if a1 = a2 = · · · = an. A weighted version involves weights

w1, w2, . . . , wn not all equal to 1/n. Namely, given w1, w2, . . . , wn > 0 with w1+w2+· · ·+wn = 1,

for all a1, a2, . . . , an ≥ 0,

(1)

n�

i=1

wiai ≥
n�

i=1

awi
i ,

with equality if and only if a1 = a2 = · · · = an. This can be proved as follows.

Set G := aw1
1 aw2

2 · · · awn
n and A := w1a1 + w2a2 + · · · + wnan. Assume without loss of generality

that a1 ≤ a2 ≤ · · · ≤ an. Since a1 ≤ G ≤ an, we consider the integer k ∈ [1 : n − 1] such that

ak ≤ G ≤ ak+1. Then one can write

(2)

k�

i=1

wi

� G

ai

�
1

x
− 1

G

�
dx+

n�

i=k+1

wi

� ai

G

�
1

G
− 1

x

�
dx ≥ 0.

It follows that

n�

i=1

wi

� ai

G

dx

G
≥

n�

i=1

wi

� ai

G

dx

x
, i.e.,

A

G
− 1 ≥

n�

i=1

wi ln
ai
G

= 0,

as desired. Equality throughout means equality in (2), i.e., a1 = · · ·= ak = ak+1 = · · ·= an = G.

Cauchy–Schwarz inequality: For all real numbers a1, . . . , an, b1, . . . , bn,

� n�

j=1

ajbj
�2

≤
� n�

j=1

a2j

�� n�

j=1

b2j

�
,

with equality if and only if a1 = b1, a2 = b2, . . . , an = bn. Cauchy–Schwarz inequality extends to

other situations, for instance we can replace sums by integrals and obtain, for all real-valued

functions f, g that are continuous on [a, b],

�� b

a
f(x)g(x)dx

�2
≤

�� b

a
f(x)2dx

��� b

a
g(x)2dx

�
,

with equality if and only if f = g.
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Hölder inequality: This is a generalization of Cauchy–Schwarz inequality to all p, q > 1 sat-

isfying 1/p+ 1/q = 1 rather than p = q = 2. It reads, for all real numbers a1, . . . , an, b1, . . . , bn,

n�

j=1

ajbj ≤
� n�

j=1

|aj |p
�1/p� n�

j=1

|bj |q
�1/q

,

with equality if and only if a1 = b1, a2 = b2, . . . , an = bn. The integral version reads, for all

real-valued functions f, g that are continuous on [a, b],

� b

a
f(x)g(x)dx ≤

�� b

a
|f(x)|pdx

�1/p�� b

a
|g(x)|qdx

�1/q
,

with equality if and only if f = g. For the proof, set uj = |aj |/A where A :=
��n

j=1 |aj |p
�1/p

and

vj = |bj |/B where B :=
��n

j=1 |bj |q
�1/q

. Notice that is is enough to prove that
�n

j=1 ujvj ≤ 1,

knowing that u1, . . . , un, v1, . . . , vn ≥ 0,
�n

j=1 u
p
j = 1, and

�n
j=1 v

q
j = 1. In turn, it is enough

to prove that uv ≤ up/p + vq/q for all u, v ≥ 0 — this is known as Young’s inequality. To

justify the latter, rewrite it as 1 ≤ up−1v−1/p + (p − 1)u−1v1/(p−1)/p, or, with t := u−1v1/(p−1),

as t−(p−1) + (p − 1)t − 1 ≥ 0. This can now be seen by studying the variations of the function

f(x) := x−(p−1) + (p− 1)x− 1 on [0,∞).

Jensen inequality: Let ϕ be a convex function on an interval I — if ϕ is twice differentiable,

this means that ϕ��(x) ≥ 0 for all x ∈ I. We have seen in ‘Induction and Recurrence’ that, if

x1, . . . , xn ∈ I and if t1, . . . , tn ≥ 0 satisfy t1 + · · ·+ tn = 1, then

(3) ϕ
� n�

j=1

tjxj
�
≤

n�

j=1

tjϕ
�
xj
�
.

The integral version of Jensen inequality reads

(4) ϕ
� 1

b− a

� b

a
f(x)dx

�
≤ 1

b− a

� b

a
ϕ(f(x))dx

for any continuous fonction f on [a, b].

Chebyshev inequality: If a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn or a1 ≥ a2 ≥ · · · ≥ an and

b1 ≥ b2 ≥ · · · ≥ bn, then

(5)
1

n

n�

j=1

ajbj ≥
� 1

n

n�

j=1

aj
�� 1

n

n�

j=1

bj
�
.

An easy argument consists in rearranging the inequality
�n

i,j=1(ai − aj)(bi − bj) ≥ 0. An

integral version of Chebyshev inequality reads, for functions f, g both nondecreasing on [a, b]

or both nonincreasing on [a, b],

(6)
1

b− a

� b

a
f(x)g(x)dx ≥

� 1

b− a

� b

a
f(x)dx

�� 1

b− a

� b

a
g(x)dx

�
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Rearrangement inequality: If a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn and if σ is a

permutation of [1 : n], then

(7)

n�

j=1

ajbn+1−j ≤
n�

j=1

ajbσ(j) ≤
n�

j=1

ajbj .

One can use the technique of summation by parts for the proof of the rightmost inequality

in (7), say. Setting B0 = 0, B�
0 = 0, and

Bj =
j�

i=1

bσ(i), B�
j =

n�

i=1

bi, j ∈ [1 : n],

we have B�
j ≤ Bj for j ∈ [1 : n− 1] and B�

n = Bn. It follows that

n�

j=1

ajbσ(j) =
n�

j=1

ajBj −
n�

j=1

ajBj−1 = anBn +
n−1�

j=1

(aj − aj+1)� �� �
≤0

Bj����
≥B�

j

≤ anB
�
n +

n−1�

j=1

(aj − aj+1)B
�
j =

n�

j=1

ajbj ,

where the last equality is just the reversal of the summation by parts process.

1 Exercises

Ex.1: Prove the inequality between the geometric and harmonic means, namely

n

1/a1 + 1/a2 + · · ·+ 1/an
≤ n

√
a1a2 . . . an,

for all a1, a2, . . . , an > 0.

Ex.2: For a continuous convex function ϕ on [a, b], deduce (4) from (3).

Ex.3: For a, b, c, d, . . . ≥ 0, prove that

√
a+ b+ c+ d+ · · ·+

√
b+ c+ d+ · · ·+

√
c+ d+ · · ·+ · · · ≥

√
a+ 4b+ 9c+ 16d+ · · ·.

Ex.4: Prove the leftmost inequality of (7).

Ex.5: Deduce (1) from Jensen inequality.

Ex.6: Prove Chebyshev inequality (5) using summation by parts.

Ex.7: Let P (x) be a polynomial with positive coefficients. Prove that P (1/x) ≥ 1/P (x) for all

x > 0, provided P (1) ≥ 1.

Ex.8: If f is a continuous real-valued function on [0, 1]2, prove that

� 1

0

�� 1

0
f(x, y)dx

�2
dy+

� 1

0

�� 1

0
f(x, y)dy

�2
dx ≤

�� 1

0

� 1

0
f(x, y)dxdy

�2
+

� 1

0

� 1

0
f(x, y)2dxdy.
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Group Theory

1 Definitions and first examples

A group (G, ∗) is a set G equipped with an operation (x, y) ∈ G×G �→ x ∗ y ∈ G satisfying the

axioms of

G1 – associativity: ∀x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z,

G2 – existence of an identity: ∃e ∈ G : ∀x ∈ G, e ∗ x = x ∗ e = x,

G3 – existence of inverses: ∀x ∈ G, ∃x� ∈ G : x ∗ x� = x
� ∗ x = e.

The axioms imply the uniqueness of an identity element and of inverses. One frequently uses

either the additive notation with + for ∗, 0 for the identity element, and −x for the inverse

(e.g. G = Z,Q,R,C) or the multiplicative notation with · (or nothing at all) for ∗, 1 for the

identity element, and x
−1 for the inverse (e.g. G = Q \ {0},R \ {0},C \ {0} ). Other examples

include (Zn,+) and (Zp \ {0}, ·) when p is prime — see Modular Arithmetic . All the examples

mentioned so far were commutative (aka abelian) groups, meaning that x ∗ y = y ∗ x for all

x, y ∈ G. The symmetric group Sn, i.e., the set of all permutations of [1 : n] equipped with the

operation of composition, is an example of a noncommutative group.

A subgroup of a group (G, ∗) is a subset H of G which forms a group when equipped with the

operation ∗. When H is a subset of G, it forms a subgroup of (G, ∗) if and only if

(1) xy
−1 ∈ H whenever x, y ∈ H.

For a subset X of a group G, the smallest subgroup of G containing X, i.e., the intersection of

all subgroups of G containing X, is called the subgroup generated by X. In particular, given

x ∈ G, the subgroup generated by {x} (or equivalently by {xn, n ∈ Z}) is called the cyclic group

generated by x.

2 Finite Groups

Given a group (G, ∗), if the set G is a finite, then its cardinality is called the order of G. The

order of the cyclic group generated by x ∈ G is called the order of x — it is the smallest positive

integer m such that xm = 1.

Lagrange theorem states that the order of any subgroup H of a group G divides the order of G

(in particular, a group of prime order has no nontrivial subgroups). The argument consists

in considering the sets xH := {xh, h ∈ H}: two sets xH and x
�
H are either disjoint or equal,

thus, they all have the same size m (which is the order of H), and if q is the number of those

sets, one has n = qm.

Applying Lagrange theorem to cyclic subgroups generated by one element of a group G of

order n, one derives in particular that x
n = 1 for every element x ∈ G . For instance, any

permutation σ of [1 : n] satisfies σ ◦ σ ◦ · · · ◦ σ� �� �
n!times

= id, since the order of Sn is n!.

1



The product of groups {(Gi, ∗i), i ∈ I} is the set
�

i∈I Gi equipped with the operation ∗ as

defined by

�

i∈I
Gi := {(xi)i∈I , , xi ∈ Gi for each i ∈ I}, (xi)i∈I ∗ (yi)i∈I := (xi ∗i yi)i∈I .

The structure theorem for finite abelian groups states that any finite abelian group is isomor-

phic to a product of cyclic groups of orders equal to powers of prime numbers. In other words,

if G is a finite abelian group of order n, then it can be written as

G ∼= Z
p
k1
1

× Z
p
k2
2

× · · ·× Zpkmm
,

where p1, . . . , pm are prime numbers, k1, . . . , km are positive integers, and p
k1
1 p

k2
2 · · · pkmm = n.

Saying that groups (G, ∗) and (G�
, �) are isomorphic means that there is an isomorphism from

G to G
�, i.e., f is a homomorphism from G to G

� (f(x ∗ y) = f(x) � f(y) for all x, y ∈ G) and that

f is invertible.

3 Exercises

Ex.1: Verify that the axioms G1, G2, and G3 imply the uniqueness of an identity element and

of inverses. Verify also that a subset H of a group G forms an subgroup of G iff (1) holds.

Ex.2: Verify that, if f is a homomorphism from a group (G, ∗) to another group (G�
, �), then

f(1G) = 1G� and f(x−1) = (f(x))−1 for all x ∈ G. Verify that, if f is in addition invertible,

then its inverse f
−1 is automatically an homomorphism from (G�

, �) to (G, ∗).

Ex.3: Let m be the order of an element x in a group G. Prove that m divides any positive

integer k such that xk = 1G.

Ex.4: Prove that the elements of order ≤ m in a group G form a subgroup of G.

Ex.5: Prove that

SLn(Z) := {A ∈ Mn×n(Z) : | det(A)| = 1}

of n× n matrices with integer entries and determinant equal to ±1 is a group.

Ex.6: Let p and q be the order of two elements x and y in a group G. Suppose that x and y

commute and that p and q are relatively prime. Prove that the order of xy equals pq.

Ex.7: For a subset E of a group G, prove that

N(E) := {x ∈ G : xE = Ex},
C(E) := {x ∈ G : xy = yx for all y ∈ E}.

are subgroups of G. If E is a subgroup of G, prove that N(E) is the largest subgroup of

G containing E as a subgroup and such that xE = Ex for all x ∈ N(E).
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Number Theory

1 The fundamental theorem of arithmetic

An integer p > 1 is a prime number if its only positive divisors are 1 and p (by convention, p = 1

is not considered a prime number). The prime numbers form an infinite set. Indeed, if there
was finitely many prime numbers p1 < p2 < · · · < pk, then q := p1p2 · · · pk+1 > pk would not be
prime, hence it would be divisible by some prime number pi, but then pi|q − p1 · · · pi · · · pk = 1,
which is absurd. In fact, the prime number theorem states that the number π(n) of primes
less than or equal to n behaves like n/ ln(n) as n → ∞.

The fundamental theorem of arithmetic states that every integer n > 1 can be written uniquely
(up to the order of factors) as product of primes.

2 Euclid algorithm and its consequences

Two integers n > 1 and m > 1 are called coprime (or relatively prime) if they share no common
prime factor. Stated differently, n and m are coprime if their greatest common divisor is 1.
The notions of greatest common divisor and least common multiple are self-explanatory. With
obvious notations, we have gcd(n,m) · lcm(n,m) = n · m. The greatest common divisor of n

and m can be found via Euclid algorithm: with n > m, set r0 = n, r1 = m, and produce rk
inductively for k ≥ 2 from the division of rk−2 by rk−1 as

rk−2 = qk−1rk−1 + rk, 0 ≤ rk < rk−1.

Since the sequence of nonnegative numbers (rk)k≥0 is strictly decreasing, it eventually reaches
rK = 0, and gcd(n,m) = rK−1. This is the case because gcd is preserved at each iteration, i.e.,

(1) gcd(rk−2, rk−1) = gcd(rk−1, rk), k ≥ 2,

hence gcd(n,m) = gcd(r0, r1) = gcd(rK−2, rK−1) = rK−1 where the latter equality is due to
the fact that rK−2 divides rK−1. The set of integer combinations is also preserved at each
iteration, i.e.,

(2) {prk + qrk−1, (p, q) ∈ Z} = {prk+1 + qrk, (p, q) ∈ Z}, k ≥ 2,

so the equality between the first and last sets gives

{pn+ qm, (p, q) ∈ Z} = gcd(n,m)Z.

This implies in particular Bézout lemma, i.e.,

gcd(n,m) = 1 ⇐⇒ ∃ p, q ∈ Z such that pn+ qm = 1.

In turn, the latter is used to prove Euclid lemma (obvious with prime factor decompositions,
but needed in the uniqueness part of the fundamental theorem of arithmetic) which says that

if m divides nr and if m and n are coprime, then m divides r.

To see this, write nr = dm and pn+ qm = 1, so that r = (pn+ qm)r = pdm+ qmr = (pd+ qr)m.

1



3 Euler totient function
Define the Euler function φ on the positive integers by

φ(n) := card{k ∈ [1 : n] such that k and n are coprime}.

Note that, if p is prime and if s ≥ 1 is an integer, then φ(ps) = ps − ps−1 = ps(1− 1/p) (because
there are ps−1 integers in [1 : ps] that are not coprime with ps, namely p, 2p, 3p, . . . , ps−1p = ps).
Note also that φ is multiplicative, meaning that φ(nm) = φ(n)φ(m) whenever n and m are
coprime (this is a consequence of the Chinese remainder theorem, see Modular Arithmetic).
Combining these two facts with the prime factor decomposition n = ps11 ps22 · · · ps�� of a positive
integer gives the formula

φ(n) = n
�

p prime, p|n

�
1− 1

p

�
.

Multiplying out the right-hand side yields

(3) φ(n) =
�

d|n

n

d
µ(d) =

�

d|n

dµ
�n
d

�
,

where µ is the Möbius function defined by µ(1) = 1 and, for m > 1,

µ(m) :=

�
(−1)� if m = p1p2 · · · p� is a product of � distinct primes,
0 if p2|m for some prime p.

This can be concisely written as φ = id∗µ, where the Dirichlet convolution is the commutative
operation defined, for two functions a, b on positive integers, by

(a ∗ b)(n) =
�

ij=n

a(i)b(j).

This operation has an identity given by e(1) = 1 and e(m) = 0, m > 1, and is associative, since

[a ∗ (b ∗ c)](n) =
�

im=n

a(i)(b ∗ c)(m) =
�

im=n

a(i)
�

jk=m

b(j)c(k) =
�

ijk=n

a(i)b(j)c(k),

[(a ∗ b) ∗ c](n) =
�

km=n

(a ∗ b)(m)c(k) =
�

km=n

�

ij=m

a(i)b(j)c(k) =
�

ijk=n

a(i)b(j)c(k).

Let us also notice that, for an integer m > 1 decomposed in prime factors as m = ps11 ps22 · · · ps�� ,

�

d|m

µ(d) =
�

r1,...,r�∈{0,1}

µ(pr11 pr22 · · · pr�� ) =
��

h=0

�
�

h

�
(−1)� = (1− 1)�, i.e.,

�

d|m

µ(d) = 0.

Since the sum takes the value 1 for m = 1, we have µ ∗ 1 = e. Now, if a = b ∗ µ, then
a ∗ 1 = b ∗ µ ∗ 1 = b ∗ e = b, and conversely, if a ∗ 1 = b, then b ∗ µ = a ∗ 1 ∗ µ = a ∗ e = a. Spelling
out the convolutions leads to Möbius inversion formula: for functions a, b on positive integers,

a(n) =
�

d|n

b(d)µ(n/d) for all n ≥ 1 ⇐⇒ b(n) =
�

d|n

a(d) for all n ≥ 1.

Taking a = φ and b = id in the latter and using (3) gives Euler formula, that is
�

d|n

φ(d) = n.
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4 Exercises

Ex.1: Verify the statements made in (1) and (2).

Ex.2: Prove that the distance between two consecutive prime numbers is unbounded.

Ex.3: Prove that the product of three consecutive integers is never a perfect power (i.e., not a
perfect square, not a perfect cube, etc.).

Ex.4: For an integer n ≥ 1, prove that n4 − 7n2 + 1 cannot be a perfect square.

Ex.5: If n is an integer with prime factor decomposition n = pk11 pk22 · · · pk�� , let f(n) :=
��

i=1 kipi
and g(n) := limm→∞ f ◦ · · · ◦ f� �� �

m times

(n). Evaluate g(100) and g(1010). Find all odd integers

n > 1 such that n/2 < g(n) < n.
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Modular Arithmetic

1 Residue classes

Given an integer n ≥ 2, we say that a ∈ Z is congruent to b ∈ Z modulo n if n divides a − b

— equivalently, if a = b + kn for some k ∈ Z, or if a and b have the same remainder in the
division by n. In this case, we write a ≡ b (mod n). Note that ≡ is an equivalence relation
on Z (reflexive: a ≡ a (mod n); symmetric: if a ≡ b (mod n), then b ≡ a (mod n); transitive: if
a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)). Therefore, we can partition Z into the
equivalence classes, called residue classes,

[a]n = {b ∈ Z : b ≡ a (mod n)} = {a+ kn, k ∈ Z}.

Each residue class has a unique representative in {0, 1, . . . , n − 1} — the remainder of any
element of the class in the division by n — and is often identified to this representative.
Hence, the set Zn of residue classes modulo n is identified to {0, 1, . . . , n − 1}. Defining an
addition and a multiplication on Zn by [a]n + [b]n = [a + b]n and [a]n · [b]n = [a · b]n, it can be
seen that (Zn,+) is a group. With Z∗

n := {a ∈ Zn : ∃ b ∈ Zn : [a]n · [b]n = [1]n} denoting the set
of units (i.e., invertible elements) of Zn, it can be seen that (Z∗

n, ·) is also a group.

2 Euler theorem

Note that (the representative) of a ∈ Z is a unit of Zn if and only if there exist b ∈ Z and k ∈ Z
such that ab + kn = 1. By Bézout lemma, this means that a ∈ Z∗

n if and only if a and n are
coprime. One consequence is that, if p is prime, then every nonzero element in Zp is invertible
— this makes Zp a field, where usual calculation rules apply, for instance ab ≡ 0 (mod n)

implies a ≡ 0 (mod n) or b ≡ 0 (mod n). Another consequence is that

card(Z∗
n) = card{a ∈ [1 : n− 1] such that a and n are coprime} = φ(n),

where φ is Euler totient function. Thus, applying Lagrange theorem to the multiplicative
group Z∗

n yields Euler theorem, that is

aφ(n) ≡ 1 (mod n) whenever gcd(a, n) = 1.

When n is a prime number p, this becomes Fermat little theorem, that is

ap−1 ≡ 1 (mod p) whenever a is not a multiple of p.

Euler theorem provides a way to compute the powers modulo n of an integer a coprime with n,
i.e., am ≡ am mod φ(n) (mod n).

1



3 Chinese remainder theorem

Given integers n1, n2, . . . , nk ≥ 2 that are pairwise coprime, the chinese remainder theorem
says that the system of congruence

x ≡ r1 (mod n1),

x ≡ r2 (mod n2),

...
x ≡ rk (mod nk),

has a unique solution modulo N := n1n2 · · ·nk. For the uniqueness, notice that, if x and x� are
two solutions, then n1|x− x�, n2|x− x�, . . ., nk|x− x�, so n1n2 · · ·nk|x− x� (because n1, n2, . . . , nk

are coprime), i.e., x ≡ x� (mod N). For the existence, set Ni := N/ni and notice that Ni and
ni are coprime. Thus, we can consider the inverse mi of Ni in Zni . It is now readily verified
that x := m1N1r1 +m2N2r2 + · · · +mkNkrk is a solution of the system of congruence. Stated
differently, the theorem says that the map

x ∈ Zn1n2···nk �→ (x mod n1, x mod n2, . . . , x mod nk) ∈ Zn1 × Zn2 × · · ·Znk

is bijective when n1, n2, . . . , nk are pairwise coprime.

We can now justify that Euler totient function is multiplicative, i.e., that φ(nm) = φ(n)φ(m)

when n and m are coprime. Indeed, for x ∈ Z, the fundamental theorem of arithmetic reveals

[gcd(x, nm) = 1] ⇔ [gcd(x, n) = 1, gcd(x,m) = 1] ⇔ [gcd(x mod n, n) = 1, gcd(x mod m,m) = 1],

so that x ∈ Z∗
nm �→ (x mod n, x mod m) ∈ Z∗

n×Z∗
m is also a bijective map. The equality between

the cardinalities of Z∗
nm and of Z∗

n × Z∗
m gives the desired result.

4 Exercises

Ex.1: Verify that (Zn,+) and (Z∗
n, ·) are groups.

Ex.2: We define a function f on positive integers by f(1) = 3 and f(n+ 1) = 3f(n). What are
the last two digits of f(2012)?

Ex.3: For any integer n > 1, prove that n does not divides 2n − 1.

Ex.4: What is the lowest degree monic polynomial which vanishes identically on the integers
(mod p) when p is prime? Same question (mod 100)?

Ex.5: How many perfect squares are there (mod 2n)?
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Linear Algebra

1 Range and null space

For A ∈ Mm×n(C), define its range

ranA := {Ax, x ∈ Cm},

and its null space

kerA := {x ∈ Cn : Ax = 0}.

These are linear subspaces of Cm and Cn, respectively. The rank and the nullity of A are

defined by

rk A := dim(ranA), nul A := dim(kerA).

They are deduced form one another by the rank-nullity theorem

rk A+ nul A = n.

Recall that A ∈ Mm×n(C) is injective if kerA = {0}, and surjective if ranA = Cm. Note that

a square matrix A is injective (or surjective) iff it is both injective and surjective, i.e., iff it is

bijective. Bijective matrices are also called invertible matrices, because they are characterized

by the existence of a unique square matrix B (the inverse of A, denoted by A−1) such that

AB = BA = I.

2 Trace and determinant

The trace and determinants are functions taking square matrices and returning scalars. The

trace of A ∈ Mn(C) is the sum of its diagonal elements, i.e.,

trA :=
n�

i=1

ai,i where A = [ai,j ]
n
i,j=1.

Notice that the trace is linear (i.e., tr(λA+ µB) = λtr(A) + µtr(B)) and that

tr(AB) = tr(BA) whenever A ∈ Mm×n(C) and B ∈ Mn×m(C).

As for the determinant, it can be defined in several equivalent ways:

1. As a function of the columns of a marix, it is the only function f : Cn×· · ·×Cn → C that is

linear with respect to each columns (f(. . . ,λx+ µy, . . .) = λf(. . . , x, . . .) + µf(. . . , y, . . .)),

alternating (f(. . . , x, . . . , y, . . .) = −f(. . . , y, . . . , x, . . .)), and unit-normalized (f(I) = 1).

This can be used to derive the identity

det(AB) = det(A) det(B) for all A,B ∈ Mn(C).

1



2. detA =
�

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n),

where Sn is the set of n! permutations of [1 : n] and sgn(σ) = (−1)s, s = number of

pairwise interchanges composing σ (hence the computation rules for 2 × 2 and 3 × 3

determinants). This can be used to prove that

detA� = detA for all A ∈ Mn(C).

3. Laplace expansion with respect to a row or a column, e.g. with respect to the ith row

detA =
n�

j=1

(−1)i+jai,j detAi,j ,

where Ai,j is the submatrix of A obtained by deleting the ith row and the jth column. The

matrix B ∈ Mn(C) with entries bi,j := (−1)i+j detAi,j is called the comatrix of A — note

that B� is also called the adjoint of A (classical adjoint, not to be confused with hermitian
adjoint). Laplace expansion can be used to prove that AB� = (detA)I. In turn, it is

deduced that A ∈ Mn(C) is invertible iff detA �= 0, in which case A−1 = (1/ det(A))B�.

3 Eigenvalues and eigenvectors

Given a square matrix A ∈ Mn(C), if there exist λ ∈ C and x ∈ Cn, x �= 0, such that

Ax = λx,

then λ is called an eigenvalue of A and x is called an eigenvector corresponding to the eigen-

value λ. The set of all eigenvectors corresponding to an eigenvalue λ is called the eigenspace

corresponding to the eigenvalue λ — it is indeed a linear space. Note that λ is an eigenvalue

of A iff det(A− λI) = 0, i.e., iff λ is a zero of the characteristic polynomial of A defined by

pA(x) := det(A− xI).

Observe that pA is a polynomial of the form

pA(x) = (−1)nxn + (−1)n−1tr(A)xn−1 + · · ·+ det(A).

Since this polynomial can also be written in factorized form as (λ1 − x) · · · (λn − x), where

{λ1, . . . ,λn} is the set of eigenvalues of A (complex and possibly repeated), we have

tr(A) = λ1 + · · ·+ λn, det(A) = λ1 · · ·λn.

The existence of n linearly independent eigenvectors v1, . . . , vn ∈ Cn corresponding to eigen-

values λ1, . . . ,λn of A ∈ Mn (which occurs in particular if A has n distinct eigenvalues) is
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equivalent to the existence of a invertible matrix V ∈ Mn and of a diagonal matrix D ∈ Mn

such that

A = V DV −1.

The columns of V are the v�is and the diagonal entries of D are the λi’s. In this case, we say

that the matrix A is diagonalizable. More generally, two matrices A and B are called similar

if there exists an invertible matrix V such that A = V BV −1. Note that two similar matrices

have the same characteristic polynomial, hence the same eigenvalues (counting multiplici-

ties), and in particular the same trace and determinant.

4 Exercises

Ex.1: We recall that rk A∗ = rk A, where A∗ ∈ Mn×m(C) denotes the conjugate transpose

of a matrix A ∈ Mm×n. In general, is it true that nul A∗ = nul A? Establish that

kerA = kerA∗A, deduce that nul A = nul A∗A and that rk A = rk A∗A = rk A∗ = rk AA∗,

and finally conclude that ranA = ranAA∗.

Ex.2: Calculate tr(A∗A) and observe that A = 0 iff tr(A∗A) = 0.

Ex.3: For A,B ∈ Mn(C), prove that AB = I implies BA = I. Is this true if A and B are not

square?

Ex.4: Determine the eigenvalues and eigenvectors of the matrix

A =





1 t · · · t

t 1 t
...

t · · · . . . t

t · · · t 1




,

and diagonalize it.

Ex.5: For A ∈ Mn(Z), suppose that there exists a prime number p dividing
�n

j=1 ai,j for all

i ∈ [1 : n]. Prove that p divides det(A).

Ex.6: Determine if the following statement is true or false: there exists A ∈ Mn(R) such that

A2 + 2A+ 5I = 0 if and only if n is even.
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