Example 4.11, Chapter 4, Decomposition. (Narcowich, Math 414)

Let $f_2(x) = 2\phi(4x) + 2\phi(4x - 1) + \phi(4x - 2) - \phi(4x - 3)$. (See figure 4.12 in the text.) Since $4 = 2^2$, j = 2 and $f_2 \in V_2$. We want to decompose f into its components in V_0 , W_0 and W_1 . The text already does this by using these formulas (eqns 4,10 and 4.11 in the text):

$$\phi(2^{j}x - 2k) = (\phi(2^{j-1}x - k) + \psi(2^{j-1}x - k))/2,$$

$$\phi(2^{j}x - 2k - 1) = (\phi(2^{j-1}x) - \psi(2^{j-1}x))/2.$$

Here, we want to use the method involving coefficients.

Since f_2 is expressed in the basis $\{\phi(2^2x-k)_{k=-\infty}^{\infty}$ the coefficients for the j=2 level are

$$a_0^2 = 2$$
, $a_1^2 = 2$, $a_2^2 = 1$, $a_3^2 = -1$,

with all other a_k^2 's being 0. By Theorem 4.12, we also have

$$a_{\ell}^{j-1} = \frac{a_{2\ell}^j + a_{2\ell+1}^j}{2}$$
 and $b_{\ell}^{j-1} = \frac{a_{2\ell}^j - a_{2\ell+1}^j}{2}$.

These formulas will allow us to obtain all lower level coefficients. First, let's find the decomposition of f into its V_1 and W_1 components. Because $a_k^2 = 0$ for k < 0 and k > 3, the only nonzero coefficients are a_0^1 and a_1^1 . Using the formulas, we have $a_0^1 = \frac{2+2}{2} = 2$ and $a_1^1 = \frac{1-1}{2} = 0$. Also if $\ell < 0$ or $\ell > 1$, $b_\ell^1 = 0$. Again using the formulas above, we see that $b_0^1 = \frac{2-2}{2} = 0$ and $b_1^1 = \frac{1-(-1)}{2} = 1$. Thus the decomposition into V_1 and W_1 components is

$$f_2(x) = 2\underbrace{\phi(2x)}_{f_1} + \underbrace{\psi(2x-1)}_{w_1}.$$

Second, we need to decompose f_1 into $f_1=f_0+w_0$. Since all of the $a_\ell^1=0$, except for $\ell=0$, the only $a_\ell^0\neq 0$ is $a_0^0=\frac{2+0}{2}=1$. Similarly, all b_ℓ^0 's are 0, except for b_0^0 , which is $b_0^0=\frac{2-0}{2}=1$. It follows that

$$f_1(x) = \underbrace{\phi(x)}_{f_0} + \underbrace{\psi(x)}_{w_0}$$

Combining these results in the decomposition that we wanted:

$$f_2 = \underbrace{\phi(x)}_{f_0} + \underbrace{\psi(x)}_{w_0} + \underbrace{\psi(2x-1)}_{w_1}$$