Example 4.11, Chapter 4, Decomposition. (Narcowich, Math 414)
Let $f_{2}(x)=2 \phi(4 x)+2 \phi(4 x-1)+\phi(4 x-2)-\phi(4 x-3)$. (See figure 4.12 in the text.) Since $4=2^{2}, j=2$ and $f_{2} \in V_{2}$. We want to decompose f into its components in V_{0}, W_{0} and W_{1}. The text already does this by using these formulas (eqns 4,10 and 4.11 in the text):

$$
\begin{aligned}
\phi\left(2^{j} x-2 k\right) & =\left(\phi\left(2^{j-1} x-k\right)+\psi\left(2^{j-1} x-k\right)\right) / 2 \\
\phi\left(2^{j} x-2 k-1\right) & =\left(\phi\left(2^{j-1} x\right)-\psi\left(2^{j-1} x\right)\right) / 2
\end{aligned}
$$

Here, we want to use the method involving coefficients.
Since f_{2} is expressed in the basis $\left\{\phi\left(2^{2} x-k\right\}_{k=-\infty}^{\infty}\right.$ the coefficients for the $j=2$ level are

$$
a_{0}^{2}=2, \quad a_{1}^{2}=2, \quad a_{2}^{2}=1, \quad a_{3}^{2}=-1,
$$

with all other a_{k}^{2} 's being 0 . By Theorem 4.12, we also have

$$
a_{\ell}^{j-1}=\frac{a_{2 \ell}^{j}+a_{2 \ell+1}^{j}}{2} \quad \text { and } \quad b_{\ell}^{j-1}=\frac{a_{2 \ell}^{j}-a_{2 \ell+1}^{j}}{2}
$$

These formulas will allow us to obtain all lower level coefficients. First, let's find the decomposition of f into its V_{1} and W_{1} components. Because $a_{k}^{2}=0$ for $k<0$ and $k>3$, the only nonzero coefficients are a_{0}^{1} and a_{1}^{1}. Using the formulas, we have $a_{0}^{1}=\frac{2+2}{2}=2$ and $a_{1}^{1}=\frac{1-1}{2}=0$. Also if $\ell<0$ or $\ell>1, b_{\ell}^{1}=0$. Again using the formulas above, we see that $b_{0}^{1}=\frac{2-2}{2}=0$ and $b_{1}^{1}=\frac{1-(-1)}{2}=1$. Thus the decomposition into V_{1} and W_{1} components is

$$
f_{2}(x)=2 \underbrace{\phi(2 x)}_{f_{1}}+\underbrace{\psi(2 x-1)}_{w_{1}} .
$$

Second, we need to decompose f_{1} into $f_{1}=f_{0}+w_{0}$. Since all of the $a_{\ell}^{1}=0$, except for $\ell=0$, the only $a_{\ell}^{0} \neq 0$ is $a_{0}^{0}=\frac{2+0}{2}=1$. Similarly, all b_{ℓ}^{0} 's are 0 , except for b_{0}^{0}, which is $b_{0}^{0}=\frac{2-0}{2}=1$. It follows that

$$
f_{1}(x)=\underbrace{\phi(x)}_{f_{0}}+\underbrace{\psi(x)}_{w_{0}}
$$

Combining these results in the decomposition that we wanted:

$$
f_{2}=\underbrace{\phi(x)}_{f_{0}}+\underbrace{\psi(x)}_{w_{0}}+\underbrace{\psi(2 x-1)}_{w_{1}}
$$

