Example 4.11, Chapter 4, Reconstruction. (Narcowich, Math 414)

Let $f(x) = 2\phi(4x) + 2\phi(4x-1) + \phi(4x-2) - \phi(4x-3)$. (See figure 4.12 in the text.) Since $4 = 2^2$, j = 2 and $f_2 \in V_2$. The problem there was to decompose f into its components in V_0 , W_0 and W_1 . That is, we want $f = w_1 + w_0 + f_0$. We started with finding f_1 and w_1 in the decomposition $f_2 = f_1 + w_1$. In the example, these were found to be

$$f_1(x) = \phi(2x)$$
 and $w_1(x) = \psi(2x - 1)$

What was done next was to write $f_1 = f_0 + w_0$. Doing this we got

$$f_0(x) = \phi(x)$$
 and $w_0(x) = \psi(x)$

The final result was this *decomposition* of f_2 :

$$f = \underbrace{\phi(x)}_{f_0} + \underbrace{\psi(x)}_{w_0} + \underbrace{\psi(2x-1)}_{w_1}$$
(1)

We want to reverse the process and *start* with the decomposition in (1) and reconstruct f To this, we will use the method involving coefficients. The formulas that we need for this are

$$a_{2k}^{j} = a_{k}^{j-1} + b_{k}^{j-1} \quad a_{2k+1}^{j} = a_{k}^{j-1} - b_{k}^{j-1}$$
(2)

The decomposed form of f is given in (1). This can be written as

$$f(x) = a_0^0 \phi(x) + b_0^0 \psi(x) + b_1^1 \psi(2x - 1),$$

where $a_0^0 = 1$, $b_0^0 = 1$ and $b_1^1 = 1$. We begin by finding the form of f at level j = 1. Since all of the coefficients $b_k^0 = 0$, except for k = 0, and the same is true for a_k^0 , we have for all $k \neq 0$

$$a_{2k}^1 = a_k^0 + b_k^0 = 0 + 0 = 0$$
 and $a_{2k+1}^1 = 0 - 0 = 0$.

For k = 0,

$$a_0^1 = a_0^0 + b_0^0 = 1 + 1 = 2$$
 and $a_1^1 = a_0^0 - b_0^0 = 1 - 1 = 0$.

This gives us

$$f(x) = 2\phi(2x) + \psi(2x - 1).$$

Since there are only two non zero coefficients, which are $a_0^1 = 2$ and $b_1^1 = 1$, all the other a_k^1 's and b_k^1 's are 0. Using this information, first we get

$$a_0^2 = a_0^1 + b_0^1 = 2 + 0 = 0$$
 and $a_1^2 = a_0^1 - b_0^1 = 2 - 0 = 2$,

and then we get

$$a_2^2 = a_1^1 + b_1^1 = 0 + 1$$
 and $a_3^2 = a_1^1 - b_1^1 = 0 - 1 = -1$.

Of course, all other a_k^2 's are 0, so

$$f(x) = 2\phi(4x) + 2\phi(4x - 1) + \phi(4x - 3) - \phi(4x - 4),$$

which was the original function. Why aren't there any wavelets from W_2 ? Because $f \in V_2$, f is orthogonal to all wavelets in W_2 . Thus there are no components of f from W_2 .