Example 4.11, Chapter 4, Reconstruction. (Narcowich, Math 414)
Let $f(x)=2 \phi(4 x)+2 \phi(4 x-1)+\phi(4 x-2)-\phi(4 x-3)$. (See figure 4.12 in the text.) Since $4=2^{2}, j=2$ and $f_{2} \in V_{2}$. The problem there was to decompose f into its components in V_{0}, W_{0} and W_{1}. That is, we want $f=w_{1}+w_{0}+f_{0}$. We started with finding f_{1} and w_{1} in the decomposition $f_{2}=f_{1}+w_{1}$. In the example, these were found to be

$$
f_{1}(x)=\phi(2 x) \text { and } w_{1}(x)=\psi(2 x-1)
$$

What was done next was to write $f_{1}=f_{0}+w_{0}$. Doing this we got

$$
f_{0}(x)=\phi(x) \text { and } w_{0}(x)=\psi(x)
$$

The final result was this decomposition of f_{2} :

$$
\begin{equation*}
f=\underbrace{\phi(x)}_{f_{0}}+\underbrace{\psi(x)}_{w_{0}}+\underbrace{\psi(2 x-1)}_{w_{1}} \tag{1}
\end{equation*}
$$

We want to reverse the process and start with the decomposition in (1) and reconstruct f To this, we will use the method involving coefficients. The formulas that we need for this are

$$
\begin{equation*}
a_{2 k}^{j}=a_{k}^{j-1}+b_{k}^{j-1} \quad a_{2 k+1}^{j}=a_{k}^{j-1}-b_{k}^{j-1} \tag{2}
\end{equation*}
$$

The decomposed form of f is given in (1). This can be written as

$$
f(x)=a_{0}^{0} \phi(x)+b_{0}^{0} \psi(x)+b_{1}^{1} \psi(2 x-1),
$$

where. $a_{0}^{0}=1, b_{0}^{0}=1$ and $b_{1}^{1}=1$. We begin by finding the form of f at level $j=1$. Since all of the coefficients $b_{k}^{0}=0$, except for $k=0$, and the same is true for a_{k}^{0}, we have for all $k \neq 0$

$$
a_{2 k}^{1}=a_{k}^{0}+b_{k}^{0}=0+0=0 \text { and } a_{2 k+1}^{1}=0-0=0 .
$$

For $k=0$,

$$
a_{0}^{1}=a_{0}^{0}+b_{0}^{0}=1+1=2 \text { and } a_{1}^{1}=a_{0}^{0}-b_{0}^{0}=1-1=0 .
$$

This gives us

$$
f(x)=2 \phi(2 x)+\psi(2 x-1)
$$

Since there are only two non zero coefficients, which are $a_{0}^{1}=2$ and $b_{1}^{1}=1$, all the other a_{k}^{1} 's and b_{k}^{1} 's are 0 . Using this information, first we get

$$
a_{0}^{2}=a_{0}^{1}+b_{0}^{1}=2+0=0 \text { and } a_{1}^{2}=a_{0}^{1}-b_{0}^{1}=2-0=2,
$$

and then we get

$$
a_{2}^{2}=a_{1}^{1}+b_{1}^{1}=0+1 \text { and } a_{3}^{2}=a_{1}^{1}-b_{1}^{1}=0-1=-1 .
$$

Of course, all other a_{k}^{2} 's are 0 , so

$$
f(x)=2 \phi(4 x)+2 \phi(4 x-1)+\phi(4 x-3)-\phi(4 x-4),
$$

which was the original function. Why aren't there any wavelets from W_{2} ? Because $f \in V_{2}, f$ is orthogonal to all wavelets in W_{2}. Thus there are no components of f from W_{2}.

