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1 Bounded operators & examples

Let V and W be Banach spaces. We say that a linear transformation L :
V — W is bounded if and only if there is a constant K such that || Lo|w <
Klv|y for all v € V. Equivalently, L is bounded whenever
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is finite. ||L||op is called the norm of L. Frequently, the same operator may
map another space vV = W, rather than V. — W. When this happens,
we will need to note which spaces are involved. For instance, if V and W
are the spaces involved, we will use the notation || L||y_w for the operator
norm. In addition to the expression given in , it is easy to show that
| Lop is also given by

| L||op :=min{K > 0: || Lv||w < K||v|y Yv e V}. (1.2)

Asusual, wesay L : V — W is continuous at v € V if and only if for every
€ > 0 there is a 6 > 0 such that ||Lu — Lv||w < & whenever |u —v||y < 4.
Of course, this is just the standard definition of continuity. Be aware that it
holds whether or not L is linear. When L is linear, the distinction between
u, v becomes irrelevant, because ||Lu — Lo||w = ||L(u — v)||y. From this it
immediately follows that L will be continuous at every v € V whenever it
is continuous at v = 0. The proposition below connects boundedness and
continuity for linear transformations. The proof is left as an exercise.

Proposition 1. A linear transformation L : V. — W is continuous if and
only if it is bounded.

We will now provide a number of examples of bounded operators and
unbounded operators.
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Example 1. Let L : C[0, 1] — C0, 1] be given by Lu(z fo y)dy,
where k € C(R), R = [0, 1]x[0, 1]. We have that | Lu(x \ < fo |k ( x,y)\ ]u( )|dy,
so [Lu(z)| < |[kllom)llulleo,1))- Consequently, ||Llcwc < [Ikllor)lulleqo,)

Example 2. Hilbert-Schmidt operators.

Definition 1. Let R = [0,1] x [0,1] and let k : R — R. If k € L?*(R), then
k is called a Hilbert-Schmidt kernel.

Pr0p051t10n 2. Let k be a Hilbert-Schmidt kernel. The linear operator
fo dy maps L?[0,1] — L?[0,1] and is bounded. More-
over, HL||L2—>L2 S HkHL2

Proof. Since k(x,y) € LQ(R), S [k(z, y)|*dzdy < oo, we have that |k(z, y)|* €
LY(R). Fubini’s theorem then implies that fol |k(z,y)|?dy exists for almost
every = and, in x, is in L'[0,1]. But this also implies that for almost every
z, |k(z,y)|? is L? in y. Hence, by Schwarz’s inequality,

| Lu(x '/ x,y)u dy

Integrating both sides in 2 then yields || Lul|%,, g < ||k||%2(l,%)||u||%2[0 ) SO
[ Lullz2p01) < kllz2(myllwllz2,1- Then by (1.2), we see that [|L|[z2 72 <
k]| L2(R), which completes the proof. O

Example 3. Consider L%[0,1]. The differentiation operator D = & is
defined on all f € C1[0, 1], which is dense in L? because it contains the set
of polynomials. The question is whether D is bounded, or at least can be
extended to a bounded operator on L2. The answer is no. Let u,(x) :=
V2sin(nrz). These functions are in C'[0,1] and they satisfy ||uy,|[;2 = 1.
Since Du,, = nmv/2cos(nmz), || Duy|;2 = nw. Consequently,

[1Dunllz>

=nmT — 00, as N — OQ.
[[un][ 2

Thus D is an unbounded operator on L?[0,1].
The situation changes if we use a different space. Consider the Sobolev
space H'[0,1], which has the inner product

1 — -
() = /0 (@)@ + f (@) g @)d.



The operator D : H' — L? turns out to be bounded. In fact, one can
show that ||D||g1_r2 = 1. (It’s easy to show that || D||g1_72 is at most 1.
Showing that it’s exactly one requires more work.)

2 Closed subspaces

The usual definition of subspace holds for Banach spaces and for Hilbert
spaces. Such subspaces inherit norms and/or inner products from the larger
spaces. They are said to be closed if they contain all of their limit points.

Finite dimensional subspaces are always closed. Earlier, when we dis-
cussed completeness of an orthonormal set U = {u, }7>; in a Hilbert space
H, we saw that the space Hy = {f € H: f = >, (f,un)u,} is closed in
H. When C[0, 1] is considered to be a subspace of L?[0, 1], it is not closed.
However, C|0, 1] is a closed subspace of Lu|0, 1].

Given a subspace V' of a Hilbert space H, we define the orthogonal com-
plement of V' to be

Vi={feH: (f,g)=0VgeV}.
Proposition 3. V' is a closed subspace of H.

Proof. Let {f,}52, be a sequence in V1 that converges to a function f € H.
Since each f, isin V*, (f,,g) = 0 for every g € V. Also, because the inner
product is continuous, lim, oo (fn,g) = (f,g). It immediately follows that
(f,g) =0. so f € V1. Consequently, V* is closed in H. O

Bounded linear operators mapping V' — W, where V and W are Banach
spaces, have all of the usual subspaces associated with them. Let L : V — W
be bounded and linear. The domain of L is D(L) = V. The range of L is
defined as R(L) := {w € W: Jv € W for which Lv = W}. Finally, the null
space (or kernel) of L is N(L) := {v € V: Lv = 0}.

Proposition 4. If L : V — W is bounded and linear, then the null space
N(L) is a closed subspace of V.

Proof. The proof again relies on the continuity of L. If { f,,}°° ; is a sequence
in N(L) that converges to f € V. By Proposition [I| L is continuous, so
lim,, o0 Lfn = Lf. But, because f,, € N(L), Lf,, = 0. Combining this with
lim,, oo Lfn, = Lf, we see that Lf = 0 and so f € N(L). Thus, N(L) is a
closed subspace of V. O

Previous: X-ray tomography and integral equations
Next: the projection theorem, Reisz representation theorem and the Fred-
holm alternative
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