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1 Modulus of Continuity

Recall that every function continuous on a closed interval −∞ < a ≤ x ≤
b <∞ is uniformly continuous: For every ε > 0, there is a δ > 0 such that

|f(x)− f(y)| < ε (1.1)

as long as x, y ∈ [a, b] satisfy |x − y| < δ. This differs from the definition
of continuity at a single point y in that δ is independent of y, and depends
only on ε.

Let’s turn around the roles of ε and δ. In uniform continuity, we start
with ε and look for δ. What we want to do now, is start with δ and,
essentially, find ε. With this in mind we make the following definition1

Definition 1.1. The modulus of continuity for f ∈ C[0, 1] and δ > 0 is
defined to be

ω(f, δ) = sup{|f(x)− f(y)| : |x− y| ≤ δ, x, y ∈ [0, 1]}. (1.2)

Example 1.2. Let f(x) =
√
x, 0 ≤ x ≤ 1. Show that ω(f, δ) ≤ C

√
δ.

*Updated 10/2/2019
1From now on, without loss of generality, we will work with the closed interval [0, 1].
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Proof. Let 0 < x < y ≤ 1. We note that

0 < |√y −
√
x| = y − x√

x+
√
y

=
√
y − x

( √y − x
√
y +
√
x

)

=
√
y − x

√
1−

√
x
y

√
1 +

√
x
y

1 +
√

x
y

=
√
y − x

√
1−

√
x
y√

1 +
√

x
y

≤
√
y − x ≤

√
δ

Hence, ω(f, δ) ≤
√
δ. To get equality, take x = 0 and y = δ.

Example 1.3. Suppose that f ∈ C(1)[0, 1]. Show that ω(f, δ) ≤ ||f ′||∞δ.

Proof. Because f ∈ C(1), we can estimate f(t)− f(s) this way:

|f(t)− f(s)| ≤
∫ t

s
|f ′(x)| dx ≤ (t− s)‖f ′‖∞ ≤ δ‖f ′‖∞, (1.3)

which immediately gives ω(f, δ) ≤ δ‖f ′‖∞.

2 Approximation with Linear Splines

One very effective way to approximate a continuous function f ∈ C[0, 1],
given a finite set of points in {xj} ⊂ [0, 1] and values {f(xj)} at these points,
is to use a “connect-the-dots” approach. The idea is to form a piecewise-
linear, continuous function by joining neighboring points (xj , f(xj)) and
(xj+1, f(xj+1) with a straight line. This procedure results in a linear spline.
Linear splines are used for generating plots in many standard programs,
such as Matlab or Mathematica.

Defining a space of linear splines starts with sequence of points (or par-
tition of [0, 1]) ∆ = {x0 = 0 < x1 < x2 < · · · < xn = 1}, which is called a
knot sequence. Linear splines on [0, 1] with knot sequence ∆ are the set of all
piecewise linear functions that are continuous on [0, 1] and that (possibly)
have corners at the knots, but nowhere else. As described above, we can
interpolate continuous functions using linear splines: Let f ∈ C[0, 1] and let
yj = f(xj). The linear spline sf (x) is constructed by joining pairs of points
(xj , yj) and (xj+1, yj+1) with straight lines. The resulting spline is unique
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and satisfies the interpolation conditions sf (xj) = yj , j = 0, . . . , n. The
result below gives an estimate of the error made by replacing f by sf .

Proposition 2.1. Let f ∈ C[0, 1] and let ∆ = {x0 = 0 < x1 < · · · < xn =
1} be a knot sequence with norm ‖∆‖ = max |xj − xj+1|, j = 0, . . . , n − 1.
If sf is the linear spline that interpolates f at the xj’s, then,

‖f − sf‖∞ ≤ ω(f, ‖∆‖). (2.1)

Proof. Consider the interval Ij = [xj , xj+1]. We have on Ij that sf (x) is a
line joining (xj , f(xj)) and (xj+1, f(xj+1)); it has the form

sf (x) =
xj+1 − x
xj+1 − xj

f(xj) +
x− xj

xj+1 − xj
f(xj+1)

Also, note that we have

xj+1 − x
xj+1 − xj

+
x− xj

xj+1 − xj
= 1.

Using these equations, we see that f(x) − sf (x) for any x ∈ [xj , xj+1] can
be written as

f(x)− sf (x) = f(x)
( xj+1 − x
xj+1 − xj

+
x− xj

xj+1 − xj
)
− sf (x)

= (f(x)− f(xj))
xj+1 − x
xj+1 − xj

+ (f(x)− f(xj+1))
x− xj

xj+1 − xj
.

By the definition of the modulus of continuity, |f(x) − f(y)| ≤ ω(f, δ) for
any x, y such that |x− y| ≤ δ. If we set δj = xj+1 − xj , then we see that on
the interval Ij we have

|f(x)− sf (x)| ≤
∣∣(f(x)− f(xj))

∣∣ xj+1 − x
xj+1 − xj

+
∣∣f(x)− f(xj+1)

∣∣ x− tj
xj+1 − xj

≤
(
xj+1 − x
xj+1 − xj

+
x− xj

xj+1 − xj

)
ω(f, δj) = ω(f, δj).

Because the modulus of continuity is non decreasing (exercise 5.2(c)) and
δj ≤ ‖∆‖, we have ω(f, δj) ≤ ω(f, ‖∆‖). Consequently, |f(x) − sf (x)| ≤
ω(f, ‖∆‖), uniformly in x. Taking the supremum on the right side of this
inequality then yields (2.1).
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3 The Weierstrass Approximation Theorem

The completeness of various sets of orthogonal polynomials relies on being
able to uniformly approximate continuous functions by polynomials. The
Weierstrass Approximation Theorem does exactly that. The proof that we
will give here follows the one Sergei Bernstein gave in 1912. The proof is not
the “slickest,” but it does introduce a number of important things. Here is
the statement.

Theorem 3.1 (Weierstrass Approximation Theorem). Let f ∈ C[0, 1].
Then, for every ε > 0 we can find a polynomial p such that ‖f−p‖C[0,1] < ε.

3.1 Bernstein polynomials

Let n be a positive integer. The binomial theorem states that (x + y)n =∑n
j=0

(
n
j

)
xjyn−j . We define the Bernstein polynomial using the terms in the

expansion with y = 1− x:

βj,n(x) :=

(
n

j

)
xj(1− x)n−j . (3.1)

Proposition 3.2. The Bernstein polynomials {βj,n}nj=0 form a basis for Pn,
the space of polynomials of degree n or less.

Proof. The dimension of Pn is n + 1. Since there are n + 1 Bernstein
polynomials, we need only show that they span Pn. We will show that
1, x are in the span of the Bernstein polynomials, and leave x2, . . . , xn as
an exercise. To get 1, set y = 1 − x in the binomial expansion we get
(x + 1 − x)n =

∑n
j=0

(
n
j

)
xj(1 − x)n−j , so that 1 =

∑n
j=0 βj,n(x). For

x, we take the partial derivative of (x + y)n with respect to x to get
n(x+ y)n−1 =

∑n
j=1 j

(
j
n

)
xj−1yn−j . Multiplying this by x, setting y = 1− x

and dividing by n, we obtain x =
∑n

j=1
j
nβj,n(x). The others are obtained

similarly.

We will need several identities involving the Bernstein polynomials, which
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we now list. The last two identities start the sum at j = 0, rather than j = 1.

1 =
n∑
j=0

βj,n(x)

x =

n∑
j=0

j

n
βj,n(x)

1

n
x+ (1− 1

n
)x2 =

n∑
j=0

j2

n2
βj,n(x).


(3.2)

3.2 Proof of the Weierstrass Approximation Theorem

All of the Bernstein polynomials are positive, except at 0 and 1, where they
are 0. When n is very large, the Bernstein polynomial βj,n is highly peaked
near its maximum at x = j/n. That is, a small distance away from j/n, the
polynomial βj,n is itself quite small. With this in mind, if f ∈ C[0, 1], define
the polynomial

fn(x) :=
n∑
j=0

f(j/n)βj,n(x) ∈ Pn.

The idea here is that near each point j/n the main contribution to the
sum of Bernstein polynomials making up fn should come from the term
f(j/n)βj,n(x), so fn should be a good approximation to f .

Proof. (Weierstrass Approximation Theorem) Choose n large; let δ > 0.
Using the first identity in (3.2), we have f(x) = f(x) ·1 =

∑n
j=0 f(x)βj,n(x).

Thus the difference between f and fn is

En(x) := f(x)− fn(x) =
n∑
j=0

(f(x)− f(j/n))βj,n(x).

We want to show that, for sufficiently large n, ‖En‖C[0,1] < ε. Fix x. We
are now going to break the sum into two parts. The first will be all those
j for which |x − j/n| ≤ δ. This is Fn below. The second, Gn consists of
all remaining j’s – namely, all j such that |x− j/n| > δ. Carrying this out
breaks En into the sum En = Fn +Gn, where

Fn(x) =
∑

|x−j/n|≤δ

(f(x)− f(j/n))βj,n(x) (3.3)

Gn(x) =
∑

|x−j/n|>δ

(f(x)− f(j/n))βj,n(x). (3.4)
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Using the triangle inequality on the sum in Fn yields

|Fn(x)| ≤
∑

|x−j/n|≤δ

|f(x)− f(j/n)|βj,n(x).

Because |x−j/n| ≤ δ, we also have |f(x)−f(j/n)| ≤ ω(f, δ). Consequently,

|Fn(x)| ≤
( ∑
|x−j/n|≤δ

βj,n(x)

)
ω(f, δ) ≤

( n∑
j=0

βj,n(x)

)
ω(f, δ).

Using the first identity in (3.2) in the inequality above yields this:

|Fn(x)| ≤ ω(f, δ). (3.5)

Estimating Gn requires more care. We will treat the case in which x −
j/n > δ; the other case is similar. The idea is to think of δ as a unit of
measure – like inches or centimeters. Then there will be a smallest k such
that kδ < x− j/n ≤ (k + 1)δ. Write f(x)− f(j/n) this way:

f(x)− f( jn) =
[
f(x)− f( jn + kδ)

]
+
[
f( jn + kδ)− f( jn + (k − 1)δ))

]
+

· · ·+
[
f( jn + δ)− f(j/n)

]
=
[
f(x)− f( jn + kδ)

]
+

k−1∑
m=0

[
f( jn + (k −m)δ)− f( jn + (k −m− 1)δ)

]
Since j

n + (m + 1)δ − j
n −mδ = δ, for m = 1, . . . , k − 1 each term satisfies

|f( jn + mδ) − f( jn + (m + 1)δ)| ≤ ω(f, δ). Also, because |x − j
n − kδ| ≤ δ,

the first term satisfies |f(x) − f( jn + kδ)| ≤ ω(f, δ). There are k + 1 terms

in the sum, so |f(x)− f( jn)| ≤ (k + 1)ω(f, δ). Since kδ < x− j/n, we have
(k+1)δ < δ+(x−j/n). As we mentioned earlier, a similar argument will for
j/n > x will give (k+1)δ < δ+ j/n−x). Thus, for both cases, we have that
(k+ 1)δ < δ+ |x− j/n|. Dividing by δ, we see that k+ 1 < 1 + |x− j/n|/δ;
consequently,

|f(x)− f(j/n)| ≤ (k + 1)ω(f, δ) ≤
(
1 + |x− j

n |/δ
)
ω(f, δ).

What we do next is use a trick that will help us to get an explicit bound
on |Gn(x)|. The trick is to replace |x − j/n|/δ by |x − j/n|2/δ2. Since

kδ < |x−j/n|, we have |x−j/n|δ > 1, and we thus also have |x−j/n|δ < |x−j/n|2
δ2

.
Using this in the previous inequality results in

|f(x)− f(j/n)| <
(

1 +
|x− j/n|2

δ2

)
ω(f, δ). (3.6)
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Using the triangle inequality on the sum in (3.4) and bounding each term
by (3.6), we obtain

|Gn(x)| <
( n∑
j=0

(
1 +
|x− j/n|2

δ2

)
βj,n(x)

)
ω(f, δ)

<

( n∑
j=0

(
1 +

x2

δ2
− 2xj

δ2n
+

j2

δ2n2
)
βj,n(x)

)
ω(f, δ) (3.7)

Using the three identities in (3.2) allows us to do all of the sums in (3.7).

The result, after a little algebra, is |Gn(x)| <
(
1 + x−x2

δ2n

)
ω(f, δ). Since the

maximum of x− x2 over [0, 1] is 1/4, we have that

|Gn(x)| <
(
1 +

1

4nδ2
)
ω(f, δ). (3.8)

Combining (3.5), (3.8) and |En(x)| = |Fn(x) + Gn(x)| ≤ |Fn(x)| + |Gn(x)|
yields

|En(x)| <
(
2 +

1

4nδ2
)
ω(f, δ). (3.9)

The parameter δ > 0 is free for us to choose. Take it to be δ = n−1/2. With
this choice we arrive at

|f(x)− fn(x)| = |En(x)| < 9

4
ω(f, n−1/2). (3.10)

Taking the maximum of |f(x) − fn(x)| over x ∈ [0, 1] gives us ‖f − fn‖ <
9
4ω(f, n−1/2). Choosing n so large that 9

4ω(f, n−1/2) < ε then completes the
proof.

Previous: orthonormal sets and expansions
Next: pointwise convergence of Fourier series
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