Several Important Theorems

by

Francis J. Narcowich

November, 2014

1 The Projection Theorem

Let \mathcal{H} be a Hilbert space. When V is a finite dimensional subspace of \mathcal{H} and $f \in \mathcal{H}$, we can always find a unique $p \in V$ such that $\|f-p\|=$ $\min _{v \in V}\|f-v\|$. This fact is the foundation of least-squares approximation. What happens when we allow V to be infinite dimensional? We will see that the minimization problem can be solved if and only if V is closed.

Theorem 1.1 (The Projection Theorem). Let \mathcal{H} be a Hilbert space and let V be a subspace of \mathcal{H}. For every $f \in \mathcal{H}$ there is a unique $p \in V$ such that $\|f-p\|=\min _{v \in V}\|f-v\|$ if and only if V is a closed subspace of \mathcal{H}.

To prove this, we need the following lemma.
Lemma 1.2 (Polarization Identity). Let \mathcal{H} be a Hilbert space. For every pair $f, g \in \mathcal{H}$, we have

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)
$$

Proof. Adding the \pm identities $\|f \pm g\|^{2}=\|f\|^{2} \pm\langle f, g\rangle \pm\langle g, f\rangle+\|g\|^{2}$ yields the result.

The polarization identity is an easy consequence of having an inner product. It is surprising that if a norm satisfies the polarization identity, then the norm comes from an inner product ${ }^{1}$.

Proof. (Projection Theorem) Showing that the existence of minimizer implies that V is closed is left as an exercise. So we assume that V is closed. For $f \in \mathcal{H}$, let $\alpha:=\inf _{v \in V}\|v-f\|$. It is a little easier to work with this in an equivalent form, $\alpha^{2}=\inf _{v \in V}\|v-f\|^{2}$. Thus, for every $\varepsilon>0$ there is a $v_{\varepsilon} \in V$ such that $\alpha^{2} \leq\left\|v_{\varepsilon}-f\right\|^{2}<\alpha^{2}+\varepsilon$. By choosing $\varepsilon=1 / n$, where n is a positive integer, we can find a sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ in V such that

$$
\begin{equation*}
0 \leq\left\|v_{n}-f\right\|^{2}-\alpha^{2}<\frac{1}{n} \tag{1.1}
\end{equation*}
$$

[^0]Of course, the same inequality holds for a possibly different integer $m, 0 \leq$ $\left\|v_{m}-f\right\|^{2}-\alpha^{2}<\frac{1}{m}$. Adding the two yields this:

$$
\begin{equation*}
0 \leq\left\|v_{n}-f\right\|^{2}+\left\|v_{m}-f\right\|^{2}-2 \alpha^{2}<\frac{1}{n}+\frac{1}{m} . \tag{1.2}
\end{equation*}
$$

By polarization identity and a simple manipulation, we have

$$
\left\|v_{n}-v_{m}\right\|^{2}+4\left\|f-\frac{v_{n}+v_{m}}{2}\right\|^{2}=2\left(\left\|f-v_{n}\right\|^{2}+\left\|f-v_{m}\right\|^{2}\right) .
$$

We can subtract $4 \alpha^{2}$ from both sides and use (1.2) to get

$$
\left\|v_{n}-v_{m}\right\|^{2}+4\left(\left\|f-\frac{v_{n}+v_{m}}{2}\right\|^{2}-\alpha^{2}\right)=2\left(\left\|f-v_{n}\right\|^{2}+\left\|f-v_{m}\right\|^{2}-2 \alpha^{2}\right)<\frac{2}{n}+\frac{2}{m} .
$$

Because $\frac{1}{2}\left(v_{n}+v_{m}\right) \in V,\left\|f-\frac{v_{n}+v_{m}}{2}\right\|^{2} \geq \inf _{v \in V}\|v-f\|^{2}=\alpha^{2}$. It follows that the second term on the left is nonnegative. Dropping it makes the left side smaller:

$$
\begin{equation*}
\left\|v_{n}-v_{m}\right\|^{2}<\frac{2}{n}+\frac{2}{m} . \tag{1.3}
\end{equation*}
$$

As $n, m \rightarrow \infty$, we see that $\left\|v_{n}-v_{m}\right\| \rightarrow 0$. Thus $\left\{v_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} and is therefore convergent to a vector $p \in \mathcal{H}$. Since V is closed, $p \in V$. Furthermore, taking limits in (1.1) implies that $\|p-f\|=$ $\inf _{v \in V}\|v-f\|$. The uniqueness of p is left as an exercise.

There are two important corollaries to this theorem; they follow from problem 4 of Assignment 1, 2021, and Theorem 1.1. We list them below.

Corollary 1.3. Let V be a subspace of \mathcal{H}. There exists an orthogonal projection $P: \mathcal{H} \rightarrow V$ for which $\|f-P f\|=\min _{v \in V}\|f-v\|$ if and only if V is closed.

Corollary 1.4. Let V be a closed subspace of \mathcal{H}. Then, $\mathcal{H}=V \oplus V^{\perp}$ and $\left(V^{\perp}\right)^{\perp}=V$.

2 The Riesz Representation Theorem

Let V be a Banach space. A bounded linear transformation Φ that maps V into \mathbb{R} or \mathbb{C} is called a linear functional on V. The linear functionals form a Banach space V^{*}, called the dual space of V, with norm defined by

$$
\|\Phi\|_{V^{*}}:=\sup _{v \neq 0} \frac{|\Phi(v)|}{\|v\|_{V}} .
$$

2.1 The linear functionals on Hilbert space

Theorem 2.1 (The Riesz Representation Theorem). Let \mathcal{H} be a Hilbert space and let $\Phi: \mathcal{H} \rightarrow \mathbb{C}($ or $\mathbb{R})$ be a bounded linear functional on \mathcal{H}. Then, there is a unique $g \in \mathcal{H}$ such that, for all $f \in \mathcal{H}, \Phi(f)=\langle f, g\rangle$.

Proof. The functional Φ is a bounded operator that maps \mathcal{H} into the scalars. It follows from our discussion of bounded operators that the null space of $\Phi, N(\Phi)$, is closed. If $N(\Phi)=\mathcal{H}$, then $\Phi(f)=0$ for all $f \in \mathcal{H}$, hence $\Phi=0$. Thus we may take $g=0$. If $N(\Phi) \neq \mathcal{H}$, then, since $N(\Phi)$ is closed, we have that $\mathcal{H}=N(\Phi) \oplus N(\Phi)^{\perp}$. In addition, since $N(\Phi) \neq \mathcal{H}$, there exists a nonzero vector $h \in N(\Phi)^{\perp}$. Moreover, $\Phi(h) \neq 0$, because h is not in the null space $N(\Phi)$. Next, note that for $f \in \mathcal{H}$, the vector $w:=\Phi(h) f-\Phi(f) h$ is in $N(\Phi)$. To see this, observe that

$$
\Phi(w)=\Phi(\Phi(h) f-\Phi(f) h)=\Phi(h) \Phi(f)-\Phi(f) \Phi(h)=0 .
$$

Because $w=\Phi(h) f-\Phi(f) h \in N(\Phi)$, it is orthogonal to $h \in N(\Phi)^{\perp}$, we have that

$$
0=\langle\Phi(h) f-\Phi(f) h, h\rangle=\Phi(h)\langle f, h\rangle-\Phi(f) \underbrace{\langle h, h\rangle}_{\|h\|^{2}} .
$$

Solving this equation for $\Phi(f)$ yields $\Phi(f)=\left\langle f, \frac{\overline{\Phi(h)}}{\|h\|^{2}} h\right\rangle$. The vector $g:=$ $\frac{\Phi(h)}{\|h\|^{2}} h$ then satisfies $\Phi(f)=\langle f, g\rangle$. To show uniqueness, suppose $g_{1}, g_{2} \in \mathcal{H}$ satisfy $\Phi(f)=\left\langle f, g_{1}\right\rangle$ and $\Phi(f)=\left\langle f, g_{2}\right\rangle$. Subtracting these two gives $\left\langle f, g_{2}-g_{1}\right\rangle=0$ for all $f \in \mathcal{H}$. Letting $f=g_{2}-g_{1}$ results in $\left\langle g_{2}-g_{1}, g_{2}-g_{1}\right\rangle=$ 0 . Consequently, $g_{2}=g_{1}$.

2.2 Adjoints of bounded linear operators

We now turn the problem of showing that an adjoint for a bounded operator always exists. This is just a corollary of the Riesz Representation Theorem.

Corollary 2.2. Let $L: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator. Then there exists a bounded linear operator $L^{*}: \mathcal{H} \rightarrow \mathcal{H}$, called the adjoint of L, such that $\langle L f, h\rangle=\left\langle f, L^{*} h\right\rangle$, for all $f, h \in \mathcal{H}$.

Proof. Fix $h \in \mathcal{H}$ and define the linear functional $\Phi_{h}(f)=\langle L f, h\rangle$. Using the boundedness of L and Schwarz's inequality, we have $\left|\Phi_{h}(f)\right| \leq$ $\|L\|\|f\|\|h\|=K\|f\|$, and so Φ_{h} is bounded. By Theorem 2.1, there is a
unique vector g in \mathcal{H} for which $\Phi_{h}(f)=\langle f, g\rangle$. The vector g is uniquely determined by Φ_{h}; thus $g=g_{h}$ a function of h. We claim that g_{h} is a linear function of h. Consider $h=a h_{1}+b h_{2}$. Note that $\Phi_{h}(f)=\left\langle L f, a h_{1}+b h_{2}\right\rangle=$ $\bar{a} \Phi_{h_{1}}(f)+\bar{b} \Phi_{h_{2}}(f)$. Since $\Phi_{h_{1}}(f)=\left\langle f, g_{1}\right\rangle$ and $\Phi_{h_{2}}(f)=\left\langle f, g_{2}\right\rangle$, we see that

$$
\Phi_{h}(f)=\left\langle f, g_{h}\right\rangle=\bar{a} \Phi_{h_{2}}(f)+\bar{b} \Phi_{h_{2}}(f)=\left\langle f, a g_{h_{1}}+b g_{h_{2}}\right\rangle .
$$

It follows that $g_{h}=a g_{h_{1}}+b g_{h_{2}}$ and that g_{h} is a linear function of h. It is also bounded. If $f=g_{h}$, then $\Phi_{h}\left(g_{h}\right)=\left\|g_{h}\right\|^{2}$. From the bound $\left|\Phi_{h}(f)\right| \leq$ $\|L\|\|f\|\|\|h\|$, we have $\| g_{h}\left\|^{2} \leq \mid L\right\|\left\|g_{h}\right\|\|h\|$. Dividing by $\left\|g_{h}\right\|$ then yields $\left\|g_{h}\right\| \leq\|L\|\|h\|$. Thus the correspondence $h \rightarrow g_{h}$ is a bounded linear function on \mathcal{H}. Denote this function by L^{*}. Since $\langle L f, h\rangle=\left\langle f, g_{h}\right\rangle$, we have that $\langle L f, h\rangle=\left\langle f, L^{*} h\right\rangle$.

Corollary 2.3. $\left\|L^{*}\right\|=\|L\|$.
Proof. By problem 7 in Assignment 7, 2021, $\|L\|=\sup _{f, h}|\langle L f, h\rangle|$, where $\|h\|=\|f\|=1$. On the other hand, $\left\|L^{*}\right\|=\sup _{f, h}\left|\left\langle L^{*} h, f\right\rangle\right|$. Since $\left\langle L^{*} h, f\right\rangle=\overline{\left\langle f, L^{*} h\right\rangle}$, we have that $\sup _{f, h}\left|\left\langle L^{*} h, f\right\rangle\right|=\sup _{f, h}|\langle L f, h\rangle|$. It immediately follows that $\left\|L^{*}\right\|=\|L\|$.

Example 2.4. Let $R=[0,1] \times[0,1]$ and suppose that k is a Hilbert-Schmidt kernel. If $L u(x)=\int_{0}^{1} k(x, y) u(y) d y$, then $L^{*} v(x)=\int_{0}^{1} \overline{k(y, x)} v(y) d y$.

Proof. We will use s, t as the integration variables and switch back, to avoid confusion. We begin with $\langle L u, v\rangle=\int_{0}^{1}\left(\int_{0}^{1} k(s, t) u(t) d t\right) \overline{v(s)} d s$. By Fubini's theorem, we may switch the variables of integration to get this:

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{1} k(s, t) u(t) d y\right) \overline{v(s)} d s & =\int_{0}^{1}\left(\int_{0}^{1} k(s, t) \overline{v(s)} d s\right) u(t) d t \\
& =\int_{0}^{1}(\underbrace{\int_{0}^{1} \overline{k(s, t)} v(s) d s}_{L^{*} v}) u(t) d t \\
& =\left\langle u, L^{*} v\right\rangle
\end{aligned}
$$

The result follows by changing variables from t, s to x, y in the second equation above .

3 The Fredholm Alternative

Theorem 3.1 (The Fredholm Alternative). Let $L: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator whose range, $R(L)$, is closed. Then, the equation $L f=g$
and be solved if and only if $\langle g, v\rangle=0$ for all $v \in N\left(L^{*}\right)$. Equivalently, $R(L)=N\left(L^{*}\right)^{\perp}$.

Proof. Let $g \in R(L)$, so that there is an $h \in \mathcal{H}$ such that $g=L h$. If $v \in N\left(L^{*}\right)$, then $\langle g, v\rangle=\langle L h, v\rangle=\left\langle h, L^{*} v\right\rangle=0$. Consequently, $R(L) \subseteq$ $N\left(L^{*}\right)^{\perp}$. Let $f \in N\left(L^{*}\right)^{\perp}$. Since $R(L)$ is closed, the projection theorem, Theorem 1.1, and Corollary 1.3, imply that there exists an orthogonal projection P onto $R(L)$ such that $P f \in R(L)$ and $f^{\prime}=f-P f \in R(L)^{\perp}$. Moreover, since f and $P f$ are both in $N\left(L^{*}\right)^{\perp}$, we have that $f^{\prime} \in R(L)^{\perp} \cap N\left(L^{*}\right)^{\perp}$. Hence, $\left\langle L h, f^{\prime}\right\rangle=0=\left\langle h, L^{*} f^{\prime}\right\rangle$, for all $h \in \mathcal{H}$. Setting $h=L^{*} f^{\prime}$ then yields $L^{*} f^{\prime}=0$, so $f^{\prime} \in N\left(L^{*}\right)$. But $f^{\prime} \in N\left(L^{*}\right)^{\perp}$ and is thus orthogonal to itself; hence, $f^{\prime}=0$ and $f=P f \in R(L)$. It immediately follows that $N\left(L^{*}\right)^{\perp} \subseteq R(L)$. Since we already know that $R(L) \subseteq N\left(L^{*}\right)^{\perp}$, we have $R(L)=N\left(L^{*}\right)^{\perp}$.

We want to point out that $R(L)$ being closed is crucial for the theorem to be true. If it is not closed, then the projection P will not exist and the proof breaks down. In that case, one actually has $\overline{R(L)}=N\left(L^{*}\right)^{\perp}$, but not $R(L)=N\left(L^{*}\right)^{\perp}$.

The theorem is stated in a variety of ways. The form that emphasizes the "alternative" is given in the result below, which follows immediately from Theorem 3.1.

Corollary 3.2. Let $L: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator whose range, $R(L)$, is closed. Then, either the equation $L f=g$ has a solution or there exists a vector $v \in N\left(L^{*}\right)$ such that $\langle g, v\rangle \neq 0$.

Previous: bounded operators and closed subspaces
Next: an example of the Fredholm Alternative and a resolvent

[^0]: ${ }^{1}$ Jordan, P. ; Von Neumann, J. On inner products in linear, metric spaces. Ann. of Math. (2) 36 (1935), no. 3, 719-723.

