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1 Splines

Splines are piecewise polynomial functions that have certain “regularity”
properties. These can be defined on all finite intervals, and intervals of the
form (—o0,al, [b,00) or (—o0, c0).

We have already encountered linear splines, which are simply continuous,
piecewise-linear functions. More general splines are defined similarly to the
linear ones. They are labeled by three things: (1) a knot sequence, A; (2) the
degree k of the polynomial; and, (3) the space C”, the level of differentiability
of the whole spline. The knot sequence is where the polynomial may change.
For a linear spline defined on [0, 1], the knot sequence A = {zp =0 < x; <
xg < -+ < x, = 1} is where one linear polynomial meets another. Since the
polynomials are linear, k = 1. Finally, since the linear splines are continuous,
they are in C°[0, 1], so 7 = 0.

Definition 1.1. We denote the set of splines having knot sequence A\, degree
of polynomial k, and smoothness C by S2(k,r).

There is a special case in which £ = 0 and » = —1. These are just step
functions. Since the polynomials are taken to be constants, k = 0. Letting
r = —1 simply means that the step function is discontinuous at the knots.

With A, k, and r fixed, S®(k,r) is a vector space, which may be finite
dimensional or infinitely dimensional. This raises the issue of bases for the
spaces.

1.1 Basis Splines — B-Splines

We begin with the following useful notation. The function below is called
the plus function, for obvious reasons.
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The plus function is a linear spline, with A = Z, k = 1, and r = 0. (We
remark that the only place the linear function changes is at x = 0.) It s
defined over R. With it in hand, we can define the ordeIE| m = 2 cardinal
B-spline:

Na(a) = ()4 — 2(¢ — 1) + (@ — 2)+ - (L1)

The knot sequence for Ny is the the set of all integers, Z, although changes
in the function only occur at {0,1,2}, and N is a linear spline. As the
graph below shows, N> is a “tent” function.
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Proposition 1.2. Let A be an equally spaced knot sequence, with x; = %,

j=0,...,n. Then B = {Nay(nz —j+1):j =0,...,n} is a basis for
SA(1,0) (the space of linear splines), provided = € [0, 1].

Proof. Exercise. O

The order of a B-spline is m = k + 1.




Example 1.3. Consider n = 4. Recall that the values at the corners and
endpoints determine the linear spline. So, let y; be given at j =0,1,2,3,4.
Then, the interpolating spline is

4
s(x) =Y yiNo(dz —j+1), 0<z<1.
=0
1 z€l0,1
The order 1 B-spline is just a “box” of the form N;(z) = zel )
0 x¢][0,1)

It can be used to start an iteration to obtain cardinal B-splines of order
m > 2 and higher. The recurrence formula to be iterated is
x m—x

N — N — —1).
m—1 m1($)+m_1 ml(-r )

Np(z) =

From the formula above, one can show that the order m B-splines, IV,,, are
in S%(m — 1,m — 2), and that the support of N,, is precisely [0,m]. This
feature is important enough that is used to label them.

2 Finite Element Spaces

Let A:={zg=0<x; <2 < -+ <z, = 1} be a knot sequence for [0, 1]. It
is convenient to define the subintervals I; = [z;_1,z;), with I, = [z,—1, 1].
Let Py denote the set of polynomials of degree less than or equal to k. By
Definition [I.1] the space of splines may be written as follows:

S%(k,r) ={¢:[0,1] = R: ¢|;, € Pp(I;) and ¢ € C([0,1])}  (2.1)

When r = —1, ¢ is discontinuous.

Consider an equally spaced knot sequence for [0,1], A = {j/n: j =
0,...,n}. The finite element space S %(k, r) are degree k polynomials on
each interval and have r < k—1 derivatives that match at the interior knots.
We consider the followirllg question: How many parameters are required to
describe a function in S= (k,r)? That is, what is the dimension of this linear
space?

There are n intervals and on each interval there are k+1 free parameters,
since the function is a degree k polynomial there. Therefore, we have n(k+1)
free parameters. At each of the n — 1 knots, the polynomials must smoothly

%In the case where A is a set of equally spaced knots on [0, 1], we will let S (k,r) :=
S2 (K, 7).



join, so there are r + 1 equations that must match (the polynomials across
a knot must match and their r derivatives must match). This yields (n —
1)(r+1) constraints. Therefore, we have at least n(k+1)—(n—1)(r+1) =
n(k —r) + r + 1 parameters. It follows that the dimension of S%(kz,r) =
n(k —r) +r + 1 provided that the equations at the knots are independent
(which can be shown). We summarize this belowﬂ

Proposition 2.1. dim S%(k:,r) =nlk—7r)+r+1.

For an example, consider k = 1,7 = 0. This is the space S %(1, 0) which
has dimension n(1—0)+0+1=n+1. If we consider k =m —1, r = m—2,
then the dimension S (m—1,m—2)isn(m—1-m+2)+m—2+1 =n+m—1.

3 Construction of Cubic Splines

The cubic splines in S 0 (3,1) are differentiable, piecewise cubic polynomials
defined on [0,1]. Cubic splines can be used to simultaneously interpolate
both a function and its derivatives on any set of knots {x; }?:0. That is, if the
values f(z;) and f'(z;) are known, then there exists a (unique) cubic spline
s € Sn (3,1) satisfies both s(z;) = f(z;) and s'(z;) = f'(z;). Returning to
A= {j/n}?zo, we see that, by Proposition the dimension of S%(S, 1),
is 2n + 2, which exactly matches the 2n —f; 2 pieces of data to be fit.

We construct a basis of functions for S (3, 1) by first constructing two in-
terpolating functions. Consider the interval [0, 1] and the problem of finding
a cubic polynomial ¢(z) such that ¢(0) = 1, and ¢(1) = ¢/'(1) = ¢'(0) = 0.
Then, a polynomial of the form

o(x) = Az — 1)3 + B(x — 1)2

satisfies ¢(1) = ¢/(1) = 0. Substituting the values for ¢(0) = 1 and ¢'(0) = 0
yields —A + B = 1 and 34 — 2B = 0, which has the solution A = 2 and
B = 3. Then, after re-arranging, we see that

p(z) =2(z —1)° +3(z — 1)* = (z — 1)*(2z + 1).
We then extend the function to all of R as follows:

T — 2 T €T
M:{u =12l +1) | <1

3.1
0 lz| > 1, 8.1)

3The same argument applies to a knot sequence of the form A = {xp =0 < 21 < x2 <
-« < @, = 1}. Hence, dim S*(k,r) =n(k —r) +r+ 1.



By construction, ¢(0) = 1 and ¢'(+£1) = ¢'(0) = 0. Of course, outside of
[—1,1], it is identically 0. It is easy to show that ¢ € C(V), so ¢ € S%(3,1).
The function ¢ will be used to interpolate the values of a function, while
yielding zero derivative data on each of the knots.

We next construct a function v that takes zero value at the endpoints,
but assumes a derivative value of one at 0. We let 1) be the cubic function

U(x) = A(x —1)° + Bz —1)%,
which already satisfies ¢(1) = ¢’(1) = 0. The condition % (0) = 0 implies

A = B and the condition ¢’(0) = 1 implies 34 — 2B = 1. Combining these
conditions yields the function

Y(z) = z(x — 1)2
We then extend it to all of R:

_ [alal =17 fef <1
wm»—{o W (32

As in the case of ¢, we have ¢ € S%(3,1), but this time ¥(0) = 0 and
P'(0) =1

We now construct a set of functions that will form a basis for S» (3,1).
We begin by changing scale in ¢ and %, which are defined in and ,
and then translating the resulting functions. For ¢, we define

oj(x) :== p(nx — j). (3.3)
Notice that ¢g(z) = ¢(nz) and ¢j(z) = ¢p(n(x — 1)) = do(z — ). That

: " "
is, ¢j(x) is do(x) translated by Z, that ¢;(z) is supported on the interval
[%, %], and that the conditions used to define ¢ —i.e., (0) = 1, ¢/(0) =0
and so on — imply that ¢;(k/n) = d;; and that ¢’ (k/n) = 0.

To construct v; basis functions from v, we first consider the derivative

of ¥(nz — j). We note that
& Wz = )|, = (nz = j)|,_s =ny(0) =n.

From this computation, in order to have ¢%(k/n) = 1, must scale 1 (nz — j)
by n. Consequently, we define

¥5(@) = ~(nz ) (34

and we see the the support of v; is also contained in the interval [%, %]

Applying the conditions imposed on 9, we see that ¢;(k/n) = 0 and that
Vi (k/n) = 6jk.



4 Interpolation with Cubic Splines

We consider the problem of interpolating a function f and its derivative at
a set of n + 1 equally spaced knots, using the cubic splines constructed in
the previous section. We begin by showing that {¢;,1;}]_, is a basis for
Sn (3,1).

We note that there are n + 1 of each type, which glves a total of 2n + 2
functions in the set. Since this is the dimension of S (3,1), it suffices to
show that the set {¢;,¢;}" o is linearly independent.

Consider a linear combination of the cubic splines, s(x) = >_7_j ajd;(z)+
Bjvj(x). Using ¢;(k/n) = 6;k, ¢;(k/n) = 0 and 1;(k/n) = 0,45 (k/n) = dy;,
we see that

s(k/n) = Za] oj(k/n) +Bj;(k/n) = oy (4.1)
j=0 5 0

s'(k/n) = Z a; ¢(k/n) +B; ¥ (k/n) = By, (4.2)
=0 0 8k

As usual, showing linear independence amounts to showing that s(z) =
0 implies that the «a;’s and ;s are all 0. Note that if s = 0, then so
is s’. Hence, the previous equation implies that a; = s(k/n) = 0 and
Br = §'(k/n) = 0. Since the a;’s and §;’s are all 0, the set {(Z)j,@/}j}?zo is
linearly independent, and hence is a basis for S %(3, 1).

Solving the interpolation problem stated at the start of this section is
now actually very easy to do; just set

=" FG/m)6i() + £ (/)i (@), (4.3)
j=0

By (4.1), we have s(k/n) = f(k/n) and s'(k/n) = f’(k/n). Hence, s in

(uniquely) solves the interpolation problem.

5 Finite Element Methods and Galerkin Methods

Consider the problem of finding the “smoothest” function in S a (3,1) such
that at the knots z;, s(z;) = f; for j =0,...,n. To define “smoothest”, we
seek a function s that minimizes

1
]2 = /0 (5" (2))? de (5.1)



over all s € S%(?), 1) for which s(z;) = f; for j =0,...,n.

Since s is a piecewise cubic function, s” exists and is piecewise continu-
ous. Therefore, the equation is well defined for all of s € S %(3, 1). In
fact, it can be shown that is an inner product on the set of functions
in S%(B, 1) that are zero at the endpoints.

Any function s € S%(?), 1) such that s(xz;) = f; can be written in the
form

s(@) = figj(x) = > azpi(z).
j=0 3=0

Let f = 3% o fj¢(x). We seek to find coefficients a that minimize the
norm of s. That is, we want to solve the problem

min —qll. 5.2
min I~ gl (52

This is a least-squares problem that can be dealt with by solving the asso-
ciated normal equations. We expand g = Z?:o a;1; and we seek to find
coefficients a; such that

(f=9:¢k) =0 (5.3)

for k =0,...,n. Expanding g in terms of the ¢, functions, we see this yields
a system of equations

jZOaj <wg‘1fk> = (£, ). (5.4)

The matrix G is a Gram matrix for the linearly independent 1);’s. Conse-
quently, it’s invertible. Due to the compact support of i, we see that

1
(7, 45) = / ()l () de = /[ W@yl () de. (5.5)

j—1 j4+1 k—1 k+1
I B

This integral is nonzero only for k = j — 1, k = j or k = j + 1. Therefore,
G is a tridiagonal matrix, and the system (5.4)) is also “tridiagonal.” Such
systems are easy to solve numerically.

Previous: the discrete Fourier transform
Next: x-ray tomography and integral equations
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