X-ray Tomography & Integral Equations
by
Francis J. Narcowich
November, 2013

X-ray Tomography. An important part of X-ray tomography – the CAT scan – is solving a mathematical problem that goes back to the earlier twentieth century work of the mathematician Johann Radon: Suppose that there is a function \(f(x, y) \) defined in a region of the plane and that all we know about \(f \) is the collection of line integrals \(\int_L f(x(s), y(s))ds \) over each line \(L \) that intersects the region. (See Figure 1.) The problem is to find \(f \), given this information.

Figure 1: The region where \(f \) is defined and a typical line \(L \) cutting the region are shown. \(L \) is specified by \(\rho \) and the angle \(\theta \).

We will assume that the region where \(f \) is defined is a disk \(D := \{ |x| \leq 1 \} \). In Figure 1 the function is shown as having compact support in \(D \). The unit vector \(n \) that is normal to \(L \) and points away from the origin is \(n = \cos(\theta)i + \sin(\theta)j \). The tangent pointing upward is \(t = -\sin(\theta)i + \cos(\theta)j \).

\(^1\)This is an attenuation coefficient in a CAT scan.
If we let \(s \geq 0 \) be the arc length starting at the point \(\rho \mathbf{n} \), then any point \(\mathbf{x} \) above \(\rho \mathbf{n} \) is specified by \(\mathbf{x} = s \mathbf{t} + \rho \mathbf{n} \). If \(\mathbf{x} \) is below \(\rho \mathbf{n} \), then it is specified by \(\mathbf{x} = -s \mathbf{t} + \rho \mathbf{n} \).

We will work with \(\mathbf{x} \) above the vector \(\rho \mathbf{n} \). Express \(\mathbf{x} \) in terms of polar coordinates \((r, \phi)\), \(\mathbf{x} = r \cos(\phi) \mathbf{i} + r \sin(\phi) \mathbf{j} \). Of course, \(r = |\mathbf{x}| \). Comparing this with \(\mathbf{x} = s \mathbf{t} + \rho \mathbf{n} \), we see that \(r^2 = s^2 + \rho^2 \) and \(\rho = \mathbf{x} \cdot \mathbf{n} = r \cos(\phi - \theta) \).

Since \(\mathbf{x} \) is above \(\rho \mathbf{n} \), we have that \(\phi \geq \theta \) and thus \(\phi = \theta + \cos^{-1} \left(\frac{\rho}{r} \right) \).

When \(\mathbf{x} \) is below \(\rho \mathbf{n} \), \(\phi \leq \theta \) and \(\phi = \theta - \cos^{-1} \left(\frac{\rho}{r} \right) \).

Breaking the integral \(\int_L f(\mathbf{x}(s))ds \) into two pieces, making the change of variables \(s = \sqrt{r^2 - \rho^2} \), \(ds = \frac{(r^2 - \rho^2)^{-1/2}}{r}dr \), and noting that \(\rho \leq r \leq 1 \), we have

\[
\int_L f(\mathbf{x}(s))ds = 2 \sum_{n=-\infty}^{\infty} e^{in\theta} \int_{\rho}^{1} \hat{f}_n(r) \frac{\cos(n \cos^{-1}(\rho/r))}{\sqrt{r^2 - \rho^2}} rdr.
\]

Assuming the \(f(\mathbf{x}) = f(r, \phi) \) is smooth enough, we can expand it in a Fourier series in \(\phi \),

\[
f(r, \phi) = \sum_{n=-\infty}^{\infty} \hat{f}_n(r) e^{in\phi},
\]

and then replace \(f \) in the integral on the right above by this series. Again making the assumption that interchanging sum and integral is possible and manipulating the resulting expression, we have

\[
\int_L f(\mathbf{x}(s))ds = 2 \sum_{n=-\infty}^{\infty} e^{in\theta} \int_{\rho}^{1} \hat{f}_n(r) \frac{\cos(n \cos^{-1}(\rho/r))}{\sqrt{r^2 - \rho^2}} rdr.
\] (1)

Since the line \(L \) is specified by the angle \(\theta \) and distance \(\rho \), the integral over \(L \) is a function of \(\theta \) and \(\rho \), which we denote by \(F(\rho, \theta) \). In addition, the expression \(T_n(\rho/r) := \cos(n \cos^{-1}(\rho/r)) \) is actually an \(n \)th degree Chebyshev polynomial. For example, \(T_2(\rho/r) = 2 \cos^2(\cos^{-1}(\rho/r)) - 1 = 2(\rho/r)^2 - 1 \). Using these two facts in connection with (1) we have

\[
F(\rho, \theta) = \sum_{n=-\infty}^{\infty} e^{in\theta} \int_{\rho}^{1} \hat{f}_n(r) \frac{T_n(\rho/r)r}{\sqrt{r^2 - \rho^2}} dr.
\] (2)
The Fourier series for \(F(\rho, \theta) = \sum_{n=-\infty}^{\infty} \hat{F}_n(\rho)e^{in\theta} \). Comparing it with the series in (2) we arrive at

\[
\hat{F}_n(\rho) = \int_{\rho}^{1} \hat{f}_n(r) \frac{T_n(\rho/r)r}{\sqrt{r^2 - \rho^2}} dr, \quad n \in \mathbb{Z}.
\] (3)

The point is that \(F(\rho, \theta) = \int f(x(s))ds \) is known, and so the Fourier coefficients \(\hat{F}_n(\rho) \) are all known. The problem of finding \(f \), given \(F \), is thus equivalent to solving the integral equations in (3) for the \(\hat{f}_n(r)'s \) and recovering \(f(r, \phi) \) from its Fourier series. In fact, these integral equations have exact solutions (see Keener, §3.7):

\[
\hat{f}_n(r) = -\frac{1}{\pi} \frac{d}{dr} \int_{\rho}^{1} rT_n(\rho/r) \hat{F}_n(\rho) \rho \sqrt{\rho^2 - r^2} d\rho, \quad n \in \mathbb{Z}.
\] (4)

Classification of integral equations. Certain types of integral equations come up often enough that they are grouped into classes, which are described below. There, the function \(f \) and kernel \(k(x, y) \) are known, \(u \) is the unknown function to be solved for, and \(\lambda \) is a parameter. The integral equations in (3) are Volterra equations of the first kind.

Fredholm Equations

1\(^{st}\) kind. \(f(x) = \int_{a}^{b} k(x, y)u(y)dy \).

2\(^{nd}\) kind. \(u(x) = f(x) + \lambda \int_{a}^{b} k(x, y)u(y)dy \).

Volterra Equations

1\(^{st}\) kind. \(f(x) = \int_{a}^{x} k(x, y)u(y)dy \).

2\(^{nd}\) kind. \(u(x) = f(x) + \lambda \int_{a}^{x} k(x, y)u(y)dy \).

Acknowledgments Figure 1 is from the article “A small note on Matlab iradon and the all-at-once vs. the one-at-a-time method,” by Nasser M. Abbasi. July 17, 2008. The figure was downloaded on November 10, 2013, from the website

http://12000.org/my_notes/note_on_radon/

note_on_radon/note_on_radon.htm

Previous: splines and finite elements

Next: bounded operators and closed subspaces