
Atmospheric Drag

A body falling in air with velocity ~v is subject to a drag force of mag-
nitude γ̂|~v|2 and direction opposite to that of ~v, where γ̂ is a constant that
may be empirically determined. Here we shall study the one-dimensional
problem of a body falling directly downward.

Let x(t) be the height of the body above ground at time t. When the
body is falling, the force on it is

m
d2x

dt2
= F = −mg + γ̂

(
dx

dt

)2

.

So the equation of motion can be written as

x′′ − γ(x′)2 + g = 0, (1)

where primes indicate time derivatives and

γ =
γ̂

m
.

[Is (1) also correct when the body is rising?]
Since (1) is not linear, it is hard to solve exactly. Let us consider the

possibility that a useful approximate solution can be found in the form of
the first two terms of a Taylor expansion of x as a function of γ:

x(t) = x0(t) + γx1(t) + γ2x2(t) + · · · . (2)

(We might expect that this will work if γ is sufficiently small. The basic
assumption being made here is that the correction terms γx1 + · · · are small
compared to the “unperturbed” solution x0 .) We substitute (2) into (1)
and simplify, neglecting all terms of seond order or higher:

(x′′0 + γx′′1 + · · ·)− γ(x′0 + · · ·)2 + g = 0,

so after combining terms involving the same power of γ, we get

[x′′0 + g] + γ[x′′1 − (x′0)2] + · · · = 0. (3)
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Since x0 and x1 themselves are not supposed to depend on γ, the only way
(3) can hold is that each bracketed term separately equals 0:

x′′0 + g = 0, (4)

x′′1 − (x′0)2 = 0. (5)

Equation (4) is the familiar equation for a falling body without drag.
Its solution is

x0(t) = h0 + v0t− 1
2gt

2, (6)

where h0 and v0 are the initial height and velocity of the body. Recall that
h0 ≥ 0 and v0 ≤ 0, because of our assumption that the body is falling
toward ground level.

Substituting (6) into (5), we get

x′′1 = (v0 − gt)2 = v0
2 − 2gv0t+ g2t2.

We can solve this equation by integrating twice:

x1(t) = h1 + v1t+ 1
2v0

2t2 − 1
3gv0t

3 + 1
12g

2t4, (7)

where h1 and v1 are the constants of integration.
Substituting (6) and (7) into (2), we obtain our first-order approximate

solution,

x(t) ≈ (h0 + γh1) + (v0 + γv1)t− 1
2 (g − γv0

2)t2 − 1
3γgv0t

3 + 1
12γg

2t4. (8)

This formula becomes more transparent if we consider the special case where
the body is simply dropped (initial velocity 0) from height h0 . That is, v0 ,
h1 , and v1 are all 0:

x(t) ≈ h0 − 1
2
gt2 + 1

12
γg2t4. (9)

The last term in (9) is the modification to the motion caused by drag; in
a given time the body does not fall as far as it would in the absence of air
resistance.

Notice that this term increases as t4, so when t is big enough, it will
overwhelm the first two terms. This means that, no matter how small γ is,
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our initial assumption that the drag effect is small will be wrong for large
times. There are ways to get around this problem, but they are too
sophisticated to be treated in a freshman course. Our power-series solution
should be accurate provided that both γ and t are sufficiently small.

Now let us pose the problem of how fast the body must be thrown
down so that it will hit the ground at exactly the same time that it would
have landed if it were dropped in the absence of drag. (This is as close as
we can come in a one-dimensional problem to a “targeting algorithm”.) Let
T be the time of landing in the unperturbed problem:

0 = x0(T ) = h0 − 1
2gT

2.

(Thus T =
√

2h0/g, but we shall not need to use this formula.) The
generalization of (9) to include a negative value of v1 is

x(t) ≈ h0 + γv1t− 1
2gt

2 + 1
12γg

2t4. (10)

Thus
0 = x(T ) ≈ γv1T + 1

12γg
2T 4,

or
v1 ≈ − 1

2g
2T 3. (11)

The additional downward initial velocity needed is γv1 (in this first-order
approximation).

One final remark: We have not proved that (10) actually is a good ap-
proximation to the exact solution. We can’t use Taylor’s remainder formula,
because we have no obvious way of calculating the factor

max
c∈[0,γ]

∣∣∣∣d2x

dγ2
(c)
∣∣∣∣

in it. We can see that the approximation is bad if either γ or t is too
big; if γ and t are both fairly small, it seems highly plausible that the
approximation is good — worth the trouble of testing experimentally or
by numerical calculations for a few values of the parameters. Practical
engineering can’t wait for every theoretical question to be totally settled
with mathematical certitude.
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