Let A be the area (the dependent variable) and r be the radius (the independent variable). As the radius changes from r to $r+d r$, the area changes from πr^{2} to $\pi(r+d r)^{2}$. Therefore,

$$
\begin{aligned}
d A & =\pi(r+d r)^{2}-\pi r^{2} \\
& =\pi\left[r^{2}+2 r d r+(d r)^{2}\right]-\pi r^{2} \\
& =2 \pi r d r+\pi(d r)^{2} .
\end{aligned}
$$

The $\pi(d r)^{2}$ is called a "second order" term; we can neglect it because it's very small (smaller than $d r$ itself). Thus

$$
d A=2 \pi r d r
$$

or

$$
\frac{d A}{d r}=2 \pi r
$$

