Consider the area function, $A(r) = \pi r^2$. When the radius changes from r to r + dr, the area changes from πr^2 to $\pi (r + \Delta r)^2$. That is,

$$\Delta A = \pi (r + \Delta r)^2 - \pi r^2$$

= $\pi [r^2 + 2r \Delta r + (\Delta r)^2] - \pi r^2$
= $2\pi r \Delta r + \pi (\Delta r)^2$,

so that

$$\frac{\Delta A}{\Delta r} = \pi (2r + \Delta r).$$

Therefore, in the limit that Δr approaches 0, one has

$$\frac{dA}{dr} = \lim_{\Delta r \to 0} \pi (2r + \Delta r)$$
$$= 2\pi r.$$