Consider the area function, $A(r)=\pi r^{2}$. When the radius changes from r to $r+d r$, the area changes from πr^{2} to $\pi(r+\Delta r)^{2}$. That is,

$$
\begin{aligned}
\Delta A & =\pi(r+\Delta r)^{2}-\pi r^{2} \\
& =\pi\left[r^{2}+2 r \Delta r+(\Delta r)^{2}\right]-\pi r^{2} \\
& =2 \pi r \Delta r+\pi(\Delta r)^{2},
\end{aligned}
$$

so that

$$
\frac{\Delta A}{\Delta r}=\pi(2 r+\Delta r)
$$

Therefore, in the limit that Δr approaches 0 , one has

$$
\begin{aligned}
\frac{d A}{d r} & =\lim _{\Delta r \rightarrow 0} \pi(2 r+\Delta r) \\
& =2 \pi r .
\end{aligned}
$$

