1. Center of mass

Suppose that, for $i=1,2, \ldots, N$, there is a particle of mass m_{i} located at position $\overrightarrow{\mathbf{r}}_{i}$. Then

$$
M=\sum_{i=1}^{N} m_{i}
$$

is the total mass. The center of mass is a vector (position) defined by

$$
\overline{\overrightarrow{\mathbf{r}}}=\overrightarrow{\mathbf{r}}_{\mathrm{cm}}=\frac{\sum_{i=1}^{N} m_{i} \overrightarrow{\mathbf{r}}_{i}}{M}
$$

[Insert graphic of points labeled by masses and radius vectors. (For the experts, that should be "radii vectores".)]

This is a weighted average of the positions of the N particles. (If all the masses are equal, it is just the ordinary average of the positions -

$$
\frac{\sum_{i=1}^{N} \overrightarrow{\mathbf{r}}_{i}}{N}
$$

- the center of the particle cloud.)

In components, we have

$$
\bar{x}=x_{\mathrm{cm}}=\frac{\sum_{i=1}^{N} m_{i} x_{i}}{M}
$$

[Insert graphic of $y-z$ plane seen on edge, accompanied by two particles, one on each side, with perpendicular distances labeled x_{1} and $-x_{2}$.] and similarly

$$
\bar{y}=\frac{\sum_{i=1}^{N} m_{i} y_{i}}{M}, \quad \bar{z}=\frac{\sum_{i=1}^{N} m_{i} z_{i}}{M}
$$

2. Moment of inertia

Now for something different, but similar ...
The moment of inertia of the particles about (or around) the z axis) is

$$
I_{z}=\sum_{i=1}^{N} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)=\sum_{i=1}^{N} m_{i} r_{i}^{2} .
$$

[Insert graphic of z axis pointing out of the plane (\odot), with particles located at distances r_{1} and r_{2}.]
$\frac{I_{z}}{M}$ is the weighted average of the squares of the distances r_{i} of the particles from the z axis. Similarly,

$$
I_{y}=\sum_{i=1}^{N} m_{i}\left(z_{i}^{2}+x_{i}^{2}\right), \quad I_{x}=\sum_{i=1}^{N} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)
$$

It is up to you to read the physics textbook to learn what centers of mass and moments of inertia have to do with total momentum, angular momentum, and kinetic energy.

