$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ document $\# 2$
The mass of the matter in a cube centered at

$$
\overrightarrow{\mathbf{r}}=\langle x, y, z\rangle=x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}
$$

is the sum of the masses of the particles in the cube. The average density in the cube is its mass over its volume:

$$
\frac{M_{\mathrm{cube}}}{\Delta x \Delta y \Delta z}=\frac{M_{\mathrm{cube}}}{(\Delta x)^{3}}
$$

Take the limit as the cube shrinks to the point $\overrightarrow{\mathbf{r}}$:

$$
\rho(\overrightarrow{\mathbf{r}})=\lim _{\Delta x \rightarrow 0} \frac{M_{\text {cube at } \overrightarrow{\mathbf{r}}}}{(\Delta x)^{3}} .
$$

This is the density at $\overrightarrow{\mathbf{r}}$.
Now we think of the total mass as the sum of the masses in all the cubes. In the limit of infinitesimal cubes it's

$$
M=\iiint_{E} \rho(\overrightarrow{\mathbf{r}}) d V=\iiint_{E} \rho(\overrightarrow{\mathbf{r}}) d x d y d z
$$

where E is the region in 3 -space occupied by the body.
[Ultimately should insert a link, "For more details click here", leading to a Riemann-sum discussion of this integral.]

