$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ document \#7
The density is now
mass of matter in a square
area of the square
in units $\mathrm{kg} / \mathrm{m}^{2}\left(\right.$ not $\left.\mathrm{kg} / \mathrm{m}^{3}\right)$. (We think of the integration over the thin, uniform third dimension as having already been done.)

Set up the problem so that the body lies in the $x-y$ plane. D is now the two-dimensional region in that plane occupied by the matter. Then the formula for total mass is

$$
M=\iint_{D} \rho(x, y) d A
$$

the coordinates of the center of mass are

$$
\bar{x}=\frac{\iint_{D} \rho(x, y) x d A}{M}, \quad \bar{y}=\frac{\iint_{D} \rho(x, y) y d A}{M}
$$

and (since z is always 0 inside the body) the three moments of inertia are

$$
I_{z}=\iint_{D} \rho\left(x^{2}+y^{2}\right) d A, \quad I_{y}=\iint_{D} \rho x^{2} d A, \quad I_{x}=\iint_{D} \rho y^{2} d A
$$

Notice that if you know any two of the moments of inertia, then you know the third without further calculation! [Insert graphics of lamina spinning about axis perpendicular to lamina and about axis lying in lamina.]

