Solving a Cubic Equation by Perturbation Theory

You probably do not know how to solve the equation

$$
x^{3}+\frac{1}{10} x+8=0
$$

exactly. Except in those few cases where one root is obvious (and hence the cubic can be reduced to a quadratic), cubic equations are nearly always solved in practice by a numerical or approximate method.

In this case, the coefficient $\frac{1}{10}$ is smaller than the others. This suggests that we study the equation

$$
x^{3}+\epsilon x+8=0
$$

find an approximation to the solutions that's accurate when ϵ is small, and set ϵ equal to $\frac{1}{10}$ at the end. Let's assume that

$$
x \approx x_{0}+\epsilon x_{1}
$$

and find the numbers x_{0} and x_{1}. The idea is that if ϵ is small, then ϵ^{2} is even smaller, and terms in the Taylor series involving ϵ^{2} or higher powers can probably be ignored.

We calculate

$$
x^{3} \approx x_{0}^{3}+3 \epsilon x_{0}^{2} x_{1}+3 \epsilon^{2} x_{0} x_{1}^{2}+\epsilon^{3} x_{1}^{3}
$$

Only the first two terms of this formula are "significant", because a term $3 \epsilon^{2} x_{0}{ }^{2} x_{2}$ has been neglected already in our approximation. So we will throw away all terms that involve power of ϵ higher than the first.

Now the equation becomes

$$
\begin{aligned}
0= & x^{3}+\epsilon x+8 \\
\approx & x_{0}^{3}+3 \epsilon x_{0}{ }^{2} x_{1} \\
& +\epsilon x_{0} \\
& +8 .
\end{aligned}
$$

The general strategy in perturbative calculations is to make the coefficient of each power of ϵ separately equal to 0 , so that the equation is satisfied for all values of ϵ.

The lowest-order equation is

$$
\begin{equation*}
0=x_{0}{ }^{3}+8 . \tag{0}
\end{equation*}
$$

Its principal solution is $x_{0}=-2$. (The equation also has two complex roots, but we will ignore them today.)

Substitute this result into the next equation:

$$
\begin{equation*}
0=3 x_{0}^{2} x_{1}+x_{0}=12 x_{1}-2 . \tag{1}
\end{equation*}
$$

Thus $x_{1}=\frac{1}{6}$.
So we have found a first-order perturbative solution,

$$
x \approx-2+\frac{\epsilon}{6}
$$

which is actually the Taylor polynomial $T_{1}(\epsilon)$ of the exact solution.
Let us check this solution by substituting it into the original cubic equation. After working out the algebra we get

$$
x^{3}+\epsilon x+8=\frac{\epsilon^{3}}{216} .
$$

The right-hand side (called the residual) is not exactly zero, but it is small compared to ϵ if ϵ itself is small.*

If $\epsilon=\frac{1}{10}$, our approximation is $x \approx-2.01666 \ldots$ Compare this with the "exact" answer calculated by Maple.

[^0]
[^0]: * We had no right to expect the residual to be smaller than the order ϵ^{2}, but by accident it is of order ϵ^{3}. If you go back and put terms $\epsilon^{2} x_{2}+\epsilon^{3} x_{3}$ into the assumed form of the answer, you will find that $x_{2}=0$ but x_{3} is not zero.

