
The Damped Harmonic Oscillator

Consider the differential equation

d2y

dt2
+ 2ε

dy

dt
+ y = 0.

For definiteness, consider the initial conditions

y(0) = 0, y′(0) = 1.

Try
y = y0(t) + εy1(t) + ε2y2(t) + · · · .

We get (to second order)

0 ≈ (y′′0 + εy′′1 + ε2y′′2 ) + (2εy′0 + 2ε2y′1) + (y0 + εy1 + ε2y2)

= (y′′0 + y0) + ε(y′′1 + 2y′0 + y1) + ε2(y′′2 + 2y′1 + y2).

The initial conditions don’t depend on ε, so they break into yj(0) = 0 and

y′0(0) = 1, y′1(0) = 0, y′2(0) = 0.

Now we set the coefficient of each power of ε equal to 0 and apply the
corresponding boundary condition.

The solution for y0 is
y0(t) = sin t.

Substitute this into the equation for y1 :

y′′1 + y1 = −2y′0 = −2 cos t.

Now remember the method of undetermined coefficients for an inho-
mogeneous linear equation with the forcing term “on resonance”:

y1 = A t cos t+B t sin t+ homogeneous solution.

After algebra, you find that the solution satisfying the null initial conditions
is

y1(t) = −t sin t.
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(Check it.) This is called a secular term, because it grows with t.
For the second-order term we get the equation

y′′2 + y2 = −2y′1 = 2 sin t+ 2 t cos t.

We know that the solution will involve t2 times a trig function. And so
on to higher orders. (The secular terms are getting worse!) So we have
constructed

y(t; ε) = sin t− εt sin t+ term involving ε2t2 + · · · .

To judge this approximation, let’s look at the exact solution. It is

y(t; ε) =
e−εt√
1− ε2

sin(
√

1− ε2 t).

Expanding this in a Taylor series in ε (with t fixed), we get agreement with
our perturbative solution, as far as we’ve carried it. (Work it out.) For any
given t, our approximation is good if ε is sufficiently small. But for a fixed
ε, there eventually comes a t for which the error is large. Our method has
led us to expand e−εt as a power series, but that is a bad thing to do,
clearly. More advanced techniques of perturbation theory are needed to get
around this problem.
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