The Damped Harmonic Oscillator

Consider the differential equation

Try
y = 1yo(t) + eyi (t) + ya(t) + -+ -.

We get (to second order)

0= (yy + eyl + €y5) + (2eyp + 26°Y)) + (Yo + ey + ya)

= (v +yo) + e(yy +2y5 + y1) + € (vh + 2y| + y2).

The initial conditions don’t depend on €, so they break into y,(0) = 0 and

Now we set the coefficient of each power of € equal to 0 and apply the
corresponding boundary condition.
The solution for yq is

Yo(t) = sint.
Substitute this into the equation for y; :

y{ +y1 = —2y, = —2cost.

Now remember the method of undetermined coefficients for an inho-
mogeneous linear equation with the forcing term “on resonance”:

y1 = At cost + Bt sint + homogeneous solution.

After algebra, you find that the solution satisfying the null initial conditions
is
U1 (t) = —t sint.

1



(Check it.) This is called a secular term, because it grows with ¢.
For the second-order term we get the equation

Yy 4y = —2y} = 2sint + 2t cost.

We know that the solution will involve ¢? times a trig function. And so
on to higher orders. (The secular terms are getting worse!) So we have
constructed

y(t;€) = sint — et sint + term involving €%t? + - - .

To judge this approximation, let’s look at the exact solution. It is

e—et

y(t;e) = T

Expanding this in a Taylor series in € (with ¢ fixed), we get agreement with
our perturbative solution, as far as we’ve carried it. (Work it out.) For any
given t, our approximation is good if € is sufficiently small. But for a fixed
€, there eventually comes a t for which the error is large. Our method has
led us to expand e~ as a power series, but that is a bad thing to do,
clearly. More advanced techniques of perturbation theory are needed to get
around this problem.

sin(y/1 — €2 t).



