Discovering Taylor's Theorem

Consider a function $x=f(t)$. Suppose that

$$
f(0)=x_{0}, \quad f^{\prime}(0)=v_{0}, \quad f^{\prime \prime}(0)=a_{0} .
$$

We expect that somehow

$$
\begin{equation*}
f(t) \approx x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2} \tag{1}
\end{equation*}
$$

at least for t very close to 0 . There are related equations for the derivatives:

$$
\begin{gather*}
f^{\prime}(t) \approx v_{0}+a_{0} t \tag{2}\\
f^{\prime \prime}(t) \approx a_{0} \tag{3}
\end{gather*}
$$

(Remark: (1) is quite different from the false equation

$$
f(t)=x_{0}+v_{0} t+\frac{1}{2} a(t) t^{2}
$$

frequently written down by students who don't understand that the fallingbody formula applies only when the acceleration is constant.)

We'll start with the simplest formula, (3), and work back up. Since $f^{\prime \prime}$ starts at 0 when $t=0$, how far away can it wander by the time $t=2$, say? Clearly that depends on the function; to get a useful conclusion, we need to impose another assumption. We shall assume that the third derivative of f exists and

$$
\begin{equation*}
\left|f^{\prime \prime \prime}(t)\right| \leq M \quad \text { for all } t \tag{4}
\end{equation*}
$$

for some constant M. Then, for $t>0$,

$$
\begin{equation*}
\int_{0}^{t} f^{\prime \prime \prime}(u) d u \leq \int_{0}^{t} M d u \tag{5}
\end{equation*}
$$

(see "Order properties of the integral," p. 279 of Stewart ed. 3). That is,

$$
\begin{equation*}
f^{\prime \prime}(t)-a_{0} \leq M t \tag{6}
\end{equation*}
$$

So, for instance, $f^{\prime \prime}(2)$ can't be bigger than $a_{0}+2 M$.

We can now integrate (6) in the same way:

$$
\begin{gather*}
\int_{0}^{t}\left[f^{\prime \prime}(u)-a_{0}\right] d u \leq \int_{0}^{t} M u d u \tag{7}\\
f^{\prime}(t)-\left(v_{0}+a_{0} t\right) \leq \frac{1}{2} M t^{2} \tag{8}
\end{gather*}
$$

(Thus $f^{\prime}(2)$ can't be bigger than $v_{0}+2 a_{0}+2 M$, which goes a long way to toward clarifying and justifying (2).) Finally, integrate (8):

$$
\begin{gather*}
\int_{0}^{t}\left[f^{\prime}(u)-\left(v_{0}+a_{0} u\right)\right] d u \leq \int_{0}^{t} \frac{1}{2} M u^{2} d u \tag{9}\\
f(t)-\left(x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2}\right) \leq \frac{1}{6} M t^{3} . \tag{10}
\end{gather*}
$$

So far we have concentrated on getting upper bounds on the differences between the exact functions and their polynomial approximations, for $t>0$. This restriction was made just to keep the formulas simple-looking. To handle both lower bounds and negative values of t requires going back through the argument and doing careful bookkeeping with minus signs and absolute values. We will skip that. The conclusions then are

$$
\begin{gather*}
\left|f(t)-\left(x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2}\right)\right| \leq \frac{1}{6} M|t|^{3}, \tag{11}\\
\left|f^{\prime}(t)-\left(v_{0}+a_{0} t\right)\right| \leq \frac{1}{2} M t^{2} \tag{12}\\
\left|f^{\prime \prime}(t)-a_{0}\right| \leq M|t| \tag{13}
\end{gather*}
$$

Equations (11)-(13) give a precise meaning and justification to claims (1)(3). Recall that M is any number satisfying (4); that is, an upper bound on the third derivative of f.

Pictorially, (13) says that the graph of $f^{\prime \prime}$ is trapped between the lines with slopes $\pm M$ meeting at the point $\left(0, a_{0}\right)$. Similarly, (11) says that the graph of $f(t)-\left(x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2}\right)$ fits between the two cubic curves $\pm \frac{1}{6} M|t|^{3}$ (which, of course, come very close together near $t=0$).
[I will insert appropriate graphics someday.]

