Problem: Approximate the integral $\int_{0}^{1} e^{x^{2}} d x$ to 2 significant figures.
Method: We will approximate the integrand by a Taylor polynomial - so that we can integrate it! - and use Taylor's theorem with remainder to justify the answer.

Substituting x^{2} for z in the Taylor expansion of e^{z}, we get

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+R_{3}\left(x^{2}\right)
$$

We can write out as many terms as we need; if this turns out to be not enough, we'll come back for more later. Therefore,

$$
\begin{aligned}
\int_{0}^{1} e^{x^{2}} d x & =\int_{0}^{1}\left[1+x^{2}+\cdots\right] d x \\
& =\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{10}+\frac{x^{7}}{42}\right]_{0}^{1}+\int_{0}^{1} R_{3}\left(x^{2}\right) d x \\
& =1+\frac{1}{3}+\frac{1}{10}+\frac{1}{42}+\int_{0}^{1} e^{c} \frac{x^{8}}{24} d x
\end{aligned}
$$

At the last step we have used the standard formula for the Taylor remainder ("Version 2" in the terminology of this Web page), and the fact that $f^{(4)}(z)=e^{z}$ if $f(z)=e^{z}$. The number c may depend on x, but in this problem it is always guaranteed to be between 0 and 1 ; therefore, e^{c} is less than e, and the remainder term in the integral is less than

$$
e \int_{0}^{1} \frac{x^{8}}{24} d x=\frac{e}{216}
$$

So, doing the arithmetic with the fractions, we conclude that

$$
\int_{0}^{1} e^{x^{2}} d x \approx 1.45714 \approx 1.46
$$

with a maximum error of

$$
\frac{e}{216}=0.01258
$$

So the accuracy is right on the edge of what we wanted. To be safe, one should go back and include one more term in the appoximation:

$$
\int_{0}^{1} e^{x^{2}} d x \approx \cdots+\frac{1^{9}}{216} \approx 1.46
$$

with a maximum error of

$$
\int_{0}^{1} R_{4}\left(x^{2}\right) d x \leq \frac{e}{11 \times 5!} \approx 0.002
$$

You might compare this result with the value for the integral calculated numerically by Maple.

