
What Are the Mean Value and Taylor Theorems Saying?

We have studied two propositions about the derivative of a function
that sound vaguely alike.
(1) On the one hand, the mean value theorem (Week 13, Stewart 3.2)

says that
f(x) = f(a) + f ′(c) (x− a) (exactly!)

for some c between a and x.
For example, ex = 1 + ecx.

(2) On the other hand, the best linear approximation (Week 16, Stew-
art 2.9) says that

f(x) = f(a) + f ′(a) (x − a) + something small

if x is close to a.
For example, ex ≈ 1 + x (that is, ex = 1 + x+ a small error).

Quick exercise: What are the two crucial differences between (1) and
(2)? Read closely.

An immediately interesting question about statement (2) is: How
small? The word “small” by itself is too vague to be useful in technical
work.

We can cast some light on the relation between (1) and (2) by stepping
back a bit to the definition of continuity, which can be paraphrased this
way:
(0) If f is continuous, then

f(x) = f(a) + something small

if x is close to a.
For example, ex → e0 = 1 as x→ 0.

Again one should ask, “How small?” In this case the answer is given by
the detailed definition of continuity (through the definition of a limit): For
every ε there is a δ such that if |x − a| < δ, then |f(x) − f(a)| < ε. We
will talk about statements like this in more depth in Week 26; for now the
only thing to understand is that (0) merely says that as x − a goes to 0,
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f(x) − f(a) also goes to 0 — it says nothing about how fast f(x) − f(a)
approaches 0.

But now look again at the mean value theorem (alias “Taylor’s theorem
with N = 0”): It says that if f is differentiable, then

f(x) = f(a) + f ′(c) (x− a)

and so, if |x− a| < δ, then*

|f(x)− f(a)| < δ max
c∈(a,x)

|f ′(c)|.

The important thing about this inequality is that it says that the difference
between f(x) and f(a) is (at worst) linear in δ, the distance between x
and a. Thus (1) is a sharpened form of (0), valid if f is differentiable, not
just continuous.

But differentiability also gives us statement (2), and we want to know
what “small” means in it. One type of answer is provided by Taylor’s
theorem with N = 1:
(3) If the second derivative of f exists, then

f(x) = f(a) + f ′(a) (x− a) + 1
2f
′′(c) (x− a)2

for some c.
For example, ex = 1 + x+ 1

2e
cx2.

Therefore, if |x− a| < δ, then

|f(x)− [f(a) + f ′(a) (x − a)]| < 1
2δ

2 max |f ′′(c)|.

That is, the error is quadratically small in its dependence on δ.
If f ′(a) exists but f ′′(a) doesn’t, then it turns out that the error in the

linear approximation (2) typically goes to zero faster than δ but not as fast
as δ2. (Contemplate, for example, f(x) = x4/3 around x = 0.) We shall
not discuss this sort of situation further (leaving it to advanced courses in
mathematics).

* c ∈ (a, x) means a < c < x, which is the right formulation if a < x; if
x < a, of course, we would have c ∈ (x, a).
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Of course, when f ′′ exists we expect to form a best quadratic ap-
proximation:
(4) If x is close to a, then

f(x) ≈ f(a) + f ′(a) (x − a) + 1
2f
′′(a) (x− a)2.

For example, ex ≈ 1 + x+ 1
2x

2.
We can ask the usual question: Exactly how small is the error in the
approximation (4)? By now you can probably guess the answer:
(5) If the third derivative exists, then (Taylor’s theorem with N = 2)

f(x) = f(a) + f ′(a) (x − a) + 1
2f
′′(a) (x − a)2 + 1

6f
(3)(c) (x− a)3

for some c, and therefore the error in the quadratic approximation is
cubic in δ.
Obviously we can continue this game forever; successfully completing

each step invites us to attempt the next step. If f (N)(a) exists, then we can
construct the Nth Taylor polynomial

TN(x) =
N∑
j=0

f (j)(a)
j!

(x− a)j

and expect it to be the best approximation (near a) to f(x) by a
polynomial of degree N . (This is proposition number (2N).) We ask
how good this approximation really is. Then Taylor’s theorem says that if
f (N+1)(a) exists, then

f(x) = TN (x) +RN (x),

with

RN(x) =
f (N+1)(c)
(N + 1)!

(x− a)N+1,

and therefore the error in the Nth-degree approximation vanishes as fast as
δN+1 as δ = |x− a| approaches 0. (This is proposition number (2N + 1).)
This formula tempts us to consider the even better approximation TN+1 ,
but we have to stop somewhere.
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