Problem: Find the first few terms of the Maclaurin series of

$$
g(x)=\frac{1}{5-3 x} .
$$

Method 1: Apply Taylor's formula directly: Calculate $g(0), g^{\prime}(0)$, $g^{\prime \prime}(0), \ldots$ and construct

$$
g(x) \approx g(0)+g^{\prime}(0) x+\frac{1}{2} g^{\prime \prime}(0) x^{2}+\cdots .
$$

(This is probably the worst way to do the problem - certainly it's the most boring.)

Method 2: Treat this as a long division problem (see Stewart p. 662):

$$
\begin{aligned}
&5-3 x) \frac{\frac{1}{5}+\frac{3}{25} x+\cdots}{1+0 x+0 x^{2}+\cdots} \\
& \frac{1-\frac{3}{5} x}{\frac{3}{5} x} \\
& \frac{\frac{3}{5} x-\frac{9}{25} x^{2}}{25} x^{2} \cdots
\end{aligned}
$$

Method 3: Write $\frac{1}{5-3 x}$ as $\frac{1}{5} \frac{1}{1-\frac{3}{5} x}$. Now apply the geometric series

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots
$$

with $z=\frac{3}{5} x$.
Method 4 (the method marketed by our sponsor): We are seeking a solution for the equation

$$
(5-3 x) g(x)=1
$$

Assume that

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots .
$$

Then

$$
\begin{aligned}
1 & =(5-3 x)\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \\
& =5 a_{0}+5 a_{1} x-3 x_{0} x+5 a_{2} x^{2}-3 a_{1} x^{2}+\cdots .
\end{aligned}
$$

After we combine terms, the total coefficient of each power $x^{j}$ must match the corresponding coefficient on the other side of the equation. This principle gives a sequence of recursion relations,

$$
\begin{align*}
1 & =5 a_{0}  \tag{0}\\
0 & =5 a_{1}-3 a_{0}  \tag{1}\\
0 & =5 a_{2}-3 a_{1}  \tag{2}\\
& =\ldots
\end{align*}
$$

These can be solved in succession for the coefficients:

$$
\begin{aligned}
a_{0} & =\frac{1}{5}, \\
a_{1} & =\frac{3}{5} a_{0}=\frac{3}{25}, \\
a_{2} & =\frac{3}{5} a_{1}=\frac{9}{125}, \\
& =\ldots .
\end{aligned}
$$

It's easy to see that the general solution is

$$
a_{j+1}=\frac{3^{j+1}}{5^{j+2}} .
$$

