Problem: Expand $\sin (2 x+1)$ around $x=0$.
THE WRONG WAY: We know that

$$
\sin z=z-\frac{z^{3}}{6}+\frac{z^{5}}{120}+\cdots,
$$

so it seems natural to substitute $2 x+1$ for z :

$$
\sin (2 x+1)=(2 x+1)-\frac{(2 x+1)^{3}}{6}+\frac{(2 x+1)^{5}}{120}+\cdots .
$$

Next, trying to combine terms, we multiply everything out and get

$$
\begin{aligned}
1+ & 2 x-\frac{1}{6}\left(1+6 x+12 x^{2}+8 x^{3}\right)+\frac{1}{120}(1+10 x+\cdots)+\cdots \\
& =(1-\frac{1}{6}+\frac{1}{120}+\underbrace{\cdots}_{?})+x\left(2-1+\frac{1}{12}+\cdots\right)+\cdots
\end{aligned}
$$

This is a disaster! Even the very first term (the constant term) depends on the terms of arbitrarily high order in the Taylor series of the sine. The point is that this method of finding the Taylor series of the composite function won't work unless the expression substituted for z approaches 0 as $x \rightarrow 0$.

A RIGHT WAY: Note that $2 x+1$ approaches 1 , not 0 , as x approaches 0 . Therefore, we should be using the Taylor expansion of $\sin z$ around $z=1$:

$$
\sin z=\sin (1)+\cos (1)(z-1)-\frac{1}{2} \sin (1)(z-1)^{2}+\cdots .
$$

Then $\sin (2 x+1)$ can be successfully approximated for x near 0 by substituting $2 x+1$ for z - that is, $2 x$ for $z-1$.

$$
\sin (2 x+1)=\sin (1)+2 \cos (1) x-2 \sin (1) x^{2}+\cdots
$$

(Of course, we can't find exact numerical values of $\sin (1)$ and $\cos (1)$, but that's life; they are the correct coefficients in this series.)

