Taylor's Theorem, Version 2

If all the derivatives of the function f up through $f^{(N+1)}$ exist in an interval I containing the number a, then for all x in I,

$$
f(x)=T_{N}(x)+R_{N}(x),
$$

where T_{N} is the N th-degree Taylor polynomial,

$$
T_{N}(x)=\sum_{j=0}^{N} \frac{f^{(j)}(a)}{j!}(x-a)^{j}
$$

and there is some number z strictly between* a and x such that

$$
R_{N}(x)=\frac{f^{(N+1)}(z)}{(N+1)!}(x-a)^{N+1}
$$

[^0]
[^0]: * "Strictly between" means that either $a<z<x$ or $x<z<a$, whichever is appropriate. Here is a fine point: If $x=a$, then there is no number strictly between them, so the theorem as stated is false. In that case, however, $f(x)$ is exactly equal to $T_{N}(x)$ (all of whose terms are zero except (possibly) the first $(j=0)$).

