Taylor's Theorem, Version 1

If all the derivatives of the function f up through $f^{(N+1)}$ exist in an interval I containing the number a, then for all x in $I, f(x)$ is well approximated by its N th-degree Taylor polynomial,

$$
T_{N}(x)=\sum_{j=0}^{N} \frac{f^{(j)}(a)}{j!}(x-a)^{j}
$$

in the following sense:

$$
f(x)=T_{N}(x)+R_{N}(x),
$$

where

$$
\left|R_{N}(x)\right| \leq \frac{M|x-a|^{N+1}}{(N+1)!}
$$

with

$$
M=\max _{z \in I}\left|f^{(N+1)}(z)\right|
$$

