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I. Stress tensor calculations
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Cosmic Strings, Cambridge, 1990

Our main contributions:
• local energy density and pressure
• dependence on direction of cutoff
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Cylinder kernels T in cylindrical coordinates

Full Euclidean space

T 2π = − 1

2π2(t2 + |x− x′|2)

= − 1

2π2(r2 + r′2 − 2rr′ cos(θ − θ′) + t2 + (z − z′)2)
.

(We can take z′ = 0 = θ′.)
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Direct solution in cylindrical coordinates gives

T 2π = − 1

4π2rr′ sinhu

∞
∑

n=−∞

e−|n|u+inθ

= − 1

4π2rr′ sinhu

sinhu

coshu− cos θ

where u is defined by any of
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u = − ln
r2 − r1
r2 + r1

with

r1 =
√

(r − r′)2 + z2 + t2 ,

r2 =
√

(r + r′)2 + z2 + t2 ;

2rr′ coshu = r2 + r′2 + z2 + t2;

2rr′ sinhu =
√

[r2 + r′2 + z2 + t2]2 − 4r2r′2 ;

4rr′ sinh2
(u

2

)

= (r − r′)2 + z2 + t2.
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Dirichlet wedge with a “good” angle, α = π
N

— can be solved by the method of images:
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Dowker space

Replace 0 ≤ θ < 2π by −∞ < θ < ∞ (Riemann surface
of ln z ; locally flat with singularity on axis).

Replace Fourier series by Fourier transform:

T∞ = − 1

4π2rr′ sinhu

∫ ∞

−∞

e−|λ|u+iλθdλ

= − 1

2π2rr′ sinhu

u

u2 + θ2
.
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Cone of angle θ1

0 ≤ θ < θ1 ; singular on the axis unless θ1 = 2π (visual-
izable if θ1 < 2π).

1. Solve again by Fourier series, or
2. Obtain from Dowker space by periodic image sum:

× • ••••

0 θ1θ
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T θ1 = − 1

2πθ1rr′ sinhu

sinh
(

2πu
θ1

)

cosh
(

2πu
θ1

)

− cos
(

2πθ
θ1

)

where u is exactly the same as before.

θ1 = 2π recovers Euclidean space.
θ1 → ∞ recovers Dowker space.
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Dirichlet wedge of arbitrary angle α

— from cone of angle θ1 = 2α (θ′ restored) by images:

× ••• ◦◦ ◦ ◦

0 α θ1θ

Tα = − 1

4παrr′ sinhu

(

sinh(πu/α)

cosh(πu/α)− cos(π(θ − θ′)/α)

− sinh(πu/α)

cosh(πu/α)− cos(π(θ + θ′)/α)

)
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Energy density and pressure

〈T00〉 = −1

2
∂2
t T + β[∂r∂r′T + ∂2

rT +
1

r
∂rT ],

〈Trr〉 = −1

4
[∂r∂r′T − ∂2

rT ]−
1

r
β∂rT ,

〈T⊥⊥〉 =
1

4r
∂rT +

1

4r2
[∂θ

2T − ∂θ∂θ′T ]− β[∂r∂r′T + ∂rT ],

〈Tzz〉 = −1

4
[∂z∂z′T − ∂2

zT ]− β[∂r∂r′T + ∂2
rT +

1

r
∂rT ].
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We ignore off-diagonal components for now.

Subtract T 2π terms (zero-point energy).
Take r′ = r, θ′ = θ, z′ = 0 ; cutoff

√
t2 + z2 remains.

Ultraviolet cutoff: t 6= 0, z = 0.
Neutral cutoff (except for Tzz): z 6= 0, t = 0.

Stress tensor in Dowker space, β = 0

t-cutoff: Festschrift p. 16

z-cutoff: Thesis p. 22 (30) (Trr and T⊥⊥ unchanged)

Dashed curves are for zero cutoff.

13



Close examination shows that as r → 0,
ρ ≡ T00 and pz ≡ Tzz approach finite limits (cusps),
but pr ≡ Trr and pθ ≡ T⊥⊥ diverge. Why?

Recall T∞ = − 1
2π2rr′ sinhu

u
u2+(θ−θ′)2 ,

where u ≡ cosh−1 a, a = 1 + z2+t2

2r2 when r′ = r, θ′ = θ.
As r → 0, a → ∞ and u sinhu ∼ a ln a.

Stress components can behave like r−2 ln r at worst
(hence r dr dθ integrals can diverge).
The point-splitting cutoff has not completely removed
the divergence!
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Dowker space β term

t-cutoff: Festschrift p. 17
z-cutoff: No change
All components diverge at the axis.

Stress tensor in cones, β = 0

t-cutoff: Festschrift pp. 18–19
z-cutoff: Thesis p. 22 (30)
All components remain finite at the axis.
(Same for β terms.)
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Stress tensor in wedges

Now things depend on θ.

t-cutoff: Festschrift pp. 22–25
z-cutoff: Thesis p. 23–24 (31–32) (right angle, β = 0)

The cutoff quantities are finite at the plates and at the
axis.
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II. Torque

In a wedge, the parameter we can vary is the angle.
One expects

− dE

dα
= torque/length =

∫ ∞

0

T⊥⊥ r dr ≡ τ .

With luck, the integrands will be equal pointwise.

E = total energy/length =

∫ ∞

0

r dr

∫ α

0

dθ T00 .

Henceforth I omit “/length”. (V will be an area!)
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Classical perfect fluid

Assume equation of state p = βρ.
p is isotropic, ρ and p homogeneous (but depend on α).
Consider wedge with large radius R.

E = ρV = 1
2R

2αρ ⇒ dE

dα
= 1

2R
2

(

ρ+ α
dρ

dα

)

.

τ =

∫ R

0

p r dr = 1
2R

2βρ.
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So we expect r + α
dρ

dα
= −βρ.

1

ρ

dρ

dα
= − β + 1

α
⇒ ρ = Kα−(β+1).

E = 1
2R

2Kα−β ⇒ E = CV −β or ρ = CV −(β+1).

These two final formulas are shape-independent and
are equivalent to the equation of state.

We could generalize to ρ, p, β dependent on r (e.g.,
surface tension).
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Torque in a wedge

We expect τ = −dE
dα

for point-splitting in the neutral
(z) direction.

But Mathematica says Nay!

The trouble is probably not in the quantum field the-
ory, but in a misinterpretation of the classical physics
of stress and torque.

To understand, we consider α = π
2 (checks with Carte-

sian answer!) and look at each term in T separately.
Physical intuition is fairly clear in this case.
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×4

∗3 ◦2
◦1

When α = π
2 , term 4 is canceled by zero-point energy

but its α derivative is nonzero. (The background is the
cone of angle 4α.)

Terms 1 and 2 in T depend on θ + θ′ and have ρ con-
centrated near a plate, p parallel to that plate.
“Pure cone” terms 3 and 4 depend on θ − θ′ and have
ρ, p independent of θ.

21



So far we have ignored off-diagonal components of Tµν .
They are not always zero!

Term 1 has px = 0, py = −ρ, Txy = 0. Therefore,
Tr⊥ 6= 0 away from the plates (a nonunit diagonal
matrix becomes nondiagonal under similarity transfor-
mation). Similarly for term 2.

Analogously, one would expect Txy 6= 0 away from the
plates for terms 3 and 4. But it turns out that px =
py for these terms (in fact, they are 0 after zero-point
subtraction).
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Another classical analogue
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L

x

Consider a quarter-circle apparatus involving a band of
material with a uniform energy density per unit length.
L = length; x = distance from left boundary. As before,

E = CL
−β

⇐⇒ p = CβL
−β−1

= βρ.
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Instances:
1. Band is a physical object, like a rubber band or

spring (β = −2 is Hooke’s law.) (But keep px =
0.)

2. The sides and arc are “conductors” and the band
is an infinitesimal part of the vacuum energy gen-
erated by the Dirichlet boundary along the left
side. Here β = −1 (surface tension, 1D dark en-
ergy).

The point is that even the first case is problematical.
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Move bottom side by angle ∆α :
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Torque on bottom boundary is τ = xp. Rate of change
of total energy is, as it should be,

dE

dα
=

dE

dL

dL

dα
= −px = −τ .
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In scenario 2, the band must stay at a constant perpen-
dicular distance from the left boundary. In scenario 1,
if the spring is rigidly attached, the attachment point
should remain at a constant distance from the vertex.
However, when ∆α is infinitesimal the differences be-
tween these situations are of second order.
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Move left side by angle ∆α :
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dE/dα is same as before. But in vacuum scenario (2)
there is no pressure against the left side of the wedge.
It therefore appears that there is no torque and hence
is a violation of the expected energy-torque relation.
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In spring scenario (1) some physical mechanism must
force the band to remain parallel to the moved bound-
ary, and hence there must be a reaction force on that
boundary. Because the band is not perpendicular to
the arc, there is a shear force acting on the band to
turn it, and an opposite force acting on the boundary
mechanism as a whole.

Probably the vacuum counterpart is this: The compo-
nent Trθ 6= 0 represents a shear force.
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Details of the classical case:
The equation of the arc is y =

√

R2 − x2 and hence its
slope is

dy

dx
= −

x
√

R2 − x2
= −

x

L
≡ − tan γ ≈ −γ.

Therefore the component of force along the arc is

−p sin γ ≈ −
px

L
. (∗)

To lowest order the top end of the band moves a distance
−L∆α, which with (∗) suggests a work px∆α, hence a
torque xp. The energy-torque balance is thus restored.
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However, this account tacitly assumes that the arc, or
at least the part of it between the band and the left
boundary, rotates rigidly. In the vacuum energy case
it is not clear exactly what the torque from the shear
stress is acting upon. (The boundary energy moves
with the flat boundary, regardless of whether the cir-
cular boundary is rigid, stretchable, or completely ab-
sent.) Furthermore, this analysis says nothing to re-
solve the torque paradox for terms 3 and 4 (the parts
of the wedge stress tensor — due to the vertex, not the
wedge sides — that are diagonal in polar coordinates).
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The crux of the problem for terms 3 and 4 is that E
depends on α in two ways: ρ depends on α (cone an-
gle!), and for a given ρ, the region of integration de-
pends on α. For rectangular boundaries only the sec-
ond effect came into play. The cancellations that in-
sured energy-pressure balance in the rectangular case
now leave the first effect uncompensated.
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