Mass dependence of instanton determinant in QCD: part I

Gerald Dunne (UConn) Hyunsoo Min (Univ. Seoul and UConn)

- determinants in quantum field theory
- semiclassical "instanton" background
- 1 dimensional (ODE) computational method : Levit \& Smilansky
- higher dimensional radial extension
- renormalization
- results

Computing Determinants of Partial Differential Operators

Gerald Dunne (UConn)
 Hyunsoo Min (Univ. Seoul and UConn)

- determinants in quantum field theory
- semiclassical "instanton" background
- 1 dimensional (ODE) computational method : Levit \& Smilansky
- higher dimensional radial extension
- renormalization
- results

problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

Quantum field theory functional integral

$$
D_{\mu}=\partial_{\mu}-g A_{\mu}
$$

$$
\begin{aligned}
Z & =\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A \exp \left[\int d^{4} x\left(\operatorname{tr} F^{2}+\bar{\psi}[i \not D-m] \psi\right)\right] \\
& =\int \mathcal{D} A \exp \left[\int d^{4} x t r F^{2}\right] \operatorname{det}[i \not D-m]
\end{aligned}
$$

$$
\text { Effective action : } S[A]=\log \operatorname{det}[i \not D-m]
$$

Exact results : covariantly constant $F_{\mu \nu}$

problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

$$
Z=\int \mathcal{D} \phi e^{-S[\phi]} \sim \frac{e^{-S\left[\phi_{b}\right]}}{\sqrt{\operatorname{det} S^{(2)}\left[\phi_{b}\right]}}
$$

" bounce" : $S^{(2)}\left[\phi_{b}\right]$ has a negative eigenvalue tunneling rate: $\Gamma=2 \mathcal{I} m \ln Z$

$$
=\left|\operatorname{det}\left(\frac{S^{(2)}\left[\phi_{b}\right]}{S^{(2)}\left[\phi_{0}\right]}\right)\right|^{-\frac{1}{2}} e^{-S\left[\phi_{b}\right]}
$$

problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

Few exact results, so need approximation methods

- derivative expansion
- WKB
- thin/thick wall approximation for tunneling rates
- numerical ?

Instanton background in QCD

Instantons: semiclassical solutions $F_{\mu \nu}= \pm \tilde{F}_{\mu \nu}$

Stationary points of gauge functional integral : minimize Yang-Mills action for fixed topological charge
e.g. $\mathrm{SU}(2)$ single instanton (Belavin et al) :

$$
\begin{aligned}
A_{\mu}(x) & =A_{\mu}^{a}(x) \frac{\tau^{a}}{2}=\frac{\eta_{\mu \nu a} \tau^{a} x_{\nu}}{r^{2}+\rho^{2}} \\
F_{\mu \nu}(x) & =F_{\mu \nu}^{a}(x) \frac{\tau^{a}}{2}=-\frac{2 \rho^{2} \eta_{\mu \nu a} \tau^{a}}{\left(r^{2}+\rho^{2}\right)^{2}}
\end{aligned}
$$

Instanton background in QCD

First simplification :

Self-duality \Longleftrightarrow Dirac and Klein-Gordon operators isospectral

$$
(i \not D-m) \quad\left(-D_{\mu} D_{\mu}+m^{2}\right)
$$

$$
\Gamma^{F}(A ; m)=-2 \Gamma^{S}(A ; m)-\frac{1}{2} \ln \left(\frac{m^{2}}{\mu^{2}}\right)
$$

Instanton background - asymptotics

$$
\begin{aligned}
& \text { Renormalized effective action : function of m only } \\
& \qquad \Gamma_{\mathrm{ren}}^{S}(A ; m)=\tilde{\Gamma}_{\mathrm{ren}}^{S}(m \rho)+\frac{1}{6} \ln (\mu \rho)
\end{aligned}
$$

- Small m limit : exact massless Green's functions known
- Large m limit : from heat kernel expansion

$$
\begin{array}{r}
\tilde{\Gamma}_{\text {ren }}^{S}(m) \sim\left\{\begin{array}{l}
\alpha\left(\frac{1}{2}\right)+\frac{1}{2}(\ln m+\gamma-\ln 2) m^{2}+\ldots \\
-\frac{\ln m}{6}-\frac{1}{75 m^{2}}-\frac{17}{735 m^{4}}+\frac{232}{2835 m^{6}}-\frac{7916}{148225 m^{8}}+\cdots \\
\alpha\left(\frac{1}{2}\right)=-\frac{5}{72}-2 \zeta^{\prime}(-1)-\frac{1}{6} \ln 2 \simeq 0.145873 \ldots
\end{array}\right.
\end{array}
$$

Instanton background

Question : how to connect large and small mass limits?

Computing ODE determinants efficiently

Levit/Smilansky (1976), Coleman (1977), ...
Ordinary differential operator eigenvalue problems ($\mathrm{i}=1,2$):

$$
\begin{array}{lr}
\mathcal{M}_{i} \phi_{i}=\lambda_{i} \phi_{i} & \phi_{i}(0)=0=\phi_{i}(L) \\
& x \in[0, L]
\end{array}
$$

Solve related initial value problem :

$$
\mathcal{M}_{i} \phi_{i}=0 \quad \phi_{i}(0)=0 \quad ; \quad \phi_{i}^{\prime}(0)=1
$$

Theorem : $\operatorname{det}\left(\frac{\mathcal{M}_{1}}{\mathcal{M}_{2}}\right)=\frac{\phi_{1}(L)}{\phi_{2}(L)}$

- other b.c.'s
- zero modes
- systems of ODE's

Kirsten \& McKane

Computing ODE determinants efficiently

Theorem : $\quad \operatorname{det}\left(\frac{\mathcal{M}_{1}}{\mathcal{M}_{2}}\right)=\frac{\phi_{1}(L)}{\phi_{2}(L)}$

$$
\left(\mathcal{M}_{i}-k^{2}\right) \phi_{i}=0 \quad \phi_{i}(0)=0 \quad ; \quad \phi_{i}^{\prime}(0)=1
$$

proof 1 $: \operatorname{det}\left(\frac{\mathcal{M}_{1}-k^{2}}{\mathcal{M}_{2}-k^{2}}\right)=\frac{\phi_{1}\left(k^{2}, L\right)}{\phi_{2}\left(k^{2}, L\right)}$ same analytic structure in k^{2}
proof 2: zeta function :

$$
\begin{array}{lc}
\zeta_{\mathcal{M}_{1}}(s)-\zeta_{\mathcal{M}_{2}}(s)=\frac{1}{2 \pi i} \int_{\gamma} d k k^{-2 s} \frac{d}{d k} \ln \frac{\phi_{1}\left(k^{2}, L\right)}{\phi_{2}\left(k^{2}, L\right)} & \mathcal{R} e(s)>\frac{1}{2} \\
\zeta_{\mathcal{M}_{1}}(s)-\zeta_{\mathcal{M}_{2}}(s)=\frac{\sin (\pi s)}{\pi} \int_{0}^{\infty} d k k^{-2 s} \frac{d}{d k} \ln \frac{\phi_{1}\left(-k^{2}, L\right)}{\phi_{2}\left(-k^{2}, L\right)} & -\frac{1}{2}<\mathcal{R} e(s)<\frac{1}{2} \\
\longmapsto \zeta_{\mathcal{M}_{1}}^{\prime}(0)-\zeta_{\mathcal{M}_{2}}^{\prime}(0)=-\ln \frac{\phi_{1}(0, L)}{\phi_{2}(0, L)} &
\end{array}
$$

Example : Poschl-Teller potentials

$$
\mathcal{M}_{1}=-\frac{d^{2}}{d x^{2}}+m^{2}-j(j+1) \operatorname{sech}^{2}(x) \quad \mathcal{M}_{2}=-\frac{d^{2}}{d x^{2}}+m^{2}
$$

Example : Poschl-Teller potentials

analytically: $\quad \operatorname{det}\left(\frac{\mathcal{M}_{1}}{\mathcal{M}_{2}}\right)=\frac{\Gamma(m) \Gamma(m+1)}{\Gamma(m-j) \Gamma(m+j+1)}$

Example : Poschl-Teller potentials

Example : isospectral potentials

$\operatorname{det}\left(\kappa_{1}, \kappa_{2}\right)=\exp \left\{-2\left(\operatorname{arctanh}\left(1 / \kappa_{1}\right)+\operatorname{arctanh}\left(1 / \kappa_{2}\right)\right)\right\}$ $\operatorname{det}(0.95,1.05)=-0.000625391$

```
    phi(x)/phi_0(x)
```


Instanton background in QCD

scalar (Klein-Gordon) determinant in an instanton background :

$$
\Gamma^{S}(A ; m)=\ln \left[\frac{\operatorname{Det}\left(-D^{2}+m^{2}\right)}{\operatorname{Det}\left(-\partial^{2}+m^{2}\right)}\right]
$$

now involves partial differential operators
radial symmetry reduces problem to a sum over ODEs

Radial symmetry in 4 dim.

Free Klein-Gordon operator :

$$
-\partial^{2} \rightarrow \mathcal{H}_{(l)}^{\mathrm{free}} \equiv\left[-\frac{\partial^{2}}{\partial r^{2}}-\frac{3}{r} \frac{\partial}{\partial r}+\frac{4 l(l+1)}{r^{2}}\right] \quad l=0, \frac{1}{2}, 1, \frac{3}{2}, \cdots
$$

Instanton Klein-Gordon operator : $\quad j=\left|l \pm \frac{1}{2}\right|$
$-D^{2} \rightarrow \mathcal{H}_{(l, j)} \equiv\left[-\frac{\partial^{2}}{\partial r^{2}}-\frac{3}{r} \frac{\partial}{\partial r}+\frac{4 l(l+1)}{r^{2}}+\frac{4(j-l)(j+l+1)}{r^{2}+1}-\frac{3}{\left(r^{2}+1\right)^{2}}\right]$
"angular momenta": $L_{a}=-\frac{i}{2} \eta_{\mu \nu a} x_{\mu} \partial_{\nu} \quad J^{a}=L^{a}+T^{a}$
degeneracy: $\quad d_{(l, j)}=(2 l+1)(2 j+1)$
$\Gamma=\sum_{l=0, \frac{1}{2}, \ldots} d_{l}\left\{\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l, l+\frac{1}{2}\right)}+m^{2}}{\mathcal{H}_{(l)}^{\text {free }}+m^{2}}\right)+\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l+\frac{1}{2}, l\right)}+m^{2}}{\mathcal{H}_{\left(l+\frac{1}{2}\right)}^{\text {free }}+m^{2}}\right)\right\}$
sum of radial (ODE) \log determinants

$$
d_{l}=(2 l+1)(2 l+2)
$$

Two numerical improvements

1. Evaluate \log det of ratio directly:

$$
\mathcal{S}_{(l, j)}(r)=\ln \left(\frac{\psi_{(l, j)}(r)}{\psi_{(l)}^{\mathrm{free}}(r)}\right)
$$

$$
\frac{d^{2} S_{(l, j)}}{d r^{2}}+\left(\frac{d S_{(l, j)}}{d r}\right)^{2}+\left(\frac{1}{r}+2 m \frac{I_{2 l+1}^{\prime}(m r)}{I_{2 l+1}(m r)}\right) \frac{d S_{(l, j)}}{d r}=U_{(l, j)}(r)
$$

potential :

$$
U_{(l, j)}(r)=\frac{4(j-l)(j+l+1)}{r^{2}+1}-\frac{3}{\left(r^{2}+1\right)^{2}}
$$

initial values : $\quad S_{(l, j)}(r=0)=0 \quad, \quad S_{(l, j)}^{\prime}(r=0)=0$
exact, but more stable numerically

Two numerical improvements

2. Expand about approximate solutions :

$$
\begin{aligned}
& \frac{d^{2} S_{(l, j)}}{d r^{2}}+\left(\frac{d S_{(l, j)}}{d r}\right)^{2}+\left(\frac{1}{r}+2 m \frac{I_{2 l+1}^{\prime}(m r)}{I_{2 l+1}(m r)}\right) \frac{d S_{(l, j)}}{d r}=U_{(l, j)}(r) \\
& \underbrace{S_{(l, j)}(r)=\int_{0}^{r} d r^{\prime}\left(\frac{U_{(l, j)}\left(r^{\prime}\right)}{W_{l}\left(r^{\prime}\right)}\right)+T_{(l, j)}(r) \quad W_{l}(r)=\frac{1}{r}+2 m \frac{I_{2 l+1}^{\prime}(m r)}{I_{2 l+1}(m r)}}_{\text {small }} \\
& \frac{d^{2} T_{(l, j)}}{d r^{2}}+\left(\frac{d T_{(l, j)}}{d r}\right)^{2}+\left(W_{l}(r)+2 \frac{U_{(l, j)}(r)}{W_{l}(r)}\right) \frac{d T_{(l, j)}}{d r}=-\left(\frac{U_{(l, j)}(r)}{W_{l}(r)}\right)^{2}-\frac{d\left(\frac{U_{(l, j)}(r)}{W_{l}(r)}\right)}{d r}
\end{aligned}
$$

exact, but more stable numerically

Radial integration results

$$
\Gamma^{S}(A ; m)=\sum_{l=0, \frac{1}{2}, \ldots} d_{l}\left\{S_{\left(l, l+\frac{1}{2}\right)}(r=\infty)+S_{\left(l+\frac{1}{2}, l\right)}(r=\infty)\right\}
$$

\underline{I} dependence of \log det

$$
P(l) \equiv S_{\left(l, l+\frac{1}{2}\right)}(r=\infty)+S_{\left(l+\frac{1}{2}, l\right)}(r=\infty)
$$

\underline{I} dependence of \log det

"Bad" news !

$$
\Gamma=\sum_{l=0, \frac{1}{2}, 1, \ldots}(2 l+1)(2 l+2) P(l)
$$

quadratically divergent sum !!!

BUT : bare expression, without regularization or renormalization

Regularization and renormalization

Regularization: Pauli-Villars regulator mass Λ

$$
\Gamma_{\Lambda}^{S}(A ; m)=\ln \left[\frac{\operatorname{Det}\left(-D^{2}+m^{2}\right)}{\operatorname{Det}\left(-\partial^{2}+m^{2}\right)} \frac{\operatorname{Det}\left(-\partial^{2}+\Lambda^{2}\right)}{\operatorname{Det}\left(-D^{2}+\Lambda^{2}\right)}\right]
$$

Renormalization: Minimal subtraction renormalization condition

$$
\begin{aligned}
\Gamma_{\text {ren }}^{S}(A ; m) & =\lim _{\Lambda \rightarrow \infty}\left[\Gamma_{\Lambda}^{S}(A ; m)-\frac{1}{12} \frac{1}{(4 \pi)^{2}} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right) \int d^{4} x \operatorname{tr}\left(F_{\mu \nu} F_{\mu \nu}\right)\right] \\
& =\lim _{\Lambda \rightarrow \infty}\left[\Gamma_{\Lambda}^{S}(A ; m)-\frac{1}{6} \ln \left(\frac{\Lambda}{\mu}\right)\right]
\end{aligned}
$$

Regularization and renormalization

$$
\begin{aligned}
\Gamma_{\Lambda}=\sum_{l=0, \frac{1}{2}, \ldots}(2 l+1)(2 l+2) & \left\{\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l, l+\frac{1}{2}\right)}+m^{2}}{\mathcal{H}_{(l)}^{\text {free }}+m^{2}}\right)+\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l+\frac{1}{2}, l\right)}+m^{2}}{\mathcal{H}_{\left(l+\frac{1}{2}\right)}^{\text {free }}+m^{2}}\right)\right. \\
& \left.-\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l, l+\frac{1}{2}\right)}+\Lambda^{2}}{\mathcal{H}_{(l)}^{\text {free }}+\Lambda^{2}}\right)-\ln \operatorname{det}\left(\frac{\mathcal{H}_{\left(l+\frac{1}{2}, l\right)}+\Lambda^{2}}{\mathcal{H}_{\left(l+\frac{1}{2}\right)}^{\text {fre }}+\Lambda^{2}}\right)\right\}
\end{aligned}
$$

problem : large 1 and large Λ limits?
solution : split sum into 2 parts, with L large but finite

$$
\Gamma_{\Lambda}^{S}(A ; m)=\sum_{l=0, \frac{1}{2}, \ldots}^{L} \Gamma_{(l)}^{S}(A ; m)+\sum_{l=L+\frac{1}{2}}^{\infty} \Gamma_{\Lambda,(l)}^{S}(A ; m)
$$

evaluate numerically, for large L
evaluate analytically, for large L

Large L behavior from WKB

analytic WKB (large l) computation :

$$
\begin{aligned}
\sum_{l=L+\frac{1}{2}}^{\infty} \Gamma_{\Lambda,(l)}^{S}(A ; m) & \sim \frac{1}{6} \ln \Lambda+2 L^{2}+4 L-\left(\frac{1}{6}+\frac{m^{2}}{2}\right) \ln L \\
& +\left[\frac{127}{72}-\frac{1}{3} \ln 2+\frac{m^{2}}{2}-m^{2} \ln 2+\frac{m^{2}}{2} \ln m\right]+O\left(\frac{1}{L}\right)
\end{aligned}
$$

2nd order WKB (higher orders don't contribute in large L limit)

NOTE :

- $\ln \Lambda$ term exactly as required for renormalization
- quadratic, linear and log divergences, and finite part
- exactly cancel divergences from numerical sum in large L limit !!!
- note mass dependence in "subtraction" terms

Comparison with asymptotic results

mid-way conclusions

- ODE determinant method extends to radial problems, and is very easy to implement numerically
- naively leads to divergent sum over angular momentum 1
- regularization and renormalization solve this problem
- split sum over 1 into numerical small 1 part and analytic WKB large 1 piece

Continued in Part II by Hyunsoo Min ...

