Mass dependence of instanton determinant in QCD: part I

Gerald Dunne (UConn)

Hyunsoo Min (Univ. Seoul and UConn)

- determinants in quantum field theory
- semiclassical "instanton" background
- 1 dimensional (ODE) computational method : Levit & Smilansky
- higher dimensional radial extension
- renormalization
- results

Computing Determinants of Partial Differential Operators

Gerald Dunne (UConn)

Hyunsoo Min (Univ. Seoul and UConn)

- determinants in quantum field theory
- semiclassical "instanton" background
- 1 dimensional (ODE) computational method : Levit & Smilansky
- higher dimensional radial extension
- renormalization
- results

problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

Quantum field theory functional integral $D_{\mu} = \partial_{\mu} - gA_{\mu}$ $Z = \int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A \exp\left[\int d^{4}x \left(trF^{2} + \bar{\psi}\left[i\mathcal{D} - m\right]\psi\right)\right]$ $= \int \mathcal{D}A \exp\left[\int d^{4}x \,trF^{2}\right] \,det\left[i\mathcal{D} - m\right]$ Effective action : $S[A] = \log \det\left[i\mathcal{D} - m\right]$ Exact results : covariantly constant $F_{\mu\nu}$ problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

$$Z = \int \mathcal{D}\phi \, e^{-S[\phi]} \sim \frac{e^{-S[\phi_b]}}{\sqrt{\det S^{(2)}[\phi_b]}}$$

" bounce" : $S^{(2)}[\phi_b]$ has a negative eigenvalue
tunneling rate : $\Gamma = 2 \, \mathcal{T}m \, \ln Z$

tunneling rate:
$$\Gamma = 2 T m \ln Z$$

= $\left| \det \left(\frac{S^{(2)}[\phi_b]}{S^{(2)}[\phi_0]} \right) \right|^{-\frac{1}{2}} e^{-S[\phi_b]}$

problem: determinant of a (partial) differential operator

Many applications in quantum field theory:

- effective action
- tunneling rates

Few exact results, so need approximation methods

- derivative expansion
- WKB
- thin/thick wall approximation for tunneling rates
- numerical ?

Instanton background in QCD

Instantons : semiclassical solutions $F_{\mu\nu} = \pm \tilde{F}_{\mu\nu}$

Stationary points of gauge functional integral : minimize Yang-Mills action for fixed topological charge

e.g. SU(2) single instanton (Belavin et al) :

$$A_{\mu}(x) = A^{a}_{\mu}(x)\frac{\tau^{a}}{2} = \frac{\eta_{\mu\nu a}\tau^{a}x_{\nu}}{r^{2} + \rho^{2}}$$
$$F_{\mu\nu}(x) = F^{a}_{\mu\nu}(x)\frac{\tau^{a}}{2} = -\frac{2\rho^{2}\eta_{\mu\nu a}\tau^{a}}{(r^{2} + \rho^{2})^{2}}$$

Instanton background in QCD

First simplification :

Self-duality Dirac and Klein-Gordon operators isospectral

$$(iD - m) \qquad (-D_{\mu}D_{\mu} + m^2)$$

$$\Gamma^F(A;m) = -2\,\Gamma^S(A;m) - \frac{1}{2}\ln\left(\frac{m^2}{\mu^2}\right)$$

> compute scalar determinant instead of spinor determinant

Instanton background - asymptotics

function of m only

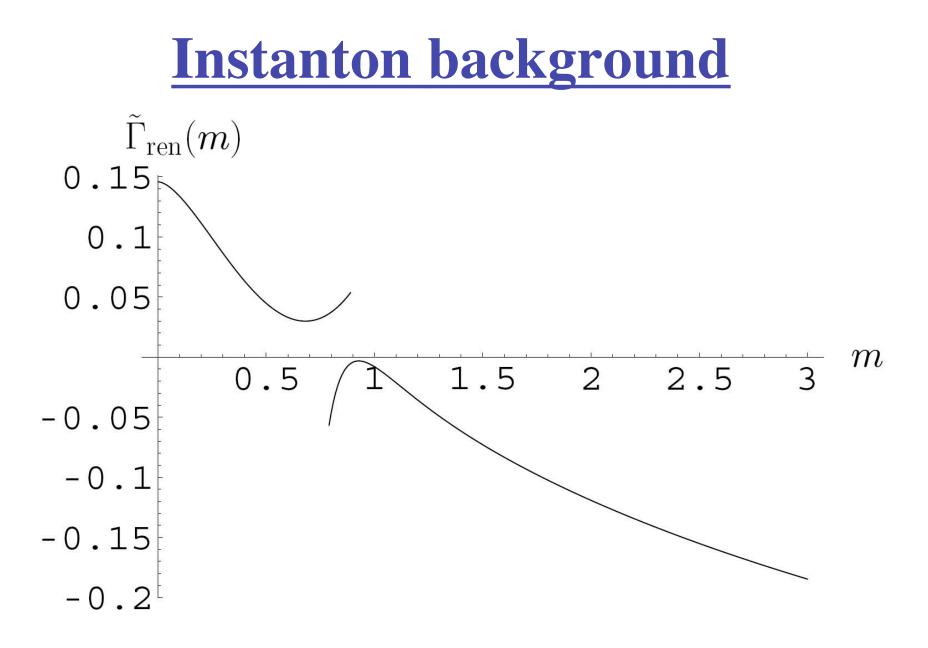
Renormalized effective action :

$$\Gamma_{\rm ren}^S(A;m) = \tilde{\Gamma}_{\rm ren}^S(m\rho) + \frac{1}{6}\ln(\mu\rho)$$

- <u>Small m</u> limit : exact massless Green's functions known
- Large m limit : from heat kernel expansion

$$\tilde{\Gamma}_{\rm ren}^S(m) \sim \begin{cases} \alpha \left(\frac{1}{2}\right) + \frac{1}{2} \left(\ln m + \gamma - \ln 2\right) m^2 + \dots \\ -\frac{\ln m}{6} - \frac{1}{75m^2} - \frac{17}{735m^4} + \frac{232}{2835m^6} - \frac{7916}{148225m^8} + \dots \end{cases}$$

$$\alpha\left(\frac{1}{2}\right) = -\frac{5}{72} - 2\zeta'(-1) - \frac{1}{6}\ln 2 \simeq 0.145873...$$



Question : how to connect large and small mass limits ?

Computing ODE determinants efficiently

Levit/Smilansky (1976), Coleman (1977), ...

Ordinary differential operator <u>eigenvalue problems</u> (i = 1, 2):

$$\mathcal{M}_i \phi_i = \lambda_i \phi_i$$
 $\phi_i(0) = 0 = \phi_i(L)$
 $x \in [0, L]$

Solve related **initial value problem** :

 $\mathcal{M}_i \phi_i = 0$ $\phi_i(0) = 0$; $\phi'_i(0) = 1$

<u>Theorem :</u>

$$det\left(\frac{\mathcal{M}_1}{\mathcal{M}_2}\right) = \frac{\phi_1(L)}{\phi_2(L)}$$

- other b.c.'s
- zero modes
- systems of ODE's

Kirsten & McKane

Computing ODE determinants efficiently

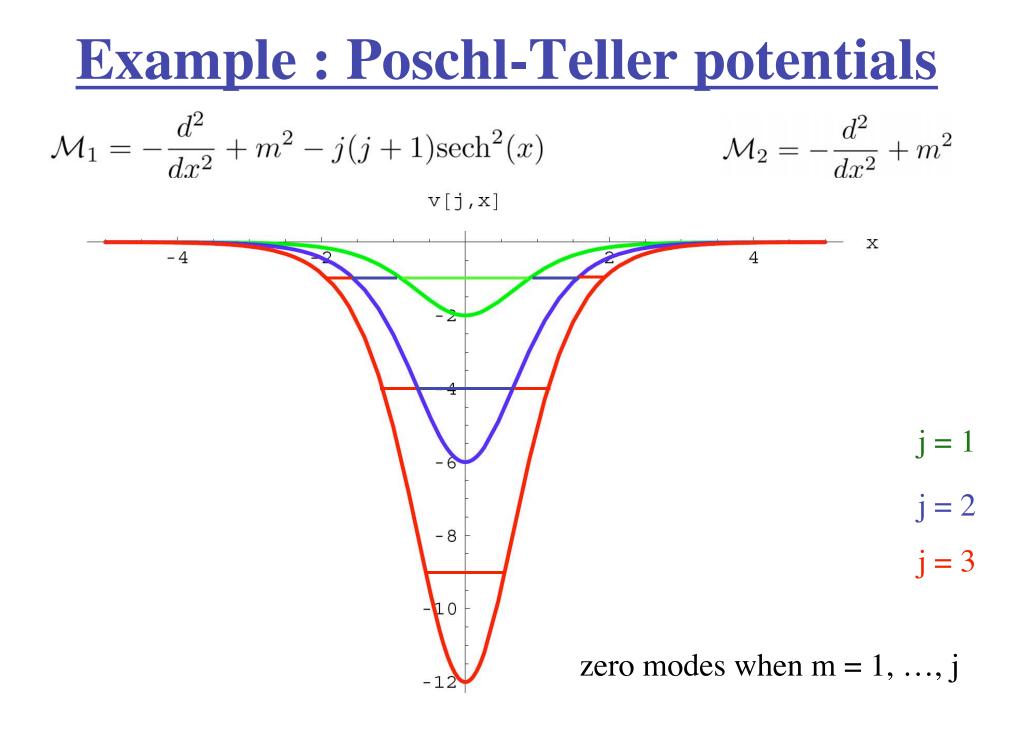
Theorem :

$$det\left(\frac{\mathcal{M}_1}{\mathcal{M}_2}\right) = \frac{\phi_1(L)}{\phi_2(L)}$$

 $(\mathcal{M}_i - k^2) \phi_i = 0$ $\phi_i(0) = 0$; $\phi'_i(0) = 1$

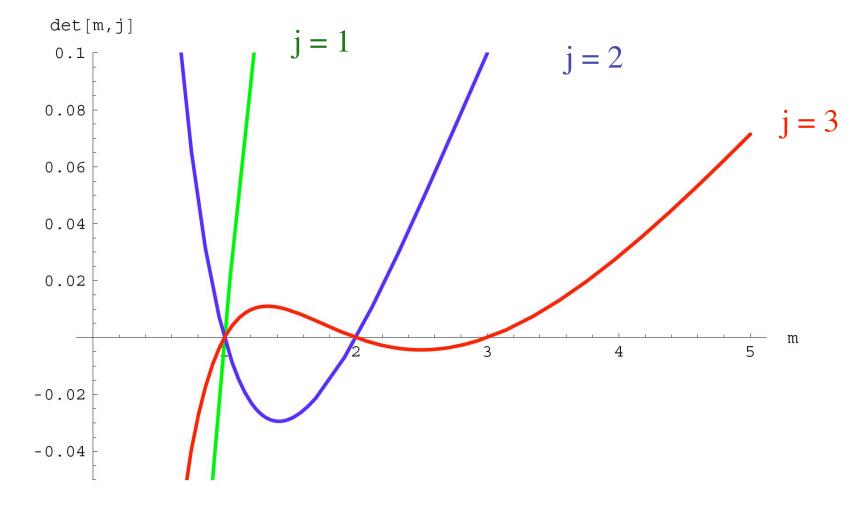
proof 1 :
$$det\left(\frac{\mathcal{M}_1 - k^2}{\mathcal{M}_2 - k^2}\right) = \frac{\phi_1(k^2, L)}{\phi_2(k^2, L)}$$
 same analytic structure in k^2

$$\begin{array}{l} \underline{\text{proof 2}}: \text{ zeta function :} \\ \zeta_{\mathcal{M}_{1}}(s) - \zeta_{\mathcal{M}_{2}}(s) &= \frac{1}{2\pi i} \int_{\gamma} dk \, k^{-2s} \, \frac{d}{dk} \, \ln \frac{\phi_{1}(k^{2}, L)}{\phi_{2}(k^{2}, L)} \\ \zeta_{\mathcal{M}_{1}}(s) - \zeta_{\mathcal{M}_{2}}(s) &= \frac{\sin(\pi s)}{\pi} \int_{0}^{\infty} dk \, k^{-2s} \, \frac{d}{dk} \, \ln \frac{\phi_{1}(-k^{2}, L)}{\phi_{2}(-k^{2}, L)} \\ \hline \\ \hline \\ \hline \\ \hline \\ \zeta_{\mathcal{M}_{1}}(0) - \zeta_{\mathcal{M}_{2}}'(0) &= -\ln \frac{\phi_{1}(0, L)}{\phi_{2}(0, L)} \end{array}$$

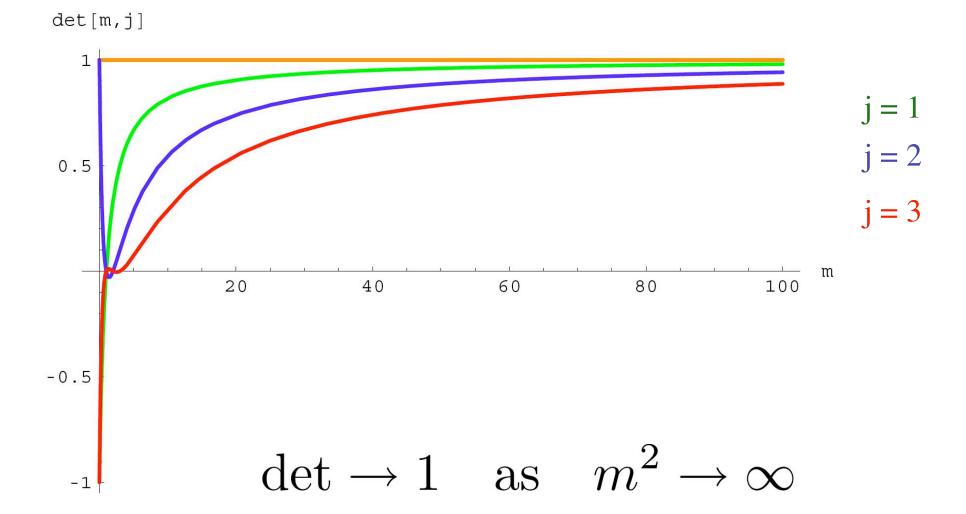


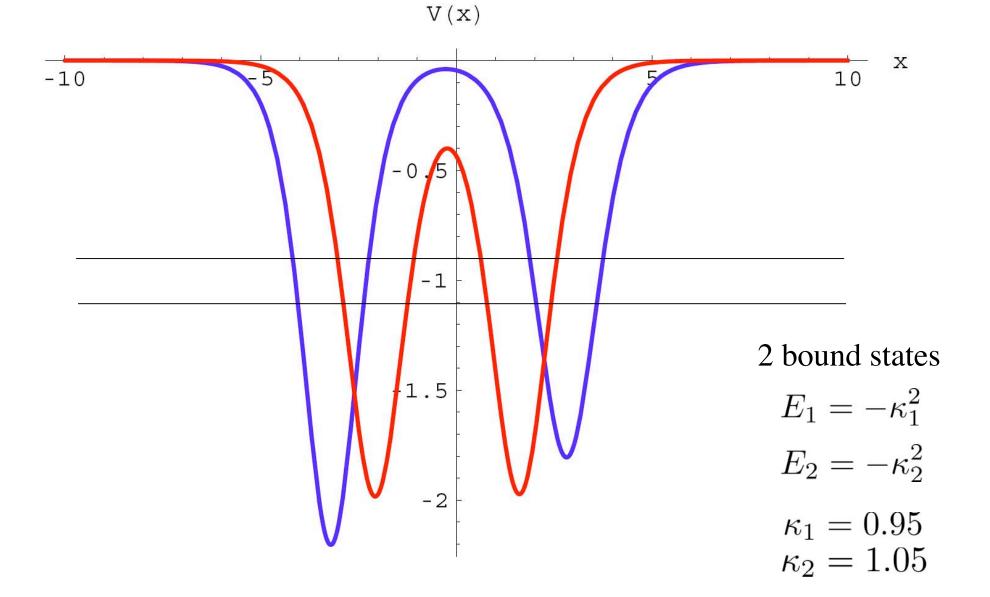
Example : Poschl-Teller potentials

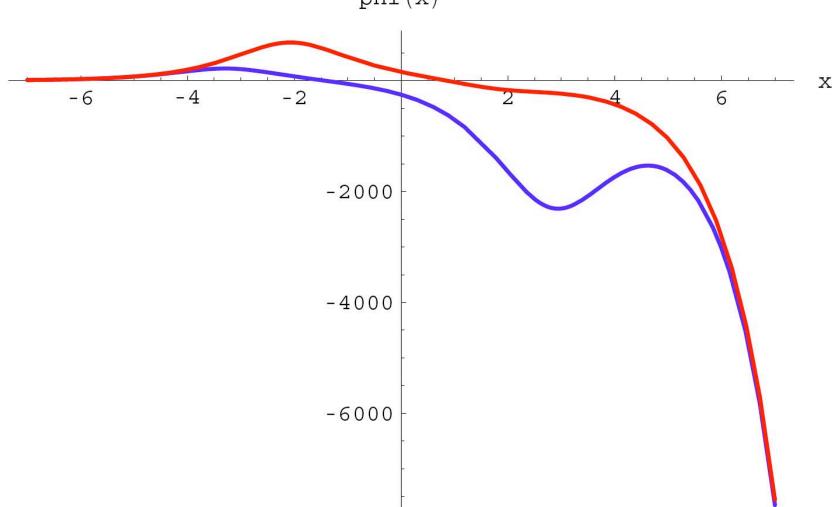
analytically:
$$\det\left(\frac{\mathcal{M}_1}{\mathcal{M}_2}\right) = \frac{\Gamma(m)\Gamma(m+1)}{\Gamma(m-j)\Gamma(m+j+1)}$$



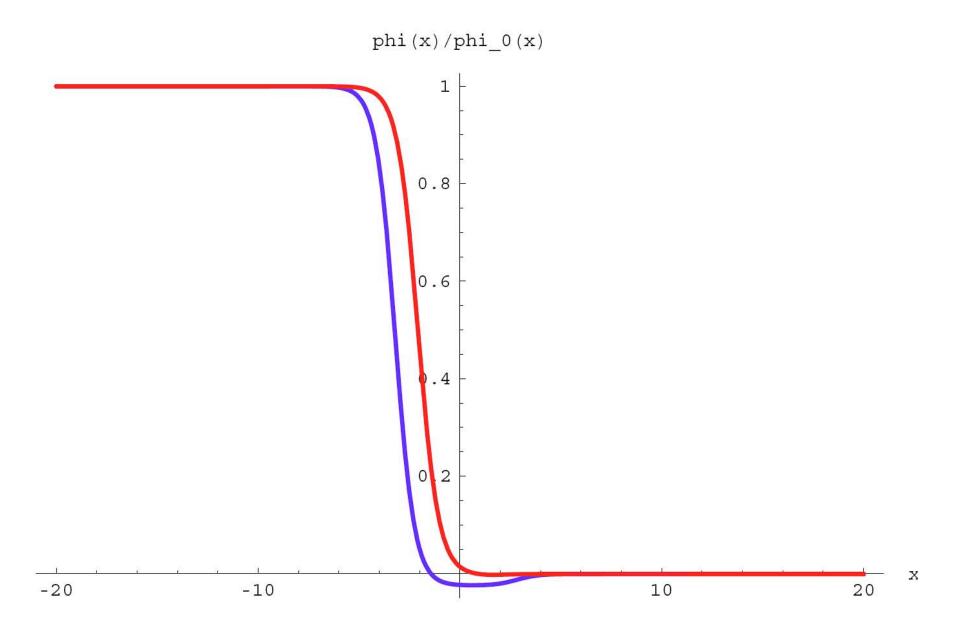
Example : Poschl-Teller potentials



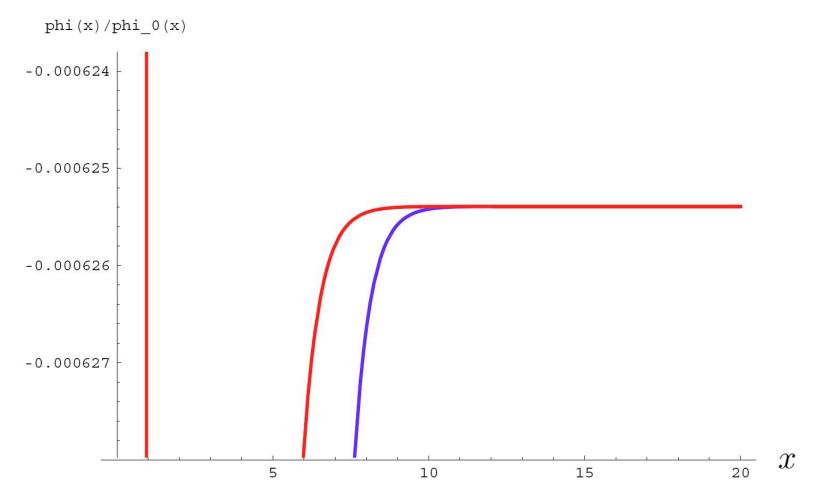




phi(x)



 $det(\kappa_1, \kappa_2) = \exp\{-2\left(\arctan(1/\kappa_1) + \arctan(1/\kappa_2)\right)\}$ det(0.95, 1.05) = -0.000625391



Instanton background in QCD

scalar (Klein-Gordon) determinant in an instanton background :

$$\Gamma^{S}(A;m) = \ln \left[\frac{\operatorname{Det}(-D^{2}+m^{2})}{\operatorname{Det}(-\partial^{2}+m^{2})}\right]$$

now involves **partial** differential operators

<u>radial symmetry</u> reduces problem to a sum over ODEs

Radial symmetry in 4 dim.

Free Klein-Gordon operator :

$$-\partial^2 \to \mathcal{H}_{(l)}^{\text{free}} \equiv \left[-\frac{\partial^2}{\partial r^2} - \frac{3}{r} \frac{\partial}{\partial r} + \frac{4l(l+1)}{r^2} \right] \qquad l = 0, \ \frac{1}{2}, \ 1, \ \frac{3}{2}, \ \cdots$$

Instanton Klein-Gordon operator :

$$-D^{2} \to \mathcal{H}_{(l,j)} \equiv \left[-\frac{\partial^{2}}{\partial r^{2}} - \frac{3}{r} \frac{\partial}{\partial r} + \frac{4l(l+1)}{r^{2}} + \frac{4(j-l)(j+l+1)}{r^{2}+1} - \frac{3}{(r^{2}+1)^{2}} \right]$$

"angular momenta": $L_a = -\frac{i}{2}\eta_{\mu\nu a}x_{\mu}\partial_{\nu}$ $J^a = L^a + T^a$

<u>degeneracy</u>: $d_{(l,j)} = (2l+1)(2j+1)$

$$\Gamma = \sum_{l=0,\frac{1}{2},\dots} d_l \left\{ \ln \det \left(\frac{\mathcal{H}_{(l,l+\frac{1}{2})} + m^2}{\mathcal{H}_{(l)}^{\text{free}} + m^2} \right) + \ln \det \left(\frac{\mathcal{H}_{(l+\frac{1}{2},l)} + m^2}{\mathcal{H}_{(l+\frac{1}{2})}^{\text{free}} + m^2} \right) \right\}$$

sum of radial (ODE) log determinants

 $d_l = (2l+1)(2l+2)$

Two numerical improvements

1. Evaluate log det of ratio directly :

$$\mathcal{S}_{(l,j)}(r) = \ln\left(\frac{\psi_{(l,j)}(r)}{\psi_{(l)}^{\text{free}}(r)}\right)$$

$$\frac{d^2 S_{(l,j)}}{dr^2} + \left(\frac{dS_{(l,j)}}{dr}\right)^2 + \left(\frac{1}{r} + 2m\frac{I_{2l+1}'(mr)}{I_{2l+1}(mr)}\right)\frac{dS_{(l,j)}}{dr} = U_{(l,j)}(r)$$

potential :
$$U_{(l,j)}(r) = \frac{4(j-l)(j+l+1)}{r^2+1} - \frac{3}{(r^2+1)^2}$$

initial values : $S_{(l,j)}(r=0) = 0$, $S'_{(l,j)}(r=0) = 0$

exact, but more stable numerically

Two numerical improvements

2. Expand about **<u>approximate</u>** solutions :

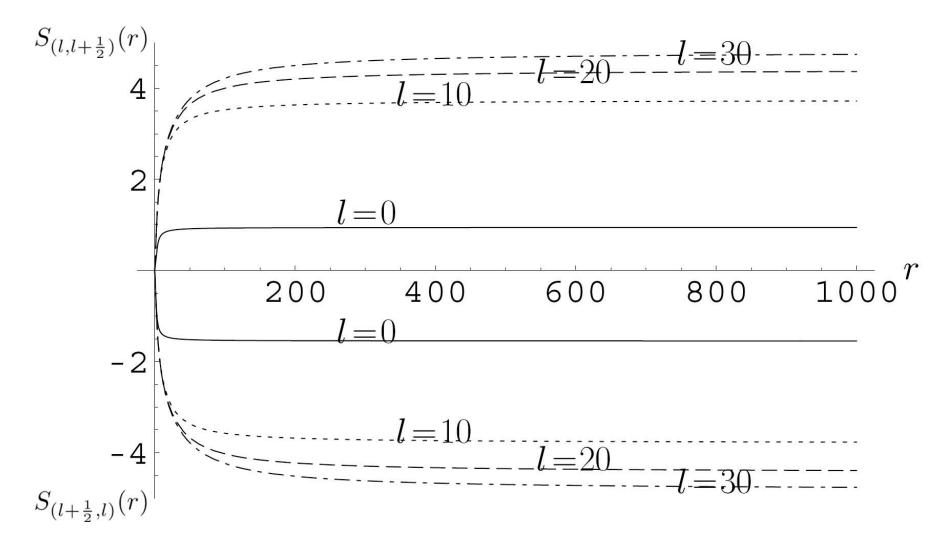
$$\frac{d^2 S_{(l,j)}}{dr^2} + \left(\frac{dS_{(l,j)}}{dr}\right)^2 + \left(\frac{1}{r} + 2m\frac{I'_{2l+1}(mr)}{I_{2l+1}(mr)}\right)\frac{dS_{(l,j)}}{dr} = U_{(l,j)}(r)$$
small
$$S_{(l,j)}(r) = \int_0^r dr' \left(\frac{U_{(l,j)}(r')}{W_l(r')}\right) + T_{(l,j)}(r) \qquad W_l(r) = \frac{1}{r} + 2m\frac{I'_{2l+1}(mr)}{I_{2l+1}(mr)}$$

$$\frac{d^2 T_{(l,j)}}{dr^2} + \left(\frac{dT_{(l,j)}}{dr}\right)^2 + \left(W_l(r) + 2\frac{U_{(l,j)}(r)}{W_l(r)}\right)\frac{dT_{(l,j)}}{dr} = -\left(\frac{U_{(l,j)}(r)}{W_l(r)}\right)^2 - \frac{d\left(\frac{U_{(l,j)}(r)}{W_l(r)}\right)}{dr}$$

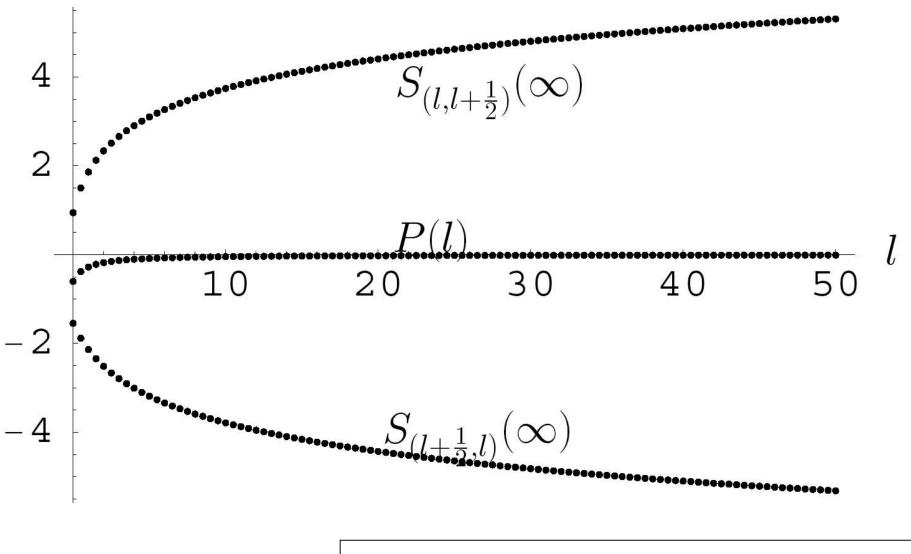
exact, but more stable numerically

Radial integration results

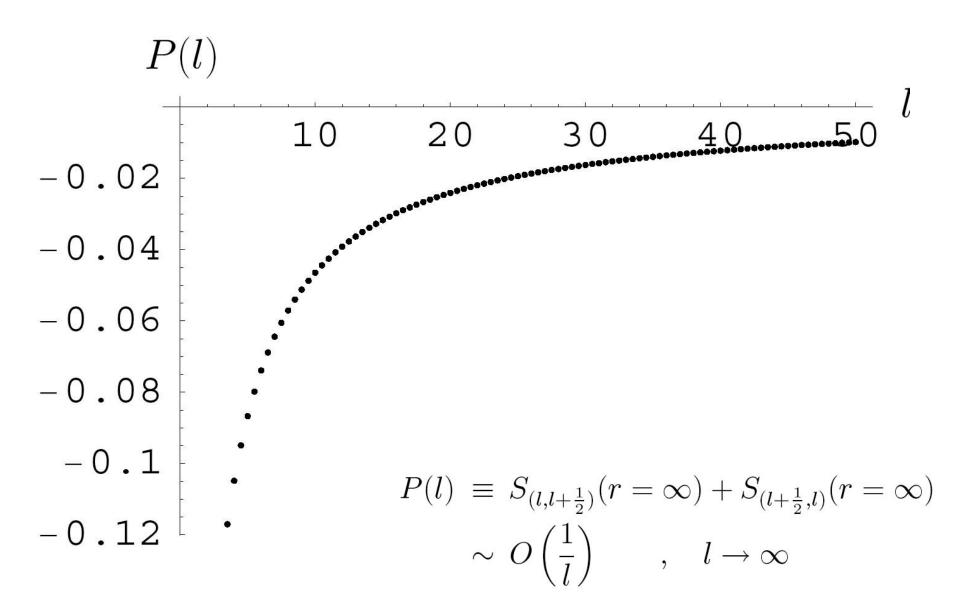
$$\Gamma^{S}(A;m) = \sum_{l=0,\frac{1}{2},\dots} d_{l} \left\{ S_{(l,l+\frac{1}{2})}(r=\infty) + S_{(l+\frac{1}{2},l)}(r=\infty) \right\}$$



l dependence of log det



$$P(l) \equiv S_{(l,l+\frac{1}{2})}(r=\infty) + S_{(l+\frac{1}{2},l)}(r=\infty)$$



"Bad" news !

$\Gamma = \sum_{l=0,\frac{1}{2},1,\dots} (2l+1)(2l+2)P(l)$

quadratically divergent sum !!!

BUT : bare expression, without regularization or renormalization

Regularization and renormalization

<u>Regularization</u>: Pauli-Villars regulator mass Λ

$$\Gamma^S_{\Lambda}(A;m) = \ln\left[\frac{\operatorname{Det}(-D^2 + m^2)}{\operatorname{Det}(-\partial^2 + m^2)}\frac{\operatorname{Det}(-\partial^2 + \Lambda^2)}{\operatorname{Det}(-D^2 + \Lambda^2)}\right]$$

<u>Renormalization</u>: Minimal subtraction renormalization condition

$$\Gamma_{\rm ren}^S(A;m) = \lim_{\Lambda \to \infty} \left[\Gamma_{\Lambda}^S(A;m) - \frac{1}{12} \frac{1}{(4\pi)^2} \ln\left(\frac{\Lambda^2}{\mu^2}\right) \int d^4x \, {\rm tr}(F_{\mu\nu}F_{\mu\nu}) \right]$$
$$= \lim_{\Lambda \to \infty} \left[\Gamma_{\Lambda}^S(A;m) - \frac{1}{6} \ln\left(\frac{\Lambda}{\mu}\right) \right]$$

Regularization and renormalization

$$\Gamma_{\Lambda} = \sum_{l=0,\frac{1}{2},...} (2l+1)(2l+2) \left\{ \ln \det \left(\frac{\mathcal{H}_{(l,l+\frac{1}{2})} + m^2}{\mathcal{H}_{(l)}^{\text{free}} + m^2} \right) + \ln \det \left(\frac{\mathcal{H}_{(l+\frac{1}{2},l)} + m^2}{\mathcal{H}_{(l+\frac{1}{2})}^{\text{free}} + m^2} \right) - \ln \det \left(\frac{\mathcal{H}_{(l+\frac{1}{2},l)} + \Lambda^2}{\mathcal{H}_{(l)}^{\text{free}} + \Lambda^2} \right) - \ln \det \left(\frac{\mathcal{H}_{(l+\frac{1}{2},l)} + \Lambda^2}{\mathcal{H}_{(l+\frac{1}{2})}^{\text{free}} + \Lambda^2} \right) \right\}$$

problem : large 1 and large Λ limits ?

solution : split sum into 2 parts, with L large but finite

$$\Gamma_{\Lambda}^{S}(A;m) = \sum_{l=0,\frac{1}{2},\dots}^{L} \Gamma_{(l)}^{S}(A;m) + \sum_{l=L+\frac{1}{2}}^{\infty} \Gamma_{\Lambda,(l)}^{S}(A;m)$$

evaluate **<u>numerically</u>**, for large L

evaluate **<u>analytically</u>**, for large L

Large L behavior from WKB

analytic WKB (large l) computation :

$$\sum_{l=L+\frac{1}{2}}^{\infty} \Gamma^{S}_{\Lambda,(l)}(A;m) \sim \frac{1}{6} \ln \Lambda + 2L^{2} + 4L - \left(\frac{1}{6} + \frac{m^{2}}{2}\right) \ln L$$

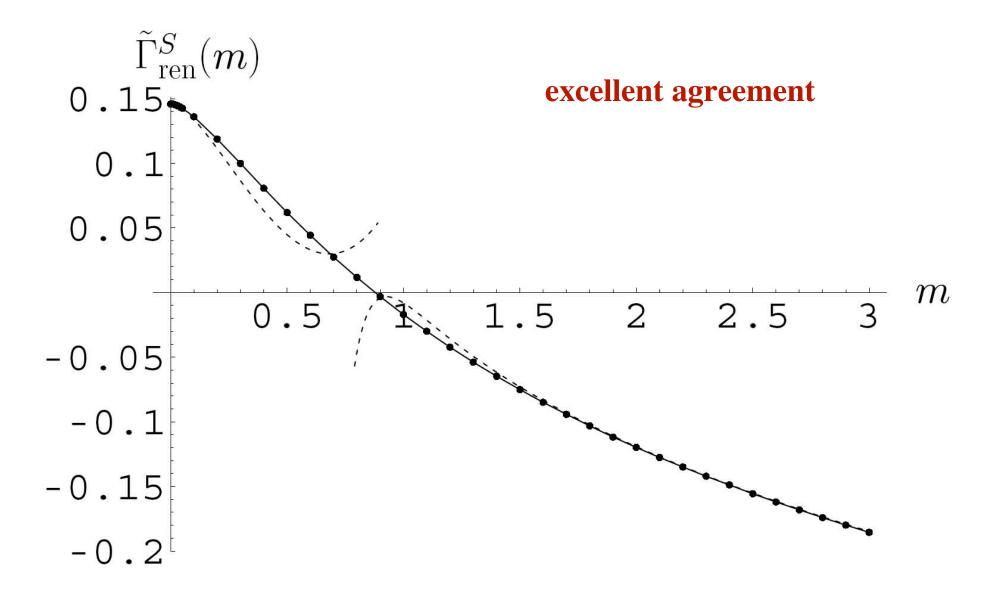
$$+\left[\frac{127}{72} - \frac{1}{3}\ln 2 + \frac{m^2}{2} - m^2\ln 2 + \frac{m^2}{2}\ln m\right] + O\left(\frac{1}{L}\right)$$

2nd order WKB (higher orders don't contribute in large L limit)

NOTE :

- $\ln \Lambda$ term exactly as required for renormalization
- quadratic, linear and log divergences, and finite part
- exactly cancel divergences from numerical sum in large L limit !!!
- note mass dependence in "subtraction" terms

Comparison with asymptotic results



mid-way conclusions

- ODE determinant method extends to radial problems, and is very easy to implement numerically
- naively leads to divergent sum over angular momentum l
- <u>regularization</u> and <u>renormalization</u> solve this problem
- split sum over l into <u>numerical</u> small l part and analytic
 <u>WKB</u> large l piece

Continued in Part II by Hyunsoo Min ...