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problem: determinant of a
(partial) differential operator

Effective action :

Exact results : covariantly constant 

Quantum field theory functional integral

• effective action
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tunneling rate :



problem: determinant of a
(partial) differential operator

• effective action
• tunneling rates

Many applications in quantum field theory: 

Few exact results, so need approximation methods

• derivative expansion
• WKB
• thin/thick wall approximation for tunneling rates
• numerical ?



Instanton background in QCD
Instantons : semiclassical solutions

e.g. SU(2) single instanton (Belavin et al) :

Stationary points of gauge functional integral : minimize Yang-Mills
action for fixed topological charge



Instanton background in QCD
First simplification :

Self-duality Dirac and Klein-Gordon operators isospectral

compute scalar determinant instead of spinor determinant 



Instanton background - asymptotics
Renormalized effective action :

• Small m limit : exact massless Green’s functions known
• Large m limit : from heat kernel expansion 

function of m only



Instanton background

Question : how to connect large and small mass limits ?



Computing ODE determinants efficiently
Levit/Smilansky (1976) , Coleman (1977), …

Ordinary differential operator eigenvalue problems (i =1, 2 ):

Solve related initial value problem :

• other b.c.’s
• zero modes
• systems of ODE’s

Kirsten & McKane

Theorem : 



Computing ODE determinants efficiently
Theorem : 

proof 1 :                                               same analytic structure in 

proof 2 :  zeta function :



Example : Poschl-Teller potentials

j = 1

j = 2

j = 3

zero modes when m = 1, …, j



Example : Poschl-Teller potentials

j = 1

j = 3

j = 2

analytically :



Example : Poschl-Teller potentials

j = 3

j = 2
j = 1



Example : isospectral potentials

2 bound states
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Example : isospectral potentials



Instanton background in QCD

scalar (Klein-Gordon) determinant in an instanton background :

now involves partial differential operators

radial symmetry reduces problem to a sum over ODEs



Radial symmetry in 4 dim.
Free Klein-Gordon operator :

degeneracy :

Instanton Klein-Gordon operator :

“angular momenta” :

sum of radial (ODE) log determinants



Two numerical improvements
1. Evaluate log det of ratio directly :

potential :

initial values :

exact, but more stable numerically 



Two numerical improvements
2. Expand about approximate solutions :

small

exact, but more stable numerically



Radial integration results



l dependence of log det



l dependence of log det



“Bad” news !

quadratically divergent sum !!!

BUT : bare expression, without regularization or renormalization



Regularization and renormalization

Regularization : Pauli-Villars regulator mass Λ

Renormalization : Minimal subtraction renormalization condition 



Regularization and renormalization

solution : split sum into 2 parts, with L large but finite

problem : large l and large Λ limits ?

evaluate numerically, for large L evaluate analytically, for large L



Large L behavior from WKB
analytic WKB (large l) computation :

2nd order WKB (higher orders don’t contribute in large L limit)

NOTE : 
• ln Λ term exactly as required for renormalization
• quadratic, linear and log divergences, and finite part
• exactly cancel divergences from numerical sum in large L limit !!!
• note mass dependence in “subtraction” terms



Comparison with asymptotic results

excellent agreement



mid-way conclusions

• ODE determinant method extends to radial problems, and
is very easy to implement numerically

• naively leads to divergent sum over angular momentum l

•  regularization and renormalization solve this problem

• split sum over l into numerical small l part and analytic
    WKB large l piece

Continued in Part II by Hyunsoo Min …


