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1. Introduction. To motivate the kind of problem we are treating, consider the heat
kernel expansion well known to researchers in general relativity, gauge theories, and
differential geometry. Let A = ¢P9(x)V,V, be the Laplace-Beltrami operator of a
Riemannian manifold (with Riemann curvature tensor R%.q(z)); let K (¢,z,y) be the
integral kernel of the operator e*® (which solves the initial value problem for dv/0t =
Av). Then the diagonal (coincidence) value of K has an asymptotic expansion at
small ¢,

K(t,z,z) ~ (4nt) "2 Z ap, (x)t"
n=0

(d = dimension). The first two coefficients are well known:

ay = % R, ay= 3—10 AR + 7% R? — 1—;) RPUR,, + 1—5130 RPUSR s -
(Recall that the Ricci tensor is Ry, = RPF,p, and the curvature scalar is R = R, .) The
third term is also known [e.g., 6]; it is a linear combination of 17 terms, of which R3,
RPUR,y.q, RPT Ry s, and A?R are typical. It is clear that working to higher orders
is giving rise to a combinatorial explosion.

Mathematicians and physicists have proposed a variety of algorithms for calculating
an le.g., 1, 2,4, 6-7, 12, 13, 15, 17]. Advances in computer hardware and software are
making high-order calculations increasingly practical. (MathTensor, the Mathematica
tensor analysis program by Parker and Christensen [14], has been largely motivated by
precisely this problem.) However, all methods eventually run into the same difficulty:
combining a large number of similar terms into some comprehensible normal form.
The symmetries of the Riemann tensor make this problem nontrivial. For example,
RPI™ R,qs is not linearly independent of RPI"*R,,,,,, but this fact is not immediately



obvious from consideration of the index symmetries of each factor separately. A different
kind of example is provided by R?,R% R"sR% — the trace of the fourth power of the
Ricci tensor, regarded as a matrix. By a well known theorem of matrix theory, it is
expressible as a polynomial in the lower-degree traces if d < 4.

Recognizing all such relationships, general and dimension-dependent, is a problem
in group representation theory. The groups involved are S, (the permutations of a
tensor’s indices), GL(d), and O(d). The methods required are known to physicists
using group theory in atomic and nuclear physics [e.g., 18]. The lore is that associated
with Young diagrams; indeed, the Young diagram representing the symmetries of Rgpcq
is the one with 4 blocks arranged in a square.

2. The basis problem for Riemann polynomials. Let us make the problem more
precise with some formal definitions:

A Riemann monomial is an expression formed by tensor products and contractions
from the Riemann tensor R and its covariant derivatives. A Riemann polynomial is
a linear combination of these. (Actually, because of the rule relating commutation of
covariant derivatives to R, we should work with cosets modulo terms of lower order and
higher degree.)

Let R, be the vector space of Riemann polynomials of rank r (number of free
tensor indices), degree ¢ (number of factors R), and order s (number of derivatives of
g = number of covariant derivatives plus twice ¢). Note that the heat kernel coefficient
a, belongs to @Z’:l Rgn’q. We can further subdivide according to how the covariant
derivatives are distributed among the factors; for example, R%Q = R({)Q 0} @R?l 1 where
RPI"SR,,..qs belongs to the first of these sets and RPY"R,,., to the second.

We can now state three increasingly ambitious versions of our problem: For R

$,97

(1) Find its dimension — the number of elements in a basis.

(2) Construct such a basis — list its elements. We want to choose the best basis — it
should be “natural” or “simplest” or ....

(3) Provide a normal form algorithm — i.e., tell how to express an arbitrary element
in terms of the basis.

In view of the nonuniqueness of the basis, one might add a fourth objective:

(4) Provide formulas or computer programs to convert from one basis to another.

3. Tools. The concepts employed include urreducible representation, outer product,
plethysm, branching rules, modification rules [3, 8, 9-11, 16, 18]. (Since there is no
space here for a course in group representation theory, we can only cite the jargon.) A
major tool is the computer program SCHUR written by Wybourne and his students [19].

4. Results so far [5]. On objective (1): SCHUR easily provides us with the number of
scalars through order 12. For example, in order 6 one gets the table



class 2 3 4 5 6 total
RE.1 1 1
Rf{)2 0} 1 2 1 4
RY11y 12 1 4
ngg 1 2 3 1 1 8

Total 4 6 5 1 1 17

where the column heading is the minimal dimension in which the object is independent
of simpler ones. We find 92 scalars in order 8 (cf. [1]), 668 in order 10, and 6721 in
order 12. (Since order is related to dimension in applications of a, , these last are
potentially relevant to Kaluza—Klein and string theories.)

On objective (2): We have lists of all the scalars through order 8 and all the higher
rank tensors through order 6. For example, the table for RgQ reads

tensor representation dimension
RopReg.e [5]42[4 1]+2[3 2]+[3 1%]+[2%1] 30
R.o Rpcde [32]+[2%1] 10
RRapedse [32] 5
RP v Rpcde [41]+2[3 2]+2[3 1%]+2[221]+[2 13] 40
Rab? Rpede [41]+[32]+[312]+[221] 20
RP, Rppedse [41]+2[32]+[3 1%]+[221] 25
RPU, Ryged:e [41]+[3 2]4+[3 12]+[221] 20

RP4Rpeqae  [5]4[41]42[32)4+[312)+[221]4+[213] 30

The dimension stated is the number of independent index permutations, and the de-
composition of the corresponding S5 and O(d) representation into irreducibles is given.
Objectives (3) and (4) are implicit in the foregoing results, but not yet realized in
practice. Their proper embodiment is in computer software, not a published document.
The methods shown here can be applied to problems involving other tensors in
addition to R.
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