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Introduction

The first purpose of this talk is to review the cutoff calculations
for flat walls and the distributional Einstein equations.

Estrada et al., Vacuum Stress-Energy Density and Its
Gravitational Implications (“Leipzig paper”) J. Phys. A 41
(2008) 164055.

Fulling et al., Energy Density and Pressure in Power-Wall
Models (“Benasque paper”) International Journal of
Modern Physics: Conference Series.

The second purpose of the talk is to report our recent progress,
starting with a visit in March to LSU to consult with Ricardo
Estrada and Yunyun Yang.
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Boundaries

For idealized boundary conditions, energy density has nonintegrable
singularities near boundaries.

T00 ∼
c1

s4
+
c2

s3
+ · · · (s = distance from boundary). (1)

Zeta-function regularization magically removes (most of) these infinities
from the total energy. Ultraviolet-cutoff regularization requires them to be
discarded ad hoc (with logarithmic ambiguity in cases where zeta has a
pole).

This is all well and good for calculating forces between rigid bodies. But
what about gravity? (Deutsch & Candelas 1979)
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A Program

For realistic BC, these boundary effects are (large but) finite. They are
part of the energy of the boundary material.

Working hypothesis: The stress tensor for idealized BC with the
ultraviolet cutoff parameter finite is a reasonable ad hoc model for the true
situation.

The theory will have a sensible renormalized limit when the cutoff is taken
away. This requires making sense of the Einstein equation with a
distributional source, “regularized” in the mathematical sense.

Gravitational effects in the lab are formally infinite but presumably actually
tiny. Therefore, linearized Einstein equations should be OK. We take a flat
background — but might need to add curvature due to mass of the
boundary.
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Scalar Field

S =

∫
Ω
L
√
g dd+1x, (2)

L =
1

2
[gµν∂µφ∂νφ+ ξRφ2], Tµν =

2
√
g

δS

δgµν
. (3)

∂2φ

∂t2
= ∇2φ with boundary conditions ≡ −Hφ. (4)

ξ labels different gravitational couplings. In the flat-space limit
the field equation and (classical) total energy are independent
of ξ, but the stress tensors are different.
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Stress Tensor

T00

(
ξ = 1

4

)
=

1

2

[(
∂φ

∂t

)2

− φ∇2φ

]
, (5)

Tjj
(
ξ = 1

4

)
=

1

2

[(
∂φ

∂xj

)2

− φ∂
2φ

∂x2
j

]
, (6)

Tµν(ξ) = Tµν
(

1
4

)
+ ∆Tµν , (7)

∆T00 = −2
(
ξ − 1

4

)
∇ · (φ∇φ). (8)

∆Tjj = −2
(
ξ − 1

4

) [(∂φ
∂t

)2

−
∑
k 6=j

(
∂φ

∂xk

)2

+ φ
∂2φ

∂x2
j

]
. (9)
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We consider the scalar field, usually taking ξ = 1
4 .

T (t, r, r′) = −
∞∑
n=1

1

ωn
φn(r)φn(r′)∗e−tωn . (10)

E = T00 = − lim
···

1

2

∂2T

∂t2
,

pj = Tjj = lim
···

1

8

(
∂2T

∂xj2
+
∂2T

∂x′j
2 − 2

∂2T

∂x ∂x′

)
.
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Empty Space

T 0(r, t; r′, t′) = − 1

2π2

1

(t− t′)2 + |r− r′|2
.

Note: t is a cutoff parameter, not the physical time (except
under Wick rotation).
Local point-splitting in arbitrary direction uµ (Christensen):

Tµν =
1

2π2t4

(
gµν − 4

uµuν
uρuρ

)
. (11)

Thus Tµνren = Λgµν .
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Two Walls Intersecting at a Right Angle

×

∗ ◦

◦

× = point under study
◦ = reflection through a side
∗ = reflection through a corner
• = periodic image (if any)
The multiple-reflection (image) method is exact in this case.
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One Flat Hard Wall

Dirichlet wall at z = 0: (r⊥ = (x, y))

T ren =
1

2π2

1

t2 + (r⊥ − r′⊥)2 + (z + z′)2
. (12)

Set r⊥ = 0 (and t′ = 0).
Then t, r⊥, z − z′ are still available as cutoff parameters.

Recall E = − 1

2

∂2T

∂t2
, etc. Therefore . . .
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M ≡ t2 + x2 + y2 + (z + z′)2.

2π2E = M−3[−3t2 + x2 + y2 + (z + z′)2],

2π2p1 = M−3[−t2 + 3x2 − y2 − (z + z′)2],

p2 similar; p3 = 0.

(Rigid displacement of the wall does not change the total
energy. But there is a layer of energy against the wall.)
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Insert a “Test” Wall

........................................................ .................... . . . . . .
. . . . . . .

x

z

Imagine another planar boundary at x = 0 ; let’s find pressure on it (from
left side only). Volume of space occupied by boundary energy increases
with x, so total energy does.
In accordance with the principle of energy balance (virtual work) one
expects

F =

∫ ∞
0

T 11 dz = −E = −
∫ ∞

0
T 00 dz.

If all cutoffs are removed, E =
1

32π2z4
= −p1 , so energy

balance is formally satisfied, but the integrals are divergent.
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Point-Splitting

Ultraviolet Cutoff (t 6= 0, r⊥ = 0, z′ = z)

F = +
1

2
E (not (−1)E).

This E is negative and is the same one gets from expansion of

E =
1

2

∑
n

ωne
−tωn .

But we argue that this E is wrong and this F is (relatively) correct.

Point-splitting ⊥ to movable wall (x 6= 0, others 0)
Then (t, E) exchange places with (x,−p1).

F = +2E > 0.

(This time E is “right” and F is wrong.)
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Point-splitting in neutral direction (y 6= 0, others 0)

F = −E, as should happen!

2π2E = (y2 + 4z2)−2 > 0,

2π2p1 = −(y2 + 4z2)−2.

General ξ
The correction terms

do not exhibit the paradox: ∆p = −∆E always;

integrate to 0 anyway.
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Possible Responses to the Pressure Paradox

1. Divergent terms are so cutoff-dependent that they have no physical
meaning whatsoever, and the only meaningful calculations are those in
which these terms can be canceled out (e.g., forces between rigid bodies).

2. One must find a better model! (such as the soft wall)

3. Expressions with finite cutoff, such as 2π2E = (y2 + 4z2)−2

(where y is now a cutoff parameter, not a coordinate) can be regarded as
ad hoc models of real materials, more physical and instructive than their
limiting values, such as E = 1/32π2z4.

The paradox casts some doubt on the viability of this point of view. It now
appears that physically plausible results can be obtained only by using
different cutoffs for different parts of the stress tensor:
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For the leading divergence (and higher-order divergences in the bulk that
occur in curved space-time or external potentials) the preferred ansatz is
“covariant point-splitting” based on the wave kernel, treating all directions
in space-time equivalently, and removing the cutoff-dependent terms in
such a way that the only ambiguity remaining can be regarded as a
renormalization of the cosmological constant.

For the divergences at boundaries, it appears that the points must be
separated parallel to the boundary, but in a direction orthogonal to the
component of the stress tensor being calculated. Moreover, if the
separation has a time component, a Wick rotation seems mandatory.

This situation cannot be regarded as a logically sound, long-term solution;
its sole justification is that, unlike less contrived alternatives, it does not
immediately produce results that are obviously wrong.
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Isn’t there an equal and opposite force from the
other side of the wall?

In the flat case, maybe. Might not the BC be different on the other side?

In any case, this way out doesn’t work for a spherical boundary, where the
paradox was discovered (S.Fulling and M. Schaden). Ultraviolet cutoff
gave F = +1

2E. Inside and outside energy layers have the same sign; total
energy is proportional to surface area.

The wedge case will be discussed in the next talk. The cylindrical
boundary case still needs to be investigated.
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Linearized Einstein equation

In notation of Schutz’s book, −16πTµν = �h̄µν ,

h̄µν = hµν −
1

2
(Trh)ηµν , hµν ≡ gµν − ηµν .

Assume the following three conditions:

Linearized Einstein equation
scalar field
plane boundary (cutoff, approaching Dirichlet)

Assume static solution and let ρ = T00 , h = h00 .

−∇2h = 16πρ = ± 8

π

4x2 − 3t2

(t2 + 4x2)3
θ(x).

Assume an infinite wall, so ∇2h = d2h
dx2

.
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Solution (homogeneous part ignored):

h(x) = ±θ(x)

π

[
4x

t3
tan−1

(
2x

t

)
− 1

t2 + 4x2
+

1

t2

]
.

If we take the limit t ↓ 0 in the equation, we get an ODE with a
distribution as source. If we take the limit t ↓ 0 in the solution, we get a
singular distribution. Both limits involve somewhat arbitrary
regularizations (Hadamard finite parts).
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Moment expansion theorem

Theorem

Moment Expansion Theorem: Let f ∈ S ′(R) with support bounded on
the left. Suppose

f(x) = b1x
β1 + · · ·+ bnx

βn +O(xβ), asx→∞, (13)

where β1 > β2 > · · · > βn > β, and −(k + 1) > β > −(k + 2). Then as
λ→∞,

f(λx) =
n∑
j=1

bjgj(λx) +
k∑
j=0

(−1)jµj
δ(j)(λx)

j!
+O(λβ) (14)

in the space S ′(R), where gj(x) = xβjθ(x) if βj 6= −1,−2,−3, . . . and
gj(x) = Pf(xβjθ(x)) if βj = −1,−2,−3, . . . . Here the moments are

µj(f) = F.p.

∫ ∞
−∞

f(x)xjdx. (15)
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This theorem describes in what technical conditions one can expand a
test function φ in a Taylor series around x = 0 and then take the limit
λ→∞ term by term (λ = 1/t in our application).

Moment expansion theorem (intuitive summary): In certain
distribution spaces, when a distribution f(λx) is applied to a test
function φ, it is legitimate to expand φ in a Taylor series and take
λ→∞ term by term, getting a series in δ(n)(x).
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Distributions and Hadamard finite part

References:

1 Ram P. Kanwal & Ricardo Estrada, A Distributional Approach to
Asymptotics: Theory and Applications, 2002.

2 Estrada & Fulling, J. Phys. A 35 (2002) 3079.

A distribution f is a linear mapping from functions to numbers satisfying
some technical conditions.
Ex. 1 : For a function f , f [φ] ≡

∫∞
−∞ f(x)φ(x) dx.

Ex. 2 :δ[φ] ≡ φ(0). There is no function δ(x).
Precision requires a function space and a topology to define continuity
of f . Calculus operations are defined by formal manipulations:

f ′[φ] ≡ f [φ′], (16)(∫
f(x, α) dα

)
[φ] =

∫
dx

∫
dα f(x, α)φ(x) ≡

∫
dα

∫
dxf(x, α)φ(x)

(applicable when f = eixα, for example).
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Hadamard finite part

What is
∫∞
−∞

1
x2
φ(x) dx?

Recall:

PV

∫ ∞
−∞

1

x
φ(x) dx = lim

ε→0

[∫ −ε
−∞

1

x
φ(x) dx+

∫ ∞
ε

1

x
φ(x) dx

]
(17)

and similarly for any odd power. ( PV = “principal value”.)

More generally, let F (ε) =
∫
|x|>ε f(x)φ(x) dx = F0(ε) + F1(ε) where F0(ε)

is continuous at 0 and

F1(ε) = a0 ln ε+

K∑
j=1

aj
εj

for instance. (18)

Then you could define f [φ] ≡ F0(0) ≡ F.p.f [φ] ≡ Pff [φ]. (F.p. = “finite
part” ; Pf = “pseudofunction”. )
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Example: Recall the Gelfand rule in dimensional regularization that∫ ∞
0

kn dk = 0 ∀n ∈ Z.

Good news: F.p. f [φ] =
∫∞
−∞ f(x)φ(x) dx whenever the latter

converges (i.e., whenever φ vanishes fast enough near 0). F.p. f is
called a regularization of f .

Bad news: Scaling anomaly (for H(x) = Heaviside step function ):

F.p.

(
H(λx)

(λx)k)

)
=

1

λk
F.p.

(
H(x)

xk

)
+

lnλ(−1)k−1δ(k−1)(x)

λk(k − 1)!
(19)

There is a similar problem for the derivative. (Every time k moves
through an integer, we need to start discarding a new term.)
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Hadamard Pf formulas

d

dx
[θ(x) lnx] = Pf

(
θ(x)

x

)
. (20)

d

dx
Pf
(
θ(x)

xk

)
= −kPf

(
θ(x)

xk+1

)
+

(−1)kδ(k)(x)

k!
. (21)

Pf
(

θ(λx)

(λx)d+1

)
=

1

λd+1
Pf
(
θ(x)

xd+1

)
+

(−1)d lnλδ(d)(x)

λd+1d!
. (22)

δ(j)(λx) = λ−(j+1)δ(j)(x). (23)

The first three Hadamard Pf formulas are not scale-invariant; the
ambiguous ln t terms result.
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Back to the Einstein equation

By the moment expansion theorem, divergent leading powers can be discarded
when using a singular function to define a distribution. More precisely, they are
replaced by derivatives of δ with arbitrary finite coefficients.

Careful attention to the definitions shows that lim(soln) is indeed
soln(lim) . In other words, our toy Einstein equation survives the
renormalization process as a mathematically consistent differential equation.

Equation : −∇2h = 16πT00 =
8

π

4x2 − 3t2

(t2 + 4x2)3
θ(x).

Solution:

h(x) =
θ(x)

π

[
4x

t3
tan−1

(
2x

t

)
− 1

t2 + 4x2
+

1

t2

]
.
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Limit equation: Let λ = t−1.

−d
2h00(x)

dx2
=

1

2π
F.p.

(
θ(x)

x4

)
− 2λ3δ(x) +

1

π
λ2δ′(x) (24)

+
1

8π
δ′′′(x)− 1

12π
ln(2λ)δ′′′(x) +O

(
1

λ

)
. (25)

It is indeed solved by the limit of the solution:

h00(x) = 2λ3θ(x)x− 1

π
λ2θ(x)− 1

12π
F.p.

(
θ(x)

x2

)
(26)

− 1

18π
δ′(x) +

1

12π
ln(2λ)δ′(x). (27)

The finite part is defined so that it integrates to 0; the operation is not
scale-invariant, and that fact accounts for the apparent dimensional
incoherence of the δ′ lnx0 term.

So far this is a review of the Leipzig calculations. Now we turn
to the pressure and/or to neutral point-splitting.
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Pressure

For the moment keep t as the cutoff parameter. The differential equation for
the pressure component is

− d2h11(z)

dz2
= 16πp1 = ∓ 8

π

1

(t2 + 4z2)2
θ(z) (28)

and the solution is given by

h11(z) = ±θ(z)
π

[
2z

t3
tan−1

(
2z

t

)]
. (29)

For the evaluation of the asymptotic behavior of (28), the relevant distribution
for the moment expansion theorem is

f1(z) =
1

(1 + 4z2)2
θ(z) =

1

16

1

z4
+O

(
1

z6

)
as z →∞. (30)



Distributional
Einstein

equations for
a Flat Wall

Fernando
Daniel Mera
and Stephen

Fulling

Let’s go back to the Benasque energy and pressure formulas:

M = t2 + x2 + y2 + (z + z′)2.

2π2E = M−3[−3t2 + x2 + y2 + (z + z′)2],

2π2p1 = M−3[−t2 + 3x2 − y2 − (z + z′)2],

If t is the cutoff parameter, then

2π2p1 = −M−3[t2 + 4z2].

Now we take the distributional limit as t→∞.
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The moment expansion theorem states, up to the relevant order, that the
asymptotic expansion of f1(z) is

f1(λz) ∼ 1
16Pf

(
θ(λz)
(λz)4

)
+
∑3

j=0(−1)jµj(f1) δ
(j)(λz)
j! +O

(
1
λ5

)
= 1

16

{
1
λ4
Pf
(
θ(z)
z4

)
− lnλ

3!λ4
δ
′′′

(z)

}
+
∑3

j=0(−1)jµj(f1) δ
(j)(z)
j!λj+1 +O

(
1
λ5

)
, (31)

and the moments µj(f1) of the function f1 are

µ0(f1) =

∫ ∞
0

1

(1 + 4z2)2
dz =

π

8
, (32)

µ1(f1) =

∫ ∞
0

1

(1 + 4z2)2
· z dz =

1

8
, (33)

µ2(f1) =

∫ ∞
0

1

(1 + 4z2)2
· z2 dz =

π

32
, (34)

µ3(f1) = F.p.

∫ ∞
0

1

(1 + 4z2)2
· z3 dz = − 1

32
+

1

16
ln 2. (35)
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The distributional limit of the differential equation (28) is

−d
2h11(z)

dz2
= ∓ 1

2πPf
(
θ(z)
z4

)
∓ λ3δ(z)± 1

πλ
2δ

′
(z)± 1

8λδ
′′
(z)

∓ 1
24π δ

′′′(z)± 1
12π ln(2λ)δ

′′′
(z) +O

(
1
λ

)
. (36)

The relevant functions for the analysis of h(z) are

f2(z) = z tan−1(2z)θ(x) =
π

2
z − 1

2
+

1

24

1

z2
+O

(
1

z4

)
as z →∞. (37)

The moment expansion theorem says that

f2(λz) ∼ π

2
θ(λz)(λz)− 1

2
θ(λz) +

1

24
Pf
(
θ(λz)

(λz)2

)
(38)

+
1∑
j=0

(−1)jµj(f2)
δ(j)(λz)

j!
+O

(
1

λ

)

=
π

2
λθ(z)z − 1

2
θ(z) +

1

24λ2
Pf
(
θ(z)

z2

)
− 1

24

1

λ2
lnλδ

′
(z)

+
1∑
j=0

(−1)jµj(f2)
δ(j)(z)

j!λj+1
+O

(
1

λ

)
.
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Finally, the relevant moment expansion coefficients this time are

µ1(f2) =

∫ ∞
0

z tan−1(2z) dz =
π

16
, (39)

µ2(f2) =

∫ ∞
0

z2 tan−1(2z) dz =
1

72
+

1

24
ln 2. (40)

By forming the correct linear combination of these terms, we have

h11(z) = ±λ3θ(z)z ∓ 1

π
λ2θ(z)± 1

12π
Pf
(
θ(z)

z2

)
∓ 1

8
λδ(z)

∓ 2

π

[
1

72
+

1

24
ln 2

]
δ
′
(z)∓ 1

12π
lnλδ

′
(z)

= ±λ3θ(z)z ∓ 1

π
λ2θ(z)± 1

12π
Pf
(
θ(z)

z2

)
∓ 1

8
λδ(z)± 1

36π
δ
′
(z)

∓ 1

12π
ln(2λ)δ

′
(z). (41)

By taking the second derivative of (41), according to the Hadamard Pf formulas,
we find that the equation (36) is satisfied.
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Neutral point splitting

Now consider using y as the cutoff parameter. It is “neutral” with respect
to both time (energy) and x (pressure p1).

2π2E = M−3[−3t2 + x2 + y2 + (z + z′)2],

2π2p1 = M−3[−t2 + 3x2 − y2 − (z + z′)2]

Note:

1 The p1 calculation is identical to what we just did, with y in the role
of t.

2 E in this case is just the negative of p1.

So we do not need to do any more calculating, and we have 3 new,
agreeing formulas that outvote the Leipzig formula for E .
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Comparison of old and new energy formulas

hold
00 (x) = ±2λ3θ(x)x∓ 1

π
λ2θ(x)∓ 1

12π
Pf
(
θ(x)

x2

)
(42)

∓ 1

18π
δ′(x)± 1

12π
ln(2λ)δ′(x)

hnew
00 (z) = ∓λ3θ(z)z ± 1

π
λ2θ(z)∓ 1

12π
Pf
(
θ(z)

z2

)
± 1

8
λδ(z)∓ 1

36π
δ
′
(z)

± 1

12π
ln(2λ)δ

′
(z). (43)

Here hnew
00 is the negative of the pressure expression we obtained. (“old”

= t cutoff, “new” = y cutoff.) For the ratios of the coefficients we find:
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Table: Ratio hold
00 / hnew

00

Term Ratio of the coefficients

λ3xθ(x) -2
λ2θ(x) -1
λδ(x) 0

ln(2λ)δ′(x) 1
δ′(x) 2

Pf
(
θ(x)
x2

)
1

The first two terms could be absorbed into the homogeneous
solution.
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Philosophies

Two philosophies

1 The cutoff is a mathematical means to an end, which is a limiting
theory with the cutoff removed. At the intermediate stage a violation
of energy-pressure balance may be tolerated, so long as the final
theory is physically acceptable. Noncovariant regularization forces
noncovariant counterterms, which appear in the final equations with
coefficient 0 (i.e., not at all).

2 The cutoff theory should be a physically plausible model of a real
boundary. Energy-pressure balance must be preserved. The
distributional limit is an approximation to the cutoff theory, not vice
versa.
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Open to discussion

Are both philosophies physically tenable?
What is the physical significance of the delta terms?
Can they be taken seriously (in the neutral case) with λ finite?
Should we be worried that the coefficient ratio is not unity for
one term that’s independent of λ?


